• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 77
  • 74
  • 30
  • 20
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 548
  • 87
  • 53
  • 52
  • 37
  • 36
  • 34
  • 32
  • 31
  • 31
  • 30
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
492

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
493

Dynamique de récepteurs uniques du GABAA dans le cône de croissance : rôle dans la détection de signaux de guidage

Bouzigues, Cedric 03 October 2006 (has links) (PDF)
Lors du développement du système nerveux, les axones en croissance choisissent une<br />direction d'extension avec précision. Ce processus est permis par la détection sensible de<br />signaux de guidage par les récepteurs membranaires de la membrane du cône de croissance.<br />Nous avons étudié la dynamique de récepteurs individuels du GABA marqués par<br />des nanocristaux fluorescents. Les récepteurs répartis également dans la membrane d'un<br />cône de croissance soumis à un gradient de GABA sont spécifiquement redistribués vers sa<br />source. Cette réorganisation est due à des interactions avec les microtubules déplaçant les<br />récepteurs vers les régions à forte concentration de GABA, mises en évidence sur les trajectoires<br />des récepteurs. Son rôle fonctionnel a été révélé par la mesure d'une amplification<br />de l'asymétrie de la concentration intracellulaire de calcium, qui régule l'organisation du<br />cytosquelette. Ces observations permettent l'élaboration d'un modèle d'auto-organisation<br />des récepteurs, permettant une amplification du signal extérieur. Une faible activation<br />asymétrique des récepteurs induit une asymétrie de concentration de calcium et de l'organisation<br />du cytosquelette. Ceci crée une boucle de rétroaction positive en favorisant<br />la redistribution, qui renforce le signal induit par le gradient en amplifiant l'asymétrie<br />de la concentration de récepteurs et de calcium. L'auto-organisation des récepteurs est<br />décrite par un système d'équations stochastiques étudiées numériquement et analytiquement.<br />Les travaux présentés permettent de proposer un mécanisme général d'amplification<br />de signaux extérieurs dans l'axone en croissance et dans les systèmes chimiotactiques ou<br />polarisés.
494

Συναπτική αναστολή στον ιππόκαμπο: επίδραση φαρμάκων που δρουν στους GABA υποδοχείς κατά μήκος της δομής

Γεωργόπουλος, Παναγιώτης 21 July 2008 (has links)
Συναπτική διέγερση και αναστολή βρίσκονται σε συνεχή δυναμική ισορροπία, απαραίτητη για την καλή λειτουργία του ΚΝΣ. Ένα από τα βασικά ανασταλτικά κυκλώματα του εγκεφάλου είναι αυτό της παλίνδρομης αναστολής. Το πιο χαρακτηριστικό, ίσως, παράδειγμα του κυκλώματος αυτού βρίσκεται στη CA1 περιοχή του ιππόκαμπου, η οποία προσφέρεται για ηλεκτροφυσιολογικές μελέτες in vitro, λόγω της στρωματοειδούς οργάνωσης των κυκλωμάτων ιππόκαμπου. Πρόσφατες έρευνες έχουν δείξει διαφορές στη δομή και λειτουργία των δύο πόλων του ιππόκαμπου, καθιστώντας αναγκαία τη συγκριτική τους μελέτη. Στην εργασία αυτή χρησιμοποιήθηκαν εξωκυττάριες καταγραφές από την πυραμιδική στοιβάδα σε συνδυασμό με το πρωτόκολλο διπλού ορθόδρομου ερεθισμού (περιορισμένα) και το πρωτόκολλο αντίδρομου-ορθόδρομου ερεθισμού (εκτενέστερα) για τη μελέτη του πλάτους και της διάρκειας της παλίνδρομης αναστολής σε τομές ραχιαίου και κοιλιακού ιππόκαμπου από αρσενικούς επίμυες, καθώς και της επίδρασης επί αυτής μιας σειράς καταπραϋντικών φαρμάκων που δρουν ως αλλοστερικοί ενισχυτές του GABAA υποδοχέα. Τα αποτελέσματα των πειραμάτων έδειξαν: Επαλήθευση της στρωματοειδούς οργάνωσης των κυκλωμάτων του ιππόκαμπου, με μεγαλύτερη κατευθυντικότητα των ανασταλτικών κυκλωμάτων στο ραχιαίο σε σχέση με τον κοιλιακό πόλο. Μεγαλύτερο πλάτος και διάρκεια και πιο αργή μείωση της παλίνδρομης αναστολής γενικά, και της GABAA συνιστώσας της ειδικότερα, στο ραχιαίο σε σχέση με τον κοιλιακό ιππόκαμπο. Ενίσχυση της παλίνδρομης αναστολής και στους δύο πόλους του ιππόκαμπου από διαζεπάμη, μιδαζολάμη, ζολπιδέμη, φαινοβαρβιτάλη, θειοπεντάλη, πεντοβαρβιτάλη, αλφαξαλόνη και προποφόλη. Συσχέτιση της αύξησης του πλάτους της αναστολής και της διάρκειας της ενίσχυσής της με την κλινική δράση της κάθε συγκέντρωσης φαρμάκου. Ενίσχυση της αποκλειστικά GABAA εξαρτώμενης αναστολής από υψηλές συγκεντρώσεις θειοπεντάλης και αλφαξαλόνης που δοκιμάστηκαν ενδεικτικά πολύ πέρα από τα φυσιολογικά χρονικά όριά της. Μεγαλύτερη διάρκεια ενίσχυσης της συναπτικής αναστολής από τις σχετικά υψηλότερες δόσεις φαρμάκων στο ραχιαίο σε σχέση με τον κοιλιακό πόλο. Έλλειψη δράσης του νευροστεροειδούς αλλοπρεγνανολόνη και των συνθετικών παραγώγων του στη συναπτική αναστολή. Περιορισμένος αριθμός in vivo πειραμάτων εκτίμησης της επίδρασης της αλλο-πρεγνανολόνης και των παραγώγων της στην αναστολή με το μοντέλο ελέγχου επιληπτικών κρίσεων που προκαλούνται από PTZ έδειξε πως, ενώ τα συνθετικά παράγωγα δεν είχαν καμία δράση, η αλλοπρεγνανολόνη είχε σημαντική θετική δράση / Synaptic excitation and inhibition are maintained in dynamic equilibrium, necessary for the proper function of the CNS. One of the basic inhibitory circuits of the brain is that of recurrent inhibition. The most distinctive example of recurrent inhibition occurs in the CA1 region of the hippocampus, a region particularly suited to in vitro electrophysiological investigations because of the unique lamellar organization of hippocampal circuits. Recent research has uncovered considerable differences in the structure and function of the two poles of the hippocampus necessitating a comparative study. In this study we used extracellular recordings from the pyramidal cell layer of dorsal and ventral rat hippocampal slices, in conjunction with limited use of the double orthodromic and more extensive use of the paired antidromic-orthodromic stimulation protocol in order to study the CA1 recurrent inhibition and the effects of a series of sedative drugs, with GABAA allosteric modulator properties, on it. The results of these experiments showed: A verification of the lamellar organization of hippocampal circuits. Dorsal pole inhibitory circuits showed a greater orientation specificity than ventral pole ones. A greater size and duration and a slower decay of recurrent inhibition in general, and of its GABAA-mediated component in particular, in dorsal compared to ventral hippocampus. An enhancement of recurrent inhibition in both hippocampal poles produced by diazepam, midazolam, zolpidem, phenobarbital, thiopental, pentobarbital, alfaxalone and propofol. A correlation between the enhancement of the size of recurrent inhibition or the duration of its enhancement and the clinical actions of every drug concentration tested. An enhancement of the exclusively GABAA-mediated recurrent inhibition by representative high concentrations of thiopental and alfaxalone well beyond its normal duration. A greater duration of recurrent inhibition enhancement by the relatively higher drug concentrations in dorsal compared to ventral hippocampus. A lack of action on synaptic inhibition by the neurosteroid allopregnanolone and its synthetic derivatives. A limited number of in vivo experiments assessing the effect of allopregnanolone and its derivatives on synaptic inhibition, measured as their ability to control epileptic seizures induced by acute injections of PTZ, showed that the synthetic derivatives had no effect whereas allopregnanolone had a significant positive effect.
495

THE ROLE OF RAPID EYE MOVEMENT AND SLOW WAVE SLEEP FOR THE CONSOLIDATION OF MEMORY IN RATS

Fogel, STUART 26 October 2009 (has links)
The functions of sleep remain enigmatic. One of the dominant, yet more contentious hypotheses is that sleep is involved in memory consolidation. A large body of evidence supports the role of rapid eye movement (REM) sleep in memory consolidation, especially in rodents. In humans, the role of REM sleep in memory consolidation has also been investigated, however it is unclear if it supports only one type of memory, or consolidation for several memory systems. Recent evidence suggests that non-REM is also involved in memory consolidation. The role of theta activity during REM and sleep spindles during non-REM may provide electrophysiological signatures reflecting memory consolidation processes. The studies presented here attempt to further investigate the electrophysiological characteristics of the learning-dependent changes in REM and slow wave sleep (SWS) in rats. A 2-stage model of memory consolidation is outlined here, and both steps of the model were investigated. Consistent with previous studies, REM increases were observed following avoidance training. During this period, theta power during REM sleep was increased compared to non-learning rats. Increased sleep spindle density during SWS was observed following REM increases. When REM sleep was suppressed by infusing the GABAB agonist baclofen into the pedunculopontine nucleus, avoidance performance acquisition was impaired. Baseline sleep spindles predicted whether rats were able to learn to make avoidance responses. Results suggest that both REM and SWS may be sequentially involved in memory consolidation processes. Discrete periods (windows) exist for REM and SWS when memory consolidation processes appear to take place. Theta activity during REM sleep from 17- 20 h on the first post-training day and sleep spindles during SWS from 21-24 h on the first post- training day are increased in learning rats and are related to memory performance. / Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2009-10-26 12:07:47.515
496

Couplage du récepteur à sept domaines transmembranaires GABA-B1 aux voies intracellulaires de signalisation en absence de GABA-B2

Richer, Maxime 02 1900 (has links)
Le GABA est le principal neurotransmetteur inhibiteur du SNC et est impliqué dans le développement du cerveau, la plasticité synaptique et la pathogénèse de maladies telles que l’épilepsie, les troubles de l’anxiété et la douleur chronique. Le modèle actuel de fonctionnement du récepteur GABA-B implique l’hétérodimérisation GABA-B1/B2, laquelle est requise au ciblage à la surface membranaire et au couplage des effecteurs. Il y est cependant des régions du cerveau, des types cellulaires et des périodes du développement cérébral où la sous-unité GABA-B1 est exprimée en plus grande quantité que GABA-B2, ce qui suggère qu’elle puisse être fonctionnelle seule ou en association avec des partenaires inconnus, à la surface cellulaire ou sur la membrane réticulaire. Dans le cadre de cette thèse, nous montrons la capacité des récepteurs GABA-B1 endogènes à activer la voie MAPK-ERK1/2 dans la lignée dérivée de la glie DI-TNC1, qui n’exprime pas GABA-B2. Les mécanismes qui sous-tendent ce couplage demeurent mal définis mais dépendent de Gi/o et PKC. L’immunohistochimie de récepteurs endogènes montre par ailleurs que des anticorps GABA-B1 dirigés contre la partie N-terminale reconnaissent des protéines localisées au RE tandis des anticorps C-terminaux (CT) marquent une protéine intranucléaire. Ces données suggèrent que le domaine CT de GABA-B1 pourrait être relâché par protéolyse. L’intensité des fragments potentiels est affectée par le traitement agoniste tant en immunohistochimie qu’en immunobuvardage de type western. Nous avons ensuite examiné la régulation du clivage par le protéasome en traitant les cellules avec l’inhibiteur epoxomicine pendant 12 h. Cela a résulté en l’augmentation du marquage intranucléaire de GABA-B1-CT et d’un interacteur connu, le facteur de transcription pro-survie ATF-4. Dans des cellules surexprimant GABA-B1-CT, l’induction et la translocation nucléaire d’ATF-4, qui suit le traitement epoxomicine, a complètement été abolie. Cette observation est associée à une forte diminution du décompte cellulaire. Étant donné que les trois derniers résidus de GABA-B1-CT (LYK) codent un ligand pseudo-PDZ et que les protéines à domaines PDZ sont impliquées dans la régulation du ciblage nucléaire et de la stabilité de protéines, en complément de leur rôle d’échaffaud à la surface cellulaire, nous avons muté les trois derniers résidus de GABA-B1-CT en alanines. Cette mutation a complètement annulé les effets de GABA-B1-CT sur l’induction d’ATF-4 et le décompte cellulaire. Cette deuxième série d’expériences suggère l’existence possible de fragments GABA-B1 intranucléaires régulés par le traitement agoniste et le protéasome dans les cellules DI-TNC1. Cette régulation d’ATF-4 dépend des résidus LYK de GABA-B1-CT, qui modulent la stabilité de GABA-B1-CT et favorisent peut-être la formation d’un complexe multiprotéique incluant GABA-B1-CT, ATF-4, de même qu’une protéine d’échaffaudage inconnue. En somme, nous démontrons que les sous-unités GABA-B1 localisées au RE, lorsque non-hétérodimérisées avec GABA-B2, demeurent capables de moduler les voies de signalisation de la prolifération, la différentiation et de la survie cellulaire, via le couplage de protéines G et possiblement la protéolyse régulée. Les mécanismes de signalisation proposés pourraient servir de nouvelle plate-forme dans la compréhension des actions retardées résultant de l’activation des récepteurs 7-TMs. / GABA is the principal inhibitory neurotransmitter in the CNS and is implicated in brain development, synaptic plasticity and the pathogenesis of diseases such as epilepsy, anxiety disorders and chronic pain. In the current model of GABA-B function, there is a requirement for GABA-B1/B2 dimerization for targetting to the cell surface and effector coupling. However, there are certain brain regions (putamen), cell types (glial cells) and times during brain development where GABA-B1 is expressed in higher amounts than GABA-B2, suggesting that GABA-B1 might be functional alone or in association with unidentified partners, either at the cell surface or on the ER membranes. In this thesis, we first show the capacity of endogenous GABA-B1 receptors to activate the MAPK-ERK1/2 pathway in the DI-TNC1 glial-derived cell line which does not express GABA-B2. The underlying mechanisms remain incompletely defined but depend on Gi/o and PKC. Immunohistochemistry of endogenous receptors shows that GABA-B1 N-terminal antibodies recognize ER-localized proteins and that C-terminal (CT) antibody shows intranuclear distribution. This data suggests that fragments of the GABA-B1 receptor are generated by proteolysis and indeed we show that agonist treatment affects the intensity of certain C-terminal GABA-B1 fragments both in immunohistochemistry and western blots suggesting that the GABA-B1 receptor is subjected to regulated proteolysis. Since a 13-residue potential PEST sequence was localized immediately distal to the ER retention motif in the GABA-B1 CT, we examined proteasome regulation of the cleavage event. Following a 12h treatment with the proteasome inhibitor, epoxomicin, we detected increases in intranuclear staining for both GABA-B1 and a known interactor, the pro-survival transcription factor ATF-4, using confocal microscopy and by western blotting of nuclear extracts. These increases are due either to proteasome inhibition or activation of the ER stress pathway. In cells overexpressing GABA-B1-CT, ATF-4 induction and nuclear translocation, which normally follows epoxomicin treatment, was completely abolished. This observation was associated to a strong decrease in cell number. Since the last three residues of GABA-B1-CT (LYK) encode a pseudo-PDZ ligand and that PDZ domain protein regulate nuclear targeting and protein stability, in complement to their role in scaffolding at the cell surface, we mutated the last three residues of GABA-B1-CT to alanines. This mutation completely reversed the effect of GABA-B1-CT on ATF-4 induction and on cell number. This second set of data suggests the existence of agonist and proteasome-regulated intranuclear GABA-B1 fragments in DI-TNC1 cells. Further, the GABA-B1-CT pseudo-PDZ ligand appears to be critically important in regulating ATF-4 induction by modulating GABA-B1-CT stability and perhaps by favoring the formation of a multiprotein complex with ATF-4, ATF-4 interactors and an unknown scaffolding protein. Overall, we show that ER-localised GABA-B1 subunits, when not dimerized with GABA-B2, can still modulate proliferation, differentiation and survival pathways, both through G-protein coupling and regulated proteolysis. The signalling mechanisms which we propose could serve as a new platform in understanding the long term effects of 7-TM receptor activation.
497

Caractérisation des facteurs de régulation de la prolifération des cellules souches neurales dans le cerveau adulte

Daynac, Mathieu 30 September 2013 (has links) (PDF)
Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d'isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l'entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d'une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo.
498

A pharmacokinetic-pharmacodynamic relationship study between GABA-ergic drugs and anxiety levels in an animal model of PTSD / Jacolene Myburgh

Myburgh, Jacolene January 2005 (has links)
Posttraumatic stress disorder (PTSD) is classified as an anxiety disorder and the characteristic symptoms (re-experiencing, avoidance as well as numbing of general responsiveness and hyperarousal) of this disorder develop in response to a traumatic event. The disorder is characterised by hypothalamic-pituitary-adrenal (HPA) axis abnormalities linked with changes in cortisol moreover, the hippocampus and cortex also play a role in the neurobiology. With regard to the neurochemistry of this disorder it is known that gamma amino butyric acid (GABA) is involved however, the precise role of GABA in PTSD and how stress changes GABA concentrations in the brain are still not fully understood. Another aspect regarding PTSD that has not been clearly defined is the treatment of PTSD. Classic anxiolytics such as diazepam is expected to relieve the anxiety linked with PTSD. Studies with this group of drugs have however not produced the concrete evidence needed to establish it as a treatment of choice for PTSD and subsequently other classes of drugs have been investigated as possible treatment options for PTSD. Among these is lamotrigine, which in a clinical study was found to be effective in alleviating symptoms of PTSD. Moreover, a possible pharmacokinetic-pharmacodynamic relationship for each of these drugs has also not been elucidated. In order to elude on some of these uncertainties, an animal model of PTSD, time dependent sensitisation (TDS), was used. GABA levels in the rat hippocampus and frontal cortex were determined at two different time intervals following the TDS procedure (1 day and 7 days post re-stress). High performance liquid chromatography (HPLC) with electrochemical (EC) detection was used to determine gamma amino butyric acid (GABA) concentrations. To investigate the possible anxiolytic effects of diazepam and lamotrigine in this model, as well as a possible pharmacokinetic-pharmacodynamic relationship for each drug, pharmacokinetic profiles for both drugs were established in order to find the times of peak and trough levels of each drug. Blood samples were collected at different time intervals after drug administration either from the tail vein of rats (lamotrigine) or directly from the heart (diazepam). Subsequently, drug concentrations at each time interval were determined by means of HPLC with ultraviolet (UV) detection. The behaviour of rats was analysed using the elevated plus-maze (EPM) at peak or trough concentrations of the drugs and this was performed after either acute administration of the drug, or after a 14 day chronic treatment regime. GABA levels in the hippocampus were not found to change statistically significantly in response to stress at either 1 day or 7 days post re-stress. In the frontal cortex, however, GABA levels increased in response to stress at 1 day post re-stress, with a statistically insignificant, but strong trend towards an increase, at 7 days post re-stress. With regard to the pharmacokinetic profiles, the peak concentration of diazepam was found to occur at 60 minutes, with lamotrigine's peak at 120 minutes. The behavioural studies indicated that acute treatment with diazepam 3 mg/kg resulted in a statistically significant increase in both ratio open arm entries and ratio time spent in the open arms at peak level of the drug. After acute treatment with diazepam 3 mg/kg a statistically significant decrease in ratio time spent in open arms was also found when the ratio time spent in open arms at peak level of the drug and the ratio time spent in open arms at trough level of the drug was compared. In response to chronic treatment with diazepam 3 mg/kg for 14 days, test animals exhibited an increase in the ratio open arm entries at trough level of the drug, with a statistically insignificant yet definite trend towards an increase at peak level. Acute treatment with lamotrigine 10 mg/kg resulted in no statistically significant change in EPM parameters. In response to chronic treatment, however, a statistically significant increase was found in ratio time spent in open arms at peak level of the drug, with a statistically insignificant trend towards an increase at trough level. From the results of this study, we may therefore conclude that GABA-levels in the brain are definitely affected, but in different ways, following TDS-stress. A pharmacokinetic-pharmacodynamic relationship between the drugs' levels and aversive behaviour could also be established. Furthermore it appears that more sustained anxiolytic effects are evident following chronic treatment with both drugs than with acute administration of these drugs. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2006
499

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.
500

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.

Page generated in 0.0187 seconds