331 |
Sur le second théorème principal / On the Second Main TheoremHuynh, Dinh Tuan 28 September 2016 (has links)
La conjecture de Kobayashi stipule qu'une hypersurface générique X dans CPn+1de degré d>= 2n+1 esthyperbolique complexe, un problème qui a attiré une grande attention récemment, avec l'espoir de mettre au point une théorie de Nevanlinna complète en dimension supérieure.Dans la première partie de cette thèse, notre objectif est de construire des exemples d'hypersurfaces hyperboliques de l'espace projectif dont le degré soit aussi petit que possible. Tout d'abord, en tenant compte du niveau de troncation dans le Second Théorème Principal de Cartan, nous établissons l'hyperbolicité de complémentaires de certaines configurations d'hyperplans avec points de passages, ce qui étend un résultat classique de Bloch-Fujimoto-Green. Ceci nous permet d'amorcer un algorithme récent de Duval, basé sur la méthode de déformation de Zaidenberg, pour créer des sextiques hyperboliques dans CP3, et de construire ainsi des familles d'hypersurfaces hyperboliques X dans CPn+1 de degré =2n+2 pour 2<=n<=5. En adaptant cette technique aux dimensions supérieures, nous obtenons aussi des exemples d'hypersurfaces hyperboliques de degré d>=((n+3)/2)^2 dans CPn+1.Dans la deuxième partie, nous étudions le problème de diminuer le niveau de troncation dans le Second Théorème Principal de Cartan. Noguchi a conjecturé que dans ce théorème, pour une famille de 4 droites en position générale dans CP2, si une courbe holomorphe entière f de C dans CP2 est supposée n'être pas algébriquement dégénérée, alors le niveau de troncation peut être abaissé à 1. En utilisation la théorie de recouvrement d'Ahlfors pour les surfaces, nous proposons une réponse positive dans le cas où la courbe f est proche d'une certaine courbe algébrique c dans CP2, au sens où l'ensemble d'accumulation de f(C) à l'infini, le cluster set de f est contenu dans c. / Kobayashi's conjecture asserts that a generic hypersurface X in CPn+1 having degree d>= 2n+1 is complex hyperbolic, a problem that has attracted much attention recently, also with the hope of setting up a complete higher dimensional Nevanlinna theory.In the first part of this thesis, our goal is to construct examples of hyperbolic hypersurfaces in projective spaces of degree as low as possible. First of all, taking into account the truncation level in Cartan's Second Main Theorem, we establish the hyperbolicity of complements of some configurations of hyperplanes with passage points, extending a classical result of Bloch-Fujimoto-Green. This allows us to launch a recent algorithm of Duval, based on the deformation method of Zaidenberg, on creating hyperbolic sextics in CP3, hence to construct families of hyperbolic hypersurfaces X in CPn+1 having degree d=2n+2 for 2<= n<= 5. Adapting this technique to higher dimensional cases, we also obtain examples of hyperbolic hypersurfaces of degree d>=((n+3)/2)^2 in CPn+1.In the second part, we study the problem of decreasing the truncation level in Cartan's Second Main Theorem. It was conjectured by Noguchi that in this theorem, for a family of 4 lines in general position in CP2, if an entire holomorphic curve from C to CP2 is assumed to be algebraically nondegenerate, then the truncation level can be decreased to 1. Using Ahlfors'theory of covering surfaces, we propose a positive answer in the case where the curve f is close to some algebraic curve c in CP2, in the sense that the set of accumulation points of f(C) at infinity, the cluster set of f is contained in c.
|
332 |
Quartic Tensor Models / Modèles tensoriels quartiquesDelepouve, Thibault 15 May 2017 (has links)
Les modèles de tenseurs sont des mesures de probabilité sur des espaces de tenseurs aléatoires. Ils généralisent les modèles de matrices et furent développés pour l’étude de la géométrie aléatoire en dimension arbitraire. De plus, ils sont fortement liés aux théories de gravité quantique car, en plus des modèles standards très simples, ils incluent les théories de champs sur groupes, qui constituent l’approche « intégrale fonctionnelle » de la gravité quantique à boucle. Dans cette thèse, nous étudions le cas restreint des modèles tensoriels quartiques, pour lesquels un plus grand nombre de résultats mathématiques rigoureux ont pu être démontrés. Grâce à la transformation de champ intermédiaire, les modèles quartiques peuvent être ré-écrits sous forme de modèles de matrices multiples, et leurs développements perturbatifs peuvent être indexés par des cartes combinatoires. En utilisant divers développement en cartes, nous démontrons d’importants résultats d’analycité ainsi que des bornes pour les cumulants du modèle tensoriel standard le plus général et de rang arbitraire, ainsi que du plus simple modèle renormalisable de rang 3. Ensuite, nous introduisons une nouvelle famille de modèles, les modèles améliorés, dont le développement perturbatif se comporte de manière nouvelle, différente du comportement « melonique » qui caractérise les modèles tensoriels précédemment étudiés. / Tensor models are probability measures for random tensors. They generalise matrix models and were developed to study random geometry in arbitrary dimension. Moreover, they are strongly connected to quantum gravity theories as, additionally to the standard bare-bones models, they encompass the field theoretical approach to loop quantum gravity known as group field theory.In the present thesis, we focus on the restricted case of quartic tensor models, for which a far greater number of rigorous mathematical results have been proven. Quartic models can be re-written as multi-matrix models using the intermediate field representation, and their perturbative expansions can be written as series expansions over combinatorial maps. Using a variety of map expansions, we prove analyticity results and useful bounds for the cumulants of various tensor models : the most general standard quartic model at any rank and the simplest renormalisable tensor field theory at rank 3. Then, we introduce a new class of models, the enhanced models, which perturbative expansions display new behaviour, different to the so called melonic behaviour that characterise most known tensor models so far.
|
333 |
Minimum complexity principle for knowledge transfer in artificial learning / Principe de minimum de complexité pour le transfert de connaissances en apprentissage artificielMurena, Pierre-Alexandre 14 December 2018 (has links)
Les méthodes classiques d'apprentissage automatique reposent souvent sur une hypothèse simple mais restrictive: les données du passé et du présent sont générées selon une même distribution. Cette hypothèse permet de développer directement des garanties théoriques sur la précision de l'apprentissage. Cependant, elle n'est pas réaliste dans un grand nombre de domaines applicatifs qui ont émergé au cours des dernières années.Dans cette thèse, nous nous intéressons à quatre problèmes différents en intelligence artificielle, unis par un point commun: tous impliquent un transfer de connaissance d'un domaine vers un autre. Le premier problème est le raisonnement par analogie et s'intéresse à des assertions de la forme "A est à B ce que C est à D". Le second est l'apprentissage par transfert et se concentre sur des problèmes de classification dans des contextes où les données d'entraînement et de test ne sont pas de même distribution (ou n'appartiennent même pas au même espace). Le troisième est l'apprentissage sur flux de données, qui prend en compte des données apparaissant continument une à une à haute fréquence, avec des changements de distribution. Le dernier est le clustering collaboratif et consiste à faire échanger de l'information entre algorithmes de clusterings pour améliorer la qualité de leurs prédictions.La principale contribution de cette thèse est un cadre général pour traiter les problèmes de transfer. Ce cadre s'appuie sur la notion de complexité de Kolmogorov, qui mesure l'information continue dans un objet. Cet outil est particulièrement adapté au problème de transfert, du fait qu'il ne repose pas sur la notion de probabilité tout en étant capable de modéliser les changements de distributions.En plus de cet effort de modélisation, nous proposons dans cette thèse diverses discussions sur d'autres aspects ou applications de ces problèmes. Ces discussions s'articulent autour de la possibilité de transfert dans différents domaines et peuvent s'appuyer sur d'autres outils que la complexité. / Classical learning methods are often based on a simple but restrictive assumption: The present and future data are generated according to the same distributions. This hypothesis is particularly convenient when it comes to developing theoretical guarantees that the learning is accurate. However, it is not realistic from the point of view of applicative domains that have emerged in the last years.In this thesis, we focus on four distinct problems in artificial intelligence, that have mainly one common point: All of them imply knowledge transfer from one domain to the other. The first problem is analogical reasoning and concerns statements of the form "A is to B as C is to D". The second one is transfer learning and involves classification problem in situations where the training data and test data do not have the same distribution (nor even belong to the same space). The third one is data stream mining, ie. managing data that arrive one by one in a continuous and high-frequency stream with changes in the distributions. The last one is collaborative clustering and focuses on exchange of information between clustering algorithms to improve the quality of their predictions.The main contribution of this thesis is to present a general framework to deal with these transfer problems. This framework is based on the notion of Kolmogorov complexity, which measures the inner information of an object. This tool is particularly adapted to the problem of transfer, since it does not rely on probability distributions while being able to model the changes in the distributions.Apart from this modeling effort, we propose, in this thesis, various discussions on aspects and applications of the different problems of interest. These discussions all concern the possibility of transfer in multiple domains and are not based on complexity only.
|
334 |
On the quantum structure of spacetime and its relation to the quantum theory of fields : k-Poincaré invariant field theories and other examples / De la structure quantique de l'espace-temps et de sa relation à la théorie quantique des champsPoulain, Timothé 28 September 2018 (has links)
De nombreuses approches à la gravité quantique suggèrent que la description usuelle de l’espace-temps ne serait pas adaptée à la description des phénomènes physiques impliquant à la fois des processus gravitationnels et quantiques. Une meilleure description pourrait consister à munir l’espace-temps d’une structure non-commutative en remplaçant les coordonnées locales sur la variété par des opérateurs ne commutant pas deux-à-deux. Il s’ensuit que le comportement des théories de champs construites sur de tels espaces diffère en général de celui des théories de champs ordinaires. L’étude de ces possibles nouvelles propriétés est l’objet de la théorie non-commutative des champs (TNCC) dont nous étudions certains des aspects.Dans le présent mémoire, nous considérons deux familles d’espaces quantiques dont l’algèbres de coordonnées admet une structure d’algèbre de Lie. La première famille est caractérisée par l’algèbre su(2) et apparait dans le cadre de modèle de gravité quantique en 3 dimensions, ainsi que dans certains modèles de « brane » et de « group field theory ». La seconde famille d’espaces quantiques est connue sous le nom de kappa-Minkowski. L’intérêt de cet espace réside dans le fait qu’il est défini comme l’espace homogène associé à l’algèbre de Hopf de kappa-Poincaré. Cette dernière définit une déformation, à l’échelle de Planck, de l’algèbre de Poincaré et s’avère être étroitement liée à certains modèles de gravité quantique.Afin d’étudier les TNCC, il est commode de représenter l’espace quantique comme une algèbre non-commutative de fonctions munie d’un produit déformé appelé « star-product ». Une façon canonique de construire un tel produit consiste à se servir d’outils d’analyse harmonique et à adapter le schéma de quantification de Weyl (originellement introduit dans le cadre de la mécanique quantique) à l’algèbre considérée. Les expressions de star-product associé aux espaces susmentionnés sont dérivées de manière explicite. Nous montrons en particulier que des familles de star-product inéquivalents peuvent être classifiées par des considérations cohomologiques. Nous étudions enfin les propriétés quantiques de différents modèles de TNCC scalaire quartique construits à l’aide de ces star-product. Dans le cas où l’espace quantique est caractérisé par l’algèbre su(2), nous trouvons que la fonction 2-point est fini à l’ordre une boucle, le paramètre de déformation jouant le rôle d’une coupure ultraviolette et infrarouge. Dans le cas de kappa-Minkowski, nous insistons sur l’invariance sous kappa-Poincaré de l’action fonctionnelle et montrons que certains modèles de TNCC scalaire quartique divergent moins que dans le cas commutatif. Par ailleurs, la fonction 4-point est trouvée finie à l’ordre une boucle. Nos résultats, ainsi que leurs conséquences, sont finalement discutés. / As many theoretical studies point out, the classical description of spacetime, as a continuum, might be no longer adequate to reconcile gravity with quantum mechanics at very high energy (the relevant energy scale being often regarded as the Planck scale). Instead, a more appropriate description could be provided by the data of a noncommutative algebra of coordinate operators replacing the usual commutative local coordinates on smooth manifold. Once the noncommutative nature of spacetime is assumed, it is to expect that the (classical and quantum) properties of field theories on noncommutative background differ from the ones of field theories on classical background. This is the aim of Non-Commutative Field Theory (NCFT) to explore and study these new properties.In the present dissertation, we consider two families of quantum spacetimes of Lie algebra type noncommutativity. The first family is characterised by su(2) noncommutativity and appears in the description of some models of quantum gravity in 3-dimensions. The other family of quantum spacetimes is known in the physics literature as the 4-d kappa-Minkowski space. The importance of this quantum spacetime lies into the fact that its symmetries are provided by the (quantum) kappa-Poincaré algebra (a deformation of the classical Poincaré algebra) together with the fact that the deformation parameter 'kappa', which is of mass dimension, provides a natural energy scale at which the quantum gravity effects may be relevant (and is often regarded as being related to the Planck scale). For these reasons, the kappa-Minkowski space appears as a good candidate for a spacetime to be involved in the description of Doubly Special Relativity and Relative Locality models.To study NCFT it is often convenient to introduce a star product characterising the (noncommutative) C*-algebra of fields modelling the quantum spacetime under consideration. We emphasise that a canonical star product can be obtained by using the group algebraic structures underlying the construction of such Lie algebra type quantum spaces, namely by making use of harmonic analysis on the corresponding Lie group together with the Weyl quantisation scheme. The explicit derivation of such star product for kappa-Minkowski is given. In addition, we show that su(2) Lie algebras of coordinate operators related to quantum spaces with su(2) noncommutativity can be conveniently represented by SO(3)-equivariant poly-differential involutive representations and show that the quantized plane waves obtained from the quantization map action on the usual exponential functions are determined by polar decomposition of operators combined with constraint stemming from the Wigner theorem for SU(2). We finally indicate a convenient way to extend this construction to other semi-simple but non simply connected Lie groups by making use of results from group cohomology with value in an abelian group that would replace the constraints stemming from the simple Wigner theorem.Then, we investigate the quantum properties of various models of interacting scalar field theory on noncommutative background making use of the aforementioned star product formalism to construct physically reasonable expressions for the action functional. Considering quantum spacetime with su(2) noncommutativity, we find that the one-loop 2-point function for complex scalar field theories with quartic interactions is finite, the deformation parameter playing the role of a natural UV cut-off. Special attention is paid to the derivation of the one-loop corrections to both the 2-point and 4-point functions for various models of kappa-Poincaré invariant scalar field theory with quartic interactions. In that case, we show that for some models the 2-point function divergences linearly thus slightly milder than their commutative counterpart, while the one-loop 4-point function is shown to be finite. The results we obtained together with their consequences are finally discussed.
|
335 |
Lois d’échelles et propriétés statistiques multifractales de la topographie des planètes / Scaling laws and multifractal statistical properties of planetary topographyLandais, François 24 November 2017 (has links)
Au cours des 20 dernières années, le développement des méthodes de télédétection et le succès des missions spatiales ont considérablement enrichi nos connaissances sur les surfaces planétaires révélant une immense diversité de morphologies. Etant le reflet de l'interaction et de la compétition entre des processus géologiques dont les modalités sont variables d'un corps à l'autre, elles sont largement étudiées pour retracer l'histoire géologique des planètes telluriques. En particulier, des informations précieuses sur la nature des processus et sur les lois générales qui contrôlent la formation et l'évolution des paysages sont enregistrées dans le champ topographique qui peut être analysé en tant que champ statistique. Nous rapportons dans cette thèse les résultats d'une étude comparative des propriétés statistiques de la topographie des principaux corps du système solaire en nous appuyant sur le volume croissant de données altimétriques et photogrammétriques. Notre approche est centrée sur la notion de loi d'échelle qui vise à caractériser les symétries du champ en traduisant le caractère auto-similaire des surfaces naturelles : les détails d'une surface ressemblent en général à des versions réduites de l'ensemble. Nous mettons en oeuvre plusieurs méthodes d'analyse de données dites «multifractales» pour dégager le meilleur modèle statistique capable de décrire la topographie dans différents contexte et proposons de nouveaux indicateurs de rugosité à l'échelle globale, régionale et locale. Nous montrons qu'en dépit de leur diversité, les surfaces du système solaire respectent des lois statistiques similaires que nous explicitons. En particulier nous montrons que la distribution globale des pentes d'un corps respecte en général des lois multifractales pour les échelles supérieures à 10-20km et présente une structure statistique différente pour les échelles inférieures. Enfin nous proposons une méthode pour générer des topographies synthétique sphériques dont le propriétés statistiques sont similaires aux topographie planétaire du système solaire. / Over the past 20 years, the development of remote sensing methods and the success of space missions have considerably enriched our knowledge of planetary surfaces revealing an immense diversity of morphologies. Being the reflection of the interaction and the competition between geological processes whose modalities are variable from one body to the other, they are widely studied to trace the geological history of the telluric planets. In particular, precise information on the nature of processes and general laws controlling the formation and evolution of landscapes is recorded in the topographic field which can be analyzed as a statistical field. We report in this thesis the results of a comparative study of the statistical properties of the topography of the main bodies of the solar system based on the increasing volume of altimetric and photogrammetric data. Our approach focuses on the notion of scaling law which aims to characterize the symmetries of the field by translating the self-similar nature of natural surfaces: the details of a surface generally look like reduced versions of the whole. We use several methods of analyzing so-called "multifractal" to derive the best statistical model capable of describing the topography in different contexts and propose new indicators of roughness at the global, regional and local scale. We show that in spite of their diversity, the surface of the solar system respects similar statistical laws. In particular, we show that the overall distribution of the slopes of a body generally respects multifractal laws for scales greater than 10-20 km and presents a different statistical structure for the lower scales. Finally, we propose a method for generating spherical synthetic topographies whose statistical properties are similar to the topographies in the solar system.
|
336 |
Facteurs locaux l-adiques / Local factors in l-adic cohomologyGuignard, Quentin 22 May 2019 (has links)
Cette thèse est composée de deux parties indépendantes. Dans la première, nous donnons une démonstration alternative du théorème d'aplatissement par éclatements de Raynaud-Gruson. Celle-ci repose sur la construction et l'étude de certains espaces valuatifs, et nous permet de dégager la notion de $Phi$-anneau, qui fournit un substitut algébrique aux anneaux topologiques adiques : la notion correspondante de $Phi$-schéma est aux schémas ce que les espaces rigides sont aux schémas formels.Dans une seconde partie, nous nous inspirons de travaux de Laumon et de Deligne pour démontrer l'existence de facteurs $varepsilon$ locaux dans un cadre géometrique. Nous démontrons ensuite, en usant de la méthode la phase stationnaire $ell$-adique, une formule du produit pour le déterminant de la cohomologie d'un faisceau $ell$-adique sur une courbe en caractéristique $p neq ell$ positive : cela étend des résultats précédemment connus pour un corps de base fini. Parmi les outils utilisées figure la théorie du corps de classes géométrique, dont nous donnons une démonstration géométrique s'inspirant de l'approche de Deligne pour le cas non ramifié. / This thesis is divided in two parts. We first give an alternative proof of the Raynaud-Gruson's theorem regarding flattening by blow-ups. The argument rests upon the study of certain valuative spaces associated to a refined notion of ring, which we name $Phi$-rings : these are algebraic substitutes to adic topological rings, and the corresponding $Phi$-schemes can be considered as generic fibers of schemes, in the same way that rigid spaces are generic fibers of formal schemes.In the second part, we prove the existence of local $varepsilon$-factors in a geometric setting. These results, which are inspired by works of Laumon and Deligne, lead to a product formula for the determinant of the cohomology of an $ell$-adic sheaf on a curve over a perfect field of positive characteristic $p neq ell$, which was previously known for a finite base field. One of our main tools is geometric class field theory; we provide a detailed proof of its global version by extending Deligne's approach from the tamely ramified case to the general case.
|
337 |
Geometric reconfigurationsLangerman, Stefan January 2007 (has links)
Agrégation de l'enseignement supérieur, Orientation sciences / Thèse d'agrégation / info:eu-repo/semantics/nonPublished
|
338 |
Géométrie asymptotique sous-linéaire : hyperbolicité, autosimilarité, invariants / Large-scale sublinear geometry : hyperbolicity, self-similarity, invariantsPallier, Gabriel 02 September 2019 (has links)
Les équivalences sous-linéairement bilipschitziennes ont été introduites par Yves Cornulier afin de décrire les cônes asymptotiques des groupes de Lie. Elles généralisent les quasiisométries. Cette thèse construit des invariants pour l'équivalence sous-linéairement bilipschitzienne entre groupes et espaces hyperboliques au sens de Gromov, en utilisant l'analyse au bord de Gromov. Une classe d'application généralisant les homéomorphismes quasisymétriques, et une dimension conforme associée, sont introduites. Les espaces riemannien de type non-compact et de rang un, ainsi que certains espaces homogènes de courbure strictement négative, sont classifiés à équivalence sous-linéairement bilipschitzienne près. / Sublinearly biLipschitz equivalences have been introduced by Yves Cornulier as a means of describing the asymptotic cones of Lie groups; they include and generalize quasiisometries. This thesis provides invariants for sublinearly biLipschitz equivalence between Gromov-hyperbolic groups and spaces using analysis on the Gromov boundary. A class of applications generalizing quasisymmetric mappings, and a corresponding conformal dimension, are introduced as tools. Riemannian symmetric spaces of noncompact type as well as a subclass of homogeneous negatively curved Riemannian manifolds are classified up to sublinearly biLipschitz equivalence.
|
339 |
A non-Archimedean Montel's theorem / Théorème de Montel non-archimédienRodriguez Vazquez, Rita 19 July 2017 (has links)
Cette thèse est dédiée à l'étude des propriétés de compacité de familles d'applications analytiques entre espaces analytiques définis sur un corps métrisé non-Archimédien $k$.Nous travaillons dans le contexte des espaces analytiques développés par Berkovich pour exploiter leur topologie modérée.Une de nos motivations est le désire d'introduire une notion naturelle d'hyperbolicité au sens de Kobayashi dans ce cadre.Nous démontrons d'abord un analogue au théorème de Montel pour des applications analytiques à valeurs dans un domaine borné de l'espace affine.Afin de ceci faire, nous paramétrisons l'espace des applications analytiques d'un polydisque ouvert dans un polydique fermé par le spectre analytique d'une $k$-algèbre de Banach adéquate.Le résultat découle alors de la compacité séquentielle de cet espace.Nos résultats mènent naturellement à une définition de famille normale, et nous introduisons ensuite deux ensembles de Fatou associés à un endomorphisme de l'espace projectif.Nous montrons que les composantes de Fatou se comportent comme dans le cas complexeet ne contiennent pas d'image non-triviale de la droite affine épointée.Ensuite, nous appliquons notre notion de normalité à l'étude de l'hyperbolicité dans le cadre non-Archimédien.Nous reprenons les travaux de W. Cherry et démontrons plusieurs caractérisations des variétés projectives lisses pour lesquelles la semi-distance de Cherry-Kobayashi sur l'ensemble des points rigides définit la topologie usuelle.Nous obtenons finalement une caractérisation des courbes algébriques lisses $X$ de caractéristique d'Euler négative en termes de la normalité de certaines familles d'applications analytiques à valeurs dans $X$. / This thesis is devoted to the study of compactness properties of spaces of analytic maps between analytic spaces defined over a non-Archimedean metrized field $k$. We work in the theory of analytic spaces as developed by Berkovich to fully exploit their tame topology. One of our motivations is the strive to introduce a natural notion of Kobayashi hyperbolicity in this setting.We first prove an analogue of Montel’s theorem for analytic maps taking values in a bounded domain of the affine space. In order to do so, we parametrize the space of analytic maps from an open polydisk to a closed one by the analytic spectrum of a suitable Banach $k$-algebra. Our result then follows from the sequential compactness of this space.Our results naturally lead to a definition of normal families, and we subsequently introduce two notions of Fatou sets attached to an endomorphism of the projective space. We show that Fatou components behave like in the complex case and cannot contain non trivial images of the punctured affine line.Thereupon, we apply our normality notion to the study of hyperbolicity in the non-Archimedean setting. We pursue the work of W. Cherry and prove various characterizations of smooth projective varieties whose Cherry-Kobayashi semi distance on the set of rigid points defines the classical topology. We finally obtain a characterization of smooth algebraic curves $X$ of negative Euler characteristic in terms of the normality of certain families of analytic maps taking values in $X$.
|
340 |
On some constructions of contact manifolds / Sur quelques constructions de variétés de contactGironella, Fabio 13 July 2018 (has links)
Cette thèse est subdivisée en deux parties.La première partie porte sur l’étude de la topologie de l’espace des contactomorphismes pour quelques exemples explicites de variétés de contact en grandes dimensions. Plus précisément, en utilisant des constructions et résultats dus à Massot, Niederkrüger et Wendl, on construit, en chaque dimension impaire, une infinité d’exemples de contactomorphismes de variétés de contact vrillées fermées qui sont lissement isotopes mais pas contact-isotopes à l’identité. On donne aussi,en toutes dimensions impaires, des exemples de variétés de contact tendues fermées qui admettent un contactomorphisme tel que tous ses itérées sont lissement isotopes mais pas contacto-isotopes à l’identité ; ceci généralise un résultat en dimension 3 dû à Ding et Geiges.Dans la deuxième partie, on construit des exemples de variétés de contact fermées en grandes dimensions avec des propriétés particulières. Ceci nous amène à l’existence de structures tendues virtuellement vrillées en toutes dimensions impaires, et au fait que chaque variété de contact fermée de dimension 3 se plonge dans une variété de contact tendue fermée de dimension 5 avec fibré normal trivial. Pour cela, on utilise des constructions dues à Bourgeois (sur des produits avec des tores) et à Geiges (sur des revêtements ramifiés). On passe de ces constructions à des définitions ;ceci permet de prouver un résultat d’unicité dans le cas des revêtements ramifiés de contact, et d’étudier leurs propriétés globales, en montrant qu’elles ne dépendent d’aucun choix auxiliaire fait dans les procédures. Un deuxième but permis par ces définitions est l’étude des relations entre ces constructions et les notions de livre ouvert porteur, due à Giroux, et de fibré de contact, due à Lerman. Par exemple, on donne une définition de structure de contact de Bourgeois qui est locale,inclue (strictement) les résultats de la construction de Bourgeois et permet de récupérer une classe d’isotopie de livres ouverts porteurs sur les fibres ; ceci suit d’une réinterprétation, inspirée par une idée de Giroux, des livres ouverts porteurs en termes de paires de champs de vecteurs de contact. / This thesis is divided in two parts.The first part focuses on the study of the topology of the contactomorphism group of some explicit high dimensional contact manifolds. More precisely, using constructions and results by Massot, Niederkrüger and Wendl, we construct (infinitely many) examples in all dimensions of contactomor-phisms of closed overtwisted contact manifolds that are smoothly isotopic but not contact-isotopicto the identity. We also give examples of tight high dimensional contact manifolds admitting a contactomorphism whose powers are all smoothly isotopic but not contact-isotopic to the identity ;this is a generalization of a result in dimension 3 by Ding and Geiges.In the second part, we construct examples of higher dimensional contact manifolds with specific properties. This leads us to the existence of tight virtually overtwisted closed contact manifolds in all dimensions and to the fact that every closed contact 3-manifold embeds with trivial nor-mal bundle inside a tight closed contact 5-manifold. This uses known construction procedures byBourgeois (on products with tori) and Geiges (on branched covering spaces). We pass from these procedures to definitions ; this allows to prove a uniqueness statement in the case of contact branched coverings, and to study the global properties (such as tightness and fillability) of the results of both constructions without relying on any auxiliary choice in the procedures. A second goal allowed by these definitions is to study relations between these constructions and the notions of supporting open book, due to Giroux, and of contact fiber bundle, due to Lerman. For instance,we give a definition of Bourgeois contact structures on flat contact fiber bundles which is local,(strictly) includes the results of Bourgeois’ construction, and allows to recover an isotopy class of supporting open books on the fibers. This last point relies on a reinterpretation, inspired by anidea by Giroux, of supporting open books in terms of pairs of contact vector fields.
|
Page generated in 0.0341 seconds