291 |
Algorithmes et généricité dans les groupes de tressesCaruso, Sandrine 22 October 2013 (has links) (PDF)
La théorie des groupes de tresses s'inscrit au croisement de plusieurs domaines des mathématiques, en particulier, l'algèbre et la géométrie. La recherche actuelle s'étend dans chacune de ces directions, et de riches développements naissent du mariage de ces deux aspects. D'un point de vue géométrique, le groupe des tresses à n brins est vu comme le groupe modulaire d'un disque à n trous, avec composante de bord. On peut représenter une tresse par un diagramme de courbes, c'est-à-dire l'image d'une famille fixée d'arcs sur le disque, par l'élément correspondant du groupe modulaire. Dans cette thèse est présenté l'algorithme de relaxations par la droite, qui permet de retrouver, étant donné un diagramme de courbes, la tresse à partir de laquelle il a été obtenu. Cet algorithme aide à faire le lien entre des propriétés géométriques du diagramme de courbes, et des propriétés algébriques du mot de tresse, en permettant de repérer de grandes puissances d'un générateur sous forme de spirales dans le diagramme de courbes. D'un point de vue algébrique, le groupe de tresses est l'exemple classique de groupe de Garside. L'un des objectifs actuels des recherches en théorie de Garside est d'obtenir un algorithme de résolution en temps polynomial du problème de conjugaison dans les groupes de tresses. À cette fin, on cherche à exploiter les propriétés de certains ensembles finis de conjugués d'une tresse, qui sont des invariants de conjugaison. L'un des résultats de cette thèse concerne la taille d'un de ces invariants, l'ensemble super-sommital : on exhibe une famille de tresses pseudo-anosoviennes dont l'ensemble super-sommital est de taille exponentielle. González-Meneses avait déjà établi le résultat similaire pour une famille de tresses réductibles. La conséquence de ces résultats est qu'on ne peut pas espérer résoudre le problème de conjugaison en temps polynomial au moyen de cet ensemble, et qu'il vaut mieux chercher à exploiter des invariants plus petits. Dans le cas des tresses pseudo-anosoviennes, des espoirs résident actuellement en l'ensemble des circuits glissants. Dans cette thèse, un algorithme en temps polynomial s'appuyant sur ce dernier ensemble résout génériquement le problème de conjugaison, c'est-à-dire qu'il le résout pour une proportion de tresses tendant exponentiellement vite vers 1 lorsque la longueur de la tresse tend vers l'infini. On montre également que, dans une boule du graphe de Cayley avec pour générateurs les tresses simples, une tresse générique est pseudo-anosovienne, ce qui était une conjecture bien connue des spécialistes de la théorie de Garside.
|
292 |
Identification des éléments morphologiques du lit dans les cours d'eau de montagneThérien, Julie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
293 |
Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectiqueVichery, Nicolas 22 October 2012 (has links) (PDF)
Dans une première partie, nous développerons la théorie de l'homogénéisation symplectique ainsi que ses applications à la théorie de Mather et à la rigidité symplectique. Les invariants spectraux lagrangiens seront l'outil de base de ce travail. Dans une seconde partie, nous rappelerons les toutes nouvelles applications de la théorie des faisceaux aux problèmes de non déplaçabilité. Nous formulerons ce que nous pensons être l'équivalent de l'homologie de Floer dans ce cas là et les invariants spectraux. Puis, à l'aide de ces outils nous prouverons la non-déplaçabilité de sous-variétés lagrangiennes non exactes du cotangent. Ensuite, nous parlerons des applications à la topologie symplectique $C^0$ et à l'optimisation non lisse.
|
294 |
A l'intersection de la combinatoire des mots et de la géométrie discrète : palindromes, symétries et pavagesBlondin masse, Alexandre 02 December 2011 (has links) (PDF)
Dans cette thèse, différents problèmes de la combinatoire des mots et de géométrie discrète sont considérés. Nous étudions d'abord l'occurrence des palindromes dans les codages de rotations, une famille de mots incluant entre autres les mots sturmiens et les suites de Rote. En particulier, nous démontrons que ces mots sont pleins, c'est-à-dire qu'ils réalisent la complexité palindromique maximale. Ensuite, nous étudions une nouvelle famille de mots, appelés mots pseudostandards généralisés, qui sont générés à l'aide d'un opérateur appelé clôture pseudopalindromique itérée. Nous présentons entre autres une généralisation d'une formule décrite par Justin qui permet de générer de façon linéaire et optimale un mot pseudostandard généralisé. L'objet central, le f-palindrome ou pseudopalindrome est un indicateur des symétries présentes dans les objets géométriques. Dans les derniers chapitres, nous nous concentrons davantage sur des problèmes de nature géométrique. Plus précisément, nous don-nons la solution à deux conjectures de Provençal concernant les pavages par translation, en exploitant la présence de palindromes et de périodicité locale dans les mots de contour. À la fin de plusieurs chapitres, différents problèmes ouverts et conjectures sont brièvement présentés.
|
295 |
Deux aspects de la géométrie birationnelle des variétés algébriques : la formule du fibré canonique et la décomposition de ZariskiFloris, Enrica 25 September 2013 (has links) (PDF)
La formule du fibré canonique et la décomposition de Zariski sont deux outils très importants en géométrie birationnelle. La formule du fibré canonique pour une fibration f:(X,B)->Z consiste à écrire K_X+B comme tiré en arrière de K_Z+B_Z+M où B_Z contient des informations sur les fibres singulières et M s'appelle partie modulaire. Il a été conjecturé qu'il existe une modification birationnelle Z' de Z telle que M' est semiample, où M' est la partie modulaire induite par changement de base. Un diviseur pseudoeffectif admet une décomposition de Zariski s'il existent un diviseur nef P et un diviseur effectif N tels que D=P+N et P est "le plus grand" diviseur nef tel que D-P est effectif.
|
296 |
Métriques naturelles associées aux familles de variétés Kahlériennes compactesMagnusson, Gunnar thor 28 November 2012 (has links) (PDF)
Dans cette thèse nous considérons des familles $pi : cc X to S$ de variétés compactes k"ahlerinnes au-dessus d'une base lisse $S$. Nous construisons un cône de K"ahler relatif $p : cc K to S$ au-dessus de la base de déformations. Ensuite nous démontrons l'existence des métriques hermitiennes naturelles sur les espaces totals $cc K$ et $cc X times_S cc K$ qui généralisent la métrique de Weil--Petersson classiuque associée aux familles polarisées de telles variétés. Nous obtenons aussi une métrique riemannienne sur le cône de K"ahler d'une variété compacte k"ahlerienne quelconque. Nous exprimons son tenseur de courbure à l'aide d'un plongement du cône de K"ahler dans l'espace de toutes métriques hermitiennes sur la variété. Nous démontrons aussi que si les variétés en question sont de fibré canonique trivial, alors notre métrique est la forme de courbure d'un fibré en droites holomorphe. Nous donnons ensuite quelques exemples et applications.
|
297 |
Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'ArakelovThuillier, Amaury 13 October 2005 (has links) (PDF)
Utilisant le point de vue introduit par V.G. Berkovich en géométrie analytique sur un corps non archimédien k, nous montrons dans cette thèse qu'il existe une théorie du potentiel naturelle sur toute courbe k-analytique lisse, tout à fait similaire à la théorie classique sur les surfaces de Riemann (courbes analytiques complexes). La motivation initiale vient des travaux de R. Rumely sur les applications arithmétiques d'une telle théorie. La théorie non archimédienne du potentiel à un aspect fortement combinatoire que l'on exploite initialement pour définir les fonctions harmoniques et établir leurs propriétés fondamentales. Nous introduisons ensuite une notion de fonction lisse ainsi qu'un opérateur linéaire, formellement analogue au laplacien complexe dd^c, que l'on étudie via une théorie des distributions. Le dernier chapitre présente une généralisation de la théorie d'Arakelov en dimension un, fondée sur la théorie non archimédienne du potentiel. Nous l'utilisons pour établir un théorème d'équidistribution des suites de points de petite hauteur, ainsi que pour donner une nouvelle démonstration d'un théorème de Rumely sur les capacités arithmétiques.
|
298 |
Problèmes de plongements en géométrie symplectiqueOpshtein, Emmanuel 03 July 2014 (has links) (PDF)
Ce mémoire concerne les phénomènes de rigidité/flexibilité liés aux plongements et leurs applications en topologie symplectique. Les deux grands thèmes abordés sont les plongements symplectiques équidimensionnels en dimension 4 et la géometrie symplectique C^0.
|
299 |
Introduction à quelques aspects de quantification géométrique.Aubin-Cadot, Noé 08 1900 (has links)
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier.
Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références. / We review some differential geometric prerequisite needed for an initial approach of the geometric quantization theory, i.e. basic notions in symplectic geometry, Lie group, Lie group action, principal G-bundle, connection, associated bundle, almost-complex structure. This leads to an in-depth study of Hermitian line bundles that leads to an existence condition for a prequantum line bundle over a symplectic manifold. With these tools, we start a study of geometric quantization, step by step. We introduce the prequantization theory, which is the construction of operators associated to classical observables and construction of a Hilbert space. Some major problems arise when applying prequantization in concrete examples : the obtained operators are not exactly those expected by first quantization and the constructed Hilbert space is too big. A first correction, polarization, corrects some problems, but greatly limits the set of classical observables that we can quantize.
This dissertation is not a complete survey of geometric quantization, which is not its goal. It's not covering metaplectic correction, neither BKS kernel. It's a side lecture for those introducing themselves to geometric quantization. First, it's introducing differential geometric concepts taken for granted in (Woodhouse [21]) and (Sniatycki [18]), i.e. principal G-bundles and associated bundles. Secondly, it adds details to some brisk proofs given in these two last references.
|
300 |
On the minimal number of periodic Reeb orbits on a contact manifoldGutt, Jean 27 June 2014 (has links) (PDF)
Le sujet de cette thèse est la question du nombre minimal d'orbites de Reeb distinctes sur une variété de contact qui est le bord d'une variété symplectique compacte. L'homologie symplectique $S^1$-équivariante positive est un des outils principaux de cette thèse; elle est construite à partir d'orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique dont le bord est la variété de contact considérée. Nous analysons la relation entre les différentes variantes d'homologie symplectique d'une variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies. Nous étudions ensuite l'invariance de ces homologies par rapport au choix de la forme de contact sur le bord. Nous utilisons l'homologie symplectique $S^1$-équivariante positive pour donner une nouvelle preuve d'un théorème de Ekeland et Lasry sur le nombre minimal d'orbites de Reeb distinctes sur certaines hypersurfaces dans $\R^{2n}$. Nous indiquons comment étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs. Nous donnons une caractérisation et une nouvelle façon de calculer l'indice de Conley-Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplectiques. Ceci nous a mené à développer de nouvelles formes normales de matrices symplectiques.
|
Page generated in 0.0314 seconds