• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 77
  • 74
  • 30
  • 20
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 548
  • 87
  • 53
  • 52
  • 37
  • 36
  • 34
  • 32
  • 31
  • 31
  • 30
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

The involvement of nitric oxide in a rodent model of post-traumatic stress disorder / Frasia Oosthuizen

Oosthuizen, Frasia January 2003 (has links)
Post-traumatic stress disorder (PTSD), an anxiety disorder, may develop after experiencing or witnessing a severe traumatic event. Characteristic symptoms include hyper arousal and amnesic symptoms, while volume reductions in the hippocampus of these patients appear correlated with illness severity and the degree of cognitive deficit. Stress-induced increases in plasma cortisol have been implicated in this apparent atrophy of the hippocampus, although, clinical studies have described a marked suppression of plasma cortisol in PTSD. Given this hypocortisolemia, the basis for hippocampal neuro degeneration and cognitive decline remains unclear. While stress-related hippocampal structural changes have been linked to the neurotoxic effects of glucocorticoids and glutamate. NMDA-NO pathways have been found to play a causal role in anxiety-related behaviours. Prior exposure to trauma is an important risk factor for PTSD. In most instances the disorder becomes progressively worse over time, possibly with a delayed onset, suggesting a role for sensitization. In this study a time-dependent sensitization (TDS) model was used to induce PTSD-like sequelae in male Spraque-Dawley rats. The TDS-model is based on exposure to acute stressors, with a reminder of the trauma, in the form of re-exposure to one of the acute stressor, seven days later. NOS-activity, NMDA receptor parameters (Bmax and Kd) and GABA levels in the hippocampus of rats, as well as plasma corticosterone levels were determined 21 days after exposure to the TDS-model. Increased levels of corticosterone were measured after exposure to acute stress, but these levels were found to decrease below basal levels 21 days after the re-exposure, thus mimicking glucocorticoid levels in patients with PTSD. These findings may also imply that the increase in glucocorticoid levels after stress exposure is only the initial step in a cascade of events leading to neuronal damage in the hippocampus. This study also found that stress-restress evoked a long-lasting increase in hippocampal NOS activity that was accompanied by a reactive down-regulation of hippocampal NMDA receptors and dysregulation of inhibitory GABA pathways. Subsequently, animals were chronically treated with certain pharmacological agents prior to exposure to the TDS-model to determine possible approaches for inhibiting the induction of PTSD. Pre-treatment with fluoxetine, currently indicated in the treatment of PTSD. and the nNOS inhibitor, 7-nitroindazole, had no effect on the increased NOS activity measured 21 days afler exposure to the TDS-model. Pre-treatment with the iNOS inhibitor, aminoguanidine, however, resulted in inhibition of the observed increase in hippocampal NOS-activity, implicating a possible role for the iNOS isoform in the etiology of PTSD. Treatment with ketoconazole, an inhibitor of glucoccfticoid synthesis, resulted in inhibition of the increase in NOS-activity observed after exposure to TDS-stress, thus indicating a possible link between stress glucocorticoid-release and NO synthesis. These perturbations may have importance in explaining the increasing evidence for stress-related hippocampal degenerative pathology and cognitive deficits seen in patients with PTSD. Uncovering and understanding the role of NO in PTSD will hopefully lead to the development of selective therapeutic agents in disorders like PTSD. as well as providing a better understanding of basic processes underlying normal and pathological neuronal functions in PTSD. / Thesis (Ph.D. (Pharmacology))--North-West University, Potchefstroom Campus, 2004.
452

Tolerance and antagonism to allopregnanolone effects in the rat CNS

Turkmen, Sahruh January 2006 (has links)
Many studies have suggested a relationship between sex steroids and negative mental and mood changes in women. Allopregnanolone, a potent endogenous ligand of the GABA-A receptor and a metabolite of progesterone, is one of the most accused neuroactive steroids. Variations in the levels of neuroactive steroids that influence the activity of the GABA-A receptor cause a vulnerability to mental and emotional pathology. In women, there are physiological conditions in which allopregnanolone production increases acutely (e.g. stress) or chronically (e.g. menstrual cycle, pregnancy), thus exposing the GABA-A receptor to high allopregnanolone concentrations. In such conditions, tolerance to allopregnanolone probably develops. We have evaluated the 3β-hydroxy pregnane steroid UC1011 as a functional antagonist to allopregnanolone-induced negative effects in rats. In vivo, we used the Morris Water Maze (MWM) test of learning and, in vitro, we studied chloride ion uptake into cortical and hippocampal membrane preparations. The steroid UC1011 reduces the allopregnanolone-induced learning impairment in the MWM and the increase in chloride ion uptake induced by allopregnanolone. To detect whether chronic tolerance develops to an allopregnanolone-induced condition, male rats were pretreated with allopregnanolone injections for three or seven days. These rats were then tested in the Morris Water Maze for five days and compared with relevant controls. Rats with seven days’ allopregnanolone pretreatment experienced improved performance compared with the acutely allopregnanolone-exposed group, reflecting chronic tolerance development. To study the GABA-A receptor changes in acute allopregnanolone tolerance, we used the silent second (SS) anaesthesia threshold method. At acute tolerance, 90 minutes of anaesthesia, the abundance of the GABA-A receptor α4 subunit and the expression of the α4 subunit mRNA in the thalamus ventral-posteriomedial (VPM) nucleus were reduced. There was also a significant negative correlation between the increase in the allopregnanolone dose needed to maintain anaesthesia and the α4 mRNA in the VPM nucleus. We also investigated whether allopregnanolone tolerance was still present one or two days after the end of the anaesthesia-induced acute tolerance. Tolerance persisted to one day, but not two days, after the treatment and the α4 subunit mRNA expression in the VPM nucleus was negatively related to the allopregnanolone doses needed after one day. In conclusion, the current thesis shows that the substance UC1011 can reduce the allopregnanolone-induced negative effects in the water maze test. Chronic allopregnanolone tolerance can develop to the effects of allopregnanolone. Allopregnanolone tolerance persists one day after the induction of acute allopregnanolone tolerance. The GABA-A receptor α4 subunit in the thalamus might be involved in the development and persistence of acute tolerance to allopregnanolone.
453

"Dr Jekyll and Mr Hyde?" : abuse of potent benzodiazepines, exemplified by flunitrazepam, in mentally disordered male offenders /

Dåderman, Anna M., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
454

Thermodynamic regulation of NKCC1-mediated chloride transport underlies plasticity of GABAA signaling /

Brumback, Audrey Christine. January 2006 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 86-96). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
455

Transcranial stimulation of the human primary motor cortices

Bachtiar, Velicia Elizabeth January 2015 (has links)
The primary aim of this thesis is to investigate the physiological effects of transcranial direct current stimulation (tDCS) as applied to the primary motor cortex (M1). This research was largely motivated by the need to understand the basic physiological changes of tDCS, in order to evaluate its use as a potential tool in recovery after stroke, as well as its more general applicability as a tool to modulate plasticity. The experiments in this thesis assess the ability of tDCS to modulate the primary motor cortex in healthy controls. The effects of tDCS on cortical GABA and motor resting state functional connectivity were measured with magnetic resonance spectroscopy (MRS) and resting functional MRI (fMRI). Anodal stimulation reduced GABA concentration and increased functional connectivity in the stimulated M1. Testing these changes within the same individuals demonstrated that the magnitude of changes do not correlate across subjects. Novel evidence on the timecourse of GABA change demonstrated that the reduction in GABA is most prominent in the 30-minute period after stimulation. To determine whether the tDCS-induced modulations in inhibition is restricted to the stimulated hemisphere or whether inhibitory changes could be observed in the nonstimulated M1, or in the interhemispheric connections between the M1s, transcranial magnetic stimulation (TMS) was used to measure intracortical inhibition in each M1 and interhemispheric inhibition and facilitation in the contralateral M1. There were no polarity-specifc effects on intracortical inhibition within either M1, and no changes in interhemispheric excitability from the stimulated to non-stimulated M1. Development of a two-voxel MRS method at ultra high field (7 Tesla) allowed for concurrent measurements of cortical neurotransmitters from both M1s with excellent spectral quality and GABA quantifcation. This method was used to demonstrate the timecourse of tDCS-induced changes in neurochemicals concurrently from both M1s. Anodal stimulation reduced GABA in both the anode-targeted and non-stimulated M1. Cathodal stimulation decreased GABA and glutamate in the non-stimulated M1, with no concurrent changes in the cathode-targeted M1. Bilateral stimulation reduced glutamate in both M1 with no change in GABA.
456

Genome-scale identification of cellular pathways required for cell surface recognition

Sharma, Sumana January 2018 (has links)
A range of biochemically diverse molecules located in the plasma membrane— such as proteins, glycans, and lipids—mediate cellular recognition events, initiation of signalling pathways, and the regulation of processes important for the normal development and function of multicellular organisms. Interactions mediated by cell surface receptors can be challenging to detect in biochemical assays, because they are often highly transient, and membrane-embedded receptors are difficult to solubilise in their native conformation. The biochemical features of low-affinity extracellular protein interactions have therefore necessitated the development of bespoke methods to detect them. Here, I develop a genome-scale cell-based genetic screening approach using CRISPR-Cas9 knockout technology that reveals cellular pathways required for specific cell surface recognition events. Using a panel of high-affinity monoclonal antibodies, I first establish a method from which I identify not only the direct receptor but also other required gene products, such as co-receptors, post-translational modi cations, and transcription factors contributing to antigen expression and subsequent antibody-antigen recognition on the surface of cells. I next adapt this method to identify cellular factors required for receptor interactions for a panel of recombinant proteins corresponding to the ectodomains of cell surface proteins to the endogenous surface receptors present on a range of cell lines. In addition to finding general cellular features recognised by many ectodomains, I also identify direct interaction partners of recombinant protein probes on cell surfaces together with intracellular genes required for such associations. Using this method, I identify IGF2R as a binding partner for the R2 subunit of GABAB receptors, providing a mechanism for the internalisation and regulation of GABAB receptor signalling. The results here demonstrate that this single approach can identify the molecular nature and cell biology of surface receptors without the need to make any prior assumptions regarding their biochemical properties.
457

Estrutura cristalográfica da lectina de sementes da Canavalia maritima Aub, em complexo com o ácido gamaaminobutírico (GABA) e a adenina revela novas características estruturais e prediz mecanismo anti-herbivoria

Silva Filho, José Caetano da 16 August 2013 (has links)
Made available in DSpace on 2015-04-01T14:16:03Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5234352 bytes, checksum: 404f7b4f1ab797fa6090d6cd85ee8163 (MD5) Previous issue date: 2013-08-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Plants are sessile organisms susceptible to biotic and abiotic stresses. Insect herbivore attacks are factors that affect their survival and development. To defend themselves, plants produce and release chemical compounds, such as non protein amino acids, that negatively affect the development processes of their attackers, as well as use phytohormones that regulate defense responses against herbivory. In the present work, we seek to understand in depth the insecticidal activity related to ConM, a lectin isolated from beach bean seeds (Canavalia maritima Aub.), through their crystal structure analysis in complex with the non protein amino acid GABA (gamma-aminobutyric acid) and adenine, a nitrogen base-precursor of cytokinins, phytohormones involved in defense responses against insect herbivores. In this way, we co-crystallized ConM with GABA and soaked the derived crystals into an adenine 5mM solution. It was viewed through ConM monomeric model that GABA stabilization occurs through interactions displayed with amino acid residues that participate in the coordination of its isomer alpha-aminobutyric acid (Abu). In the other hand, adenine molecule displays interactions with amino acid residues from ConM Carbohydrate Recognition Domain due ahydrophobic pocket adjacently localized to this ligand-binding site and formed from a secondary non repetitive structure of β-bulge. A dimeric model of ConM reveals that lectin insecticidal activity is related to conformational changes of Gln132, resulting in GABA release without quaternary structure change. Hence, the presented results might contribute to greater understanding of lectins interactions with different chemical ligands, helping their application as biotechnological tools. / Plantas são organismos sésseis que encontram-se susceptíveis a estresses bióticos e abióticos. O ataque de insetos herbívoros é um fator que afeta sua sobrevivência e seu desenvolvimento. Como defesa, estes organismos são capazes de produzir e liberar compostos químicos, como aminoácidos não proteicos, que interferem no desenvolvimento dos insetos agressores, e utilizam fitohormônios para regular suas respostas de defesa. No presente trabalho, buscamos entender o papel inseticida da ConM, uma lectina isolada de sementes do feijão-de-praia (Canavalia maritima Aub.), a partir da análise de sua estrutura tridimensional em complexo com o aminoácido não proteico GABA (ácidogama-aminobutírico) e com a base nitrogenada adenina, precursora das citocininas, fitohormônios envolvidos com processos de defesa contra insetos herbívoros. Para tanto, resolvemos a estrutura cristalográfica da ConM co-cristalizada com o GABA e soaked com a adenina 5mM. O modelo monomérico da lectina mostrou que o GABA encontra-se coordenado por interações com resíduos de aminoácidos previamente reportados como sendo participantes da estabilização do ácido alfaaminobutírico (Abu). A adenina, por outro lado, é estabilizada por interações com resíduos constituintes do domínio de reconhecimento a carboidrato da ConM, o que pode ser explicado pela presença de uma região hidrofóbica adjacente a este sítio, formada por uma estrutura secundária não repetitiva do tipo β-bulge. Um modelo dimérico da ConM revela que a atividade inseticida de lectinas está relacionada com mudanças conformacionais da Gln132, permitindo que o GABA seja liberado sem alteração da estrutura quaternária. Assim, os resultados aqui apresentados podem contribuir para um maior entendimento acerca da capacidade de interação de lectinas vegetais com diferentes tipos de ligantes, facilitando sua utilização como ferramenta biotecnológica.
458

Interferência da moxidectina na motivação sexual e ereção peniana de ratos: envolvimento de neurotransmissores hipotalâmicos e estriatais / Moxidectin interference on sexual motivation and penile erection: involvement of hypothalamic and striatal neurotransmitters

Patricia de Sa e Benevides Rodrigues Alves 30 November 2007 (has links)
A moxidectina (MOX) é um antiparasitário utilizado na clínica veterinária. Em mamíferos seu mecanismo de ação envolve o ácido ?-aminobutírico (GABA), um neurotransmissor que tem papel relevante na regulação dos comportamentos sexual e motor. Dados anteriores por nós obtidos mostraram que a MOX prejudicou o comportamento sexual e a coordenação motora de ratos machos avaliados na trave elevada. Assim, dando continuidade a esse estudo, o objetivo deste trabalho foi avaliar os efeitos da administração da dose terapêutica de MOX (0,2 mg/kg) na motivação sexual e ereção peniana de ratos machos, bem como estudar seu envolvimento em diferentes sistemas de neurotransmissão central. Em todos os experimentos os ratos do grupo experimental receberam a MOX por via subcutânea (SC); e os ratos do grupo controle receberam 1 ml/kg de óleo de amêndoas pela mesma via, e foram avaliados após 72 h. A motivação sexual foi avaliada em um aparelho constituído de uma arena e dois compartimentos separados desta por tela de arame; num compartimento foi colocado um rato macho experiente e no outro uma fêmea sexualmente receptiva. Neste aparelho foi medido o tempo que o rato permaneceu nas proximidades de cada compartimento. Os resultados obtidos neste experimento não mostraram diferenças significantes entre os grupos. A ereção peniana foi induzida pela administração SC de 80 ?g/kg de apomorfina, sendo avaliadas a latência e a freqüência de ereção. Os resultados mostraram aumento da latência e redução da freqüência de ereção peniana dos animais tratados com MOX, enquanto que a administração dos antagonistas GABAérgicos (biculina e faclofen) não alterou estes parâmetros. Por outro lado, observou-se que a biculina (antagonista GABAA) reverteu os efeitos da MOX na ereção peniana, enquanto o faclofen aumentou a freqüência de ereção peniana em ratos tratados com a MOX. Quanto aos níveis hipotalâmicos e estriatais de neurotransmissores e metabólitos, observou-se que a MOX reduziu os níveis estriatais de dopamina e de seu metabólito ácido homovanílico (HVA) e também os níveis hipotalâmicos de GABA. Estes dados sugerem que a MOX embora não interfira na motivação sexual, prejudica o desempenho sexual avaliado pela ereção peniana. Esse efeito da MOX pode ser atribuído a sua ação em receptores GABAA, os quais modulam receptores tipo B, aumentando a liberação de GABA, e 72 h depois, conseqüente redução dos níveis deste neurotransmissor no hipotálamo (uma das áreas centrais envolvidas com o comportamento sexual) e também dos níveis de dopamina e seu metabólito HVA no estriado, área do sistema nervoso central relacionada com a função motora e na qual neurônios GABAérgicos modulam a atividade de neurônios dopaminérgicos. / The moxidectina (MOX) is an antiparasitic drug used in veterinary clinic. In mammals its mechanism of action involves GABA, neurotransmitter that has an important role in the regulation of the sexual and motor behaviors. Previous data showed that MOX impair male rat\'s sexual behavior and motor coordination observed at wooden dowel. The objective of the present work was to evaluate the effects of therapeutic dose of MOX (0.2 mg/kg) in sexual motivation and penile erection of male rats, as well as to study its involvement in different central systems of neurotransmission. In all experiments the rats of experimental groups received MOX subcutaneous (SC), and the rats of control groups received 1.0 mL/kg of almonds oil (SC), and were observed after 72h. Sexual motivation test was performed in an arena with two cages, separate from the arena with a wall of wire screen; in one cage was put an intact male rat and in the other one, a sexually receptive female. In this test was measured the time that the rats stayed near of each cage. The data obtained in this experiment didn\'t show any significant differences among the groups. The penile erection (PE) was induced by 80 ?g/kg of Apomorphine (SC), being evaluated the latency to and frequency of PE. The results showed increased latency and reduction of the frequency of PE of animals treated with MOX, while the GABAergic antagonists\' administration (Biculline and Phaclofen) didn\'t change these parameters. On the other hand, it was observed that the Biculline (GABAA antagonist) reversed the effects of MOX in PE, while the Phaclofen increased the frequency of PE in rats treated with MOX. About Hypothalamic and Striatal neurotransmitters levels and their metabolites, was observed that MOX reduced Dopamine (DA) and its metabolite homovanillic acid (HVA) striatal levels and hypothalamic GABA levels. These data suggest that MOX although doesn\'t interfere in sexual motivation, impair sexual performance evaluated by penile erection. This effect of MOX can be attributed to its action in GABAA receptors, which modulate type B receptors, increasing GABA release, and consequent reduction of its levels in the Hypothalamus (one of the central areas involved with sexual behavior) and also, reduction of the DA and its metabolite HVA striatal levels. Striatum is a central nervous system area related with motor function in which GABAergic neurons modulate the activity of dopaminergic neurons.
459

Desenvolvimento físico e neurocomportamental de filhotes após exposição materna à valeriana (Valeriana officinalis) durante a gestação em ratas (Rattus Norvegicus Berkenhout,1769)

Campos, Mara Lúcia de 10 December 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-22T11:31:21Z No. of bitstreams: 1 maraluciadecampos.pdf: 1264653 bytes, checksum: b2a9f890fc102cc866b811fc0c301aae (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T15:28:50Z (GMT) No. of bitstreams: 1 maraluciadecampos.pdf: 1264653 bytes, checksum: b2a9f890fc102cc866b811fc0c301aae (MD5) / Made available in DSpace on 2016-07-13T15:28:50Z (GMT). No. of bitstreams: 1 maraluciadecampos.pdf: 1264653 bytes, checksum: b2a9f890fc102cc866b811fc0c301aae (MD5) Previous issue date: 2012-12-10 / A valeriana é moderadamente sedativa e usada no tratamento da ansiedade e distúrbios do sono. De acordo com a literatura a exposição a psicofármacos que atuam em receptores GABA-A durante a gestação podem provocar alterações comportamentais nos filhotes na vida adulta. O objetivo do presente trabalho foi avaliar o efeito que a administração do extrato de Valeriana durante a gestação possa ter sobre o desenvolvimento físico, o desenvolvimento reflexológico, a ansiedade e a memória dos filhotes. As ratas prenhes foram distribuídas aleatoriamente em quatro grupos (n=10): controle (1ml de água destilada) e três grupos tratados com valeriana, via intragástrica, T-500 (500mg/Kg/dia), T-1000 (1000mg/Kg/dia) e T-2000 (2000mg/Kg/dia) do 12° ao 19° dia de gestação. Depois do nascimento, o comportamento materno foi registrado e os filhotes fêmeas e machos foram avaliados separadamente quanto a alterações no desenvolvimento físico e reflexológico. Os filhotes machos também foram avaliados na vida adulta, 90 dias, quanto à ansiedade e à memória. Os animais apresentaram algumas alterações nas datas de aparecimento dos sinais indicadores físicos, os quais não permaneceram na vida adulta. A data de aparecimento dos reflexos foi semelhante entre os grupos. Em relação à ansiedade e à memória na vida adulta, não houve diferença estatística entre os grupos nos testes utilizados. Portanto, não houve alteração no desenvolvimento neonatal e neurocomportamental dos ratos, não tendo sido possível verificar se tal fato se deveu aos componentes da Valeriana não passarem pela placenta ou se o extrato ser inócuo para os fetos. / Valerian is moderately sedative and used for anxiety problems and sleep disturbance. Previous studies have shown that the exposure to psychopharmacs acting on GABA-A system during gestation in rats can produce behavioral alterations in their descendants in the adult life. This work was designed to evaluate the effects of the exposure to Valeriana officinalis L. (Valerianaceae) during gestation on the physical and reflexological development of the offspring and on their anxiety state and memory in the adult stage. Pregnant rats were randomly distributed into four groups (n = 10): control (1 ml distilled water) and three valerian-treated groups with the doses T-500 (500 mg/Kg/ day), T-1000 (1000 mg/Kg/day) and T-2000 (2000 mg/Kg/ day), administered by gavage, from the 12th to 19th day of gestation. After birth, maternal behavior was evaluated and the physical and reflexological development of the offspring male and females was assessed separately. The anxiety and memory of offspring male were evaluated at 90 days of age. Maternal behavior was not affected by treatment with valerian. The offspring exhibited some alterations on the day of appearance of physical signs, which did not affect the adult life, whereas similar days of appearance of the reflexes were observed among the groups. No significant difference was detected in the offspring in the anxiety and memory tests. Therefore, no alterations in the neonatal and neurobehavioral development of rats exposed to valerian during intrauterine life were found in the present work.
460

Real-time PCR analysis of age-dependent alterations in the RVLM neurotransmitter gene expression profile of F344 rats

Craig, Robin Ann January 1900 (has links)
Doctor of Philosophy / Department of Anatomy and Physiology / Michael J. Kenney / It is well established that normal aging is associated with progressive increases in efferent sympathetic nerve discharge (SND). Type II diabetes, obesity, heart failure, and hypertension are pathologies that have been attributed to both the processes of aging and sympathetic dysfunction, exemplifying the importance of understanding central regulation of SND during aging. However, the central mechanisms mediating altered SND with advancing age remain unclear. The rostral ventral lateral medulla (RVLM) is a brainstem region critically involved in setting the basal level of sympathetic outflow and cardiovascular function. Indeed, the RVLM is the only presympathetic region that when bilaterally inactivated results in profound reductions in both SND and arterial pressure. Glutamatergic influences in RVLM activity are powerfully inhibited by tonic GABAergic neural inputs originating from the caudal ventral lateral medulla (CVLM); effects that are mediated by GABAA receptors located on presympathetic neuronal cell bodies within the RVLM. In the present study we proposed that reductions in GABA[subscript A] receptor subunit gene expression may reflect withdrawal of GABAergic tone in the RVLM thereby contributing to the basal sympathetic activation that occurs with advancing age. Therefore, the objective of the current study was to identify age-related changes in the constitutive expression of genes related to GABAergic and muscarinic, nicotinic and dopaminergic receptor systems due to their reported involvement in modulating GABA[subscript A] receptor function, in the RVLM of adult young (3-5 mo. old), middle-aged (12 mo. old), weight stable presenescent (24-25 mo. old) and senescent (>24 mo. old) Fischer 344 (F344) rats using a commercially available real-time PCR array. Real-time analysis revealed nonuniform and age-associated changes in the RVLM GABA, muscarinic, nicotinic and dopaminergic neurotransmitter gene expression profile between young and middle-aged F344 rats. Heterogeneous expression of genes related to these neurotransmitters was also observed between presenescent and senescent F344 rats. Our results suggest that potential changes in neurotransmitter synthesis and degradation, uptake, transport, signaling and receptor subunit composition may account for the sympathoexcitatory state that is commonly observed in the aged.

Page generated in 0.0382 seconds