501 |
Improvements to Field-Programmable Gate Array Design Efficiency using Logic SynthesisLing, Andrew Chaang 18 February 2010 (has links)
As Field-Programmable Gate Array (FPGA) capacity can now support several processors on a single device, the scalability of FPGA design tools and methods has emerged as a major obstacle for the wider use of FPGAs. For example, logic synthesis, which has traditionally been the fastest step in the FPGA Computer-Aided Design (CAD) flow, now takes several hours to complete in a typical FPGA compile. In this work, we address this problem by focusing on two areas. First, we revisit FPGA logic synthesis and attempt to improve its scalability. Specifically, we look at a binary decision diagram (BDD) based logic synthesis flow, referred to as FBDD, where we improve its runtime by several fold with a marginal impact to the resulting circuit area. We do so by speeding up the classical cut generation problem by an order-of-magnitude which enables its application directly at the logic synthesis level. Following this, we introduce a guided partitioning technique using a fast global budgeting formulation, which enables us to optimize individual “pockets” within the circuit without degrading the overall circuit performance. By using partitioning we can significantly reduce the solution space of the logic synthesis problem and, furthermore, open up the possibility of parallelizing the logic synthesis step.
The second area we look at is the area of Engineering Change Orders (ECOs). ECOs are incremental modifications to a design late in the design flow. This is beneficial since
it is minimally disruptive to the existing circuit which preserves much of the engineering effort invested previously in the design. In a design flow where most of the steps are fully automated, ECOs still remain largely a manual process. This can often tie up a designer for weeks leading to missed project deadlines which is very detrimental to products whose life-cycle can span only a few months. As a solution to this, we show how we can leverage existing logic synthesis techniques to automatically modify a circuit in a minimally disruptive manner. This can significantly reduce the turn-around time when applying ECOs.
|
502 |
Contributions to neuromorphic and reconfigurable circuits and systemsNease, Stephen Howard 08 July 2011 (has links)
This thesis presents a body of work in the field of reconfigurable and neuromorphic circuits and systems. Three main projects were undertaken. The first was using a Field-Programmable Analog Array (FPAA) to model the cable behavior of dendrites using analog circuits. The second was to design, lay out, and test part of a new FPAA, the RASP 2.9v. The final project was to use floating-gate programming to remove offsets in a neuromorphic FPAA, the RASP Neuron 1D.
|
503 |
Compact modeling of gate tunneling leakage current in advanced nanoscale soi mosfetsDarbandy, Ghader 10 December 2012 (has links)
En esta tesis se han desarrollado modelos compactos de corriente de fuga por túnel de puerta en SOI MOSFET (de simple y doble puerta) avanzados basados en una aproximación WKB de la probabilidad de túnel. Se han estudiado los materiales dieléctricos high-k más prometedores para los diferentes requisitos de nodos tecnológicos de acuerdo ala hoja de ruta ITRS de miniaturización de dispositivos electrónicos.
Hemos presentado un modelo compacto de particionamiento de la corriente de fuga de puerta para un MOSFET nanométrico de doble puerta (DG MOSFET), utilizando modelos analíticos de la corriente de fuga por el túnel directo de puerta. Se desarrollaron también Los modelos analíticos dependientes de la temperatura de la corriente de túnel en la región de inversión y de la corriente túnel asistido por trampas en régimen subumbral.
Finalmente, se desarrolló una técnica de extracción automática de parámetros de nuestro modelo compacto en DG MOSFET incluyendo efectos de canal corto. La corriente de la puerta por túnel directo y asistido por trampas modelada mediante los parámetros extraídos se verificó exitosamente mediante comparación con medidas experimentales.
|
504 |
Hardware Implementation of Soft Computing Approaches for an Intelligent Wall-following VehicleTsui, Willie January 2007 (has links)
Soft computing techniques are generally well-suited for vehicular control systems that are usually modeled by highly nonlinear differential equations and working in unstructured environment. To demonstrate their applicability, two intelligent controllers based upon fuzzy logic theories and neural network paradigms are designed for performing a wall-following task and an autonomous parking task. Based on performance and flexibility considerations, the two controllers are implemented onto a reconfigurable hardware platform, namely a Field Programmable Gate Array (FPGA). As the number of comparative studies of these two embedded controllers designed for the same application is limited in the literature, one of the main goals of this research work has been to evaluate and compare the two controllers in terms of hardware resource requirements, operational speeds and trajectory tracking errors in following different pre-defined trajectories. The main advantages and disadvantages of each of the controllers are presented and discussed in details. Challenging issues for implementation of the controllers on the FPGA platform are also highlighted. As the two controllers exhibit benefits and drawbacks under different circumstances, this research suggests as well a hybrid controller scheme as an attempt to integrate the benefits of both control units. To evaluate its performance, the hybrid controller is tested on the same pre-defined trajectories and the corresponding results are compared to that of the fuzzy logic and the neural network based controllers. For further demonstration of the capabilities of the wall-following controllers in other applications, the fuzzy logic and the neural network controllers are used in a parallel parking system. We see this work to be a stepping stone for further research work aiming at real world implementation of the controllers on Application Specified Integrated Circuit (ASIC) type of environment.
|
505 |
Energy Efficiency Analysis and Implementation of AES on an FPGAKenney, David January 2008 (has links)
The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements.
Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all.
This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation.
The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher was found to reduce its dynamic power consumption by up to 17% when compared to an identical design that did not employ the technique.
|
506 |
Growth and characterization of HfON thin films with the crystal structures of HfO2Lü, Bo January 2011 (has links)
HfO2 is a popular replacement for SiO2 in modern CMOS technology. It is used as the gate dielectric layer isolating the transistor channel from the gate. For this application, certain material property demands need to be met, most importantly, a high static dielectric constant is desirable as this positively influences the effectiveness and reliability of the device. Previous theoretical calculations have found that this property varies with the crystal structure of HfO2; specifically, the tetragonal structure possesses the highest dielectric constant (~70 from theoretical calculations) out of all possible stable structures at atmospheric pressure, with the cubic phase a far second (~29, also calculated). Following the results from previous experimental work on the phase formation of sputtered HfO2, this study investigates the possibility of producing thin films of HfO2 with the cubic or tetragonal structure by the addition of nitrogen to a reactive sputtering process at various deposition temperatures. Also, a new physical vapor deposition method known as High Power Impulse Magnetron Sputtering (HiPIMS) is employed for its reported deposition stability in the transition zone of metal-oxide compounds and increased deposition rate. Structural characterization of the produced films shows that films deposited at room temperature with a low N content (~6 at%) are mainly composed of amorphous HfO2 with mixed crystallization into t-HfO2 and c-HfO2, while pure HfO2 is found to be composed of amorphous HfO2 with signs of crystallization into m-HfO2. At 400o C deposition temperature, the crystalline quality is enhanced and the structure of N incorporated HfO2 is found to be c-HfO2 only, due to further ordering of atoms in the crystal lattice. Optical and dielectric characterization revealed films with low N incorporation (< 6 at%) to be insulating while these became conductive for higher N contents. For the insulating films, a trend of increasing static dielectric constant with increasing N incorporation is found.
|
507 |
Implementation of an industrial process control interface for the LSC11 system using Lattice ECP2M FPGAMurali Baskar Rao, Parthasarathy January 2012 (has links)
Reconfigurable devices are the mainstream in today’s system on chip solutions. Reconfigurable devices have the advantages of reduced cost over their equivalent custom design, quick time to market and the ability to reconfigure the design at will and ease. One such reconfigurable device is an FPGA. In this industrial thesis, the design and implementation of a control process interface using ECP2M FPGA and PCIe communication is accomplished. This control process interface is designed and implemented for a 3-D plotter system called LSC11. In this thesis, the FPGA unit implemented drives the plotter device based on specific timing requirements charted by the customer. The FPGA unit is interfaced to a Host CPU in this thesis (through PCIe communication) for controlling the LSC11 system using a custom software. All the peripherals required for the LSC11 system such as the ADC, DAC, Quadrature decoder and the PWM unit are also implemented as part of this thesis. This thesis also implements an efficient methodology to send all the inputs of the LSC11 system to the Host CPU without the necessity for issuing any cyclic read commands on the Host CPU. The RTL design is synthesised in FPGA and the system is verified for correctness and accuracy. The LSC11 system design consumed 79% of the total FPGA resources and the maximum clock frequency achieved was 130 Mhz. This thesis has been carried out at Abaxor Engineering GmbH, Germany. It is demonstrated in this thesis how FPGA aids in quick designing and implementation of system on chip solutions with PCIe communication.
|
508 |
Energy Efficiency Analysis and Implementation of AES on an FPGAKenney, David January 2008 (has links)
The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements.
Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all.
This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation.
The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher was found to reduce its dynamic power consumption by up to 17% when compared to an identical design that did not employ the technique.
|
509 |
Guarded Evaluation: An Algorithm for Dynamic Power Reduction in FPGAsRavishankar, Chirag January 2012 (has links)
Guarded evaluation is a power reduction technique that involves
identifying sub-circuits (within a larger circuit) whose inputs can be
held constant (guarded) at specific times during circuit operation,
thereby reducing switching activity and lowering dynamic power. The
concept is rooted in the property that under certain conditions, some
signals within digital designs are not "observable" at design
outputs, making the circuitry that generates such signals a candidate
for guarding.
Guarded evaluation has been demonstrated successfully
for custom ASICs; in this work, we apply the technique to FPGAs. In
ASICs, guarded evaluation entails adding additional hardware to the
design, increasing silicon area and cost. Here, we apply the technique
in a way that imposes minimal area overhead by leveraging existing
unused circuitry within the FPGA. The LUT functionality is modified
to incorporate the guards and reduce toggle rates.
The primary challenge in guarded evaluation is in determining the specific conditions under which a sub-circuit's
inputs can be held constant without impacting the larger
circuit's functional correctness. We propose a simple solution to
this problem based on discovering gating inputs using "non-inverting paths"
and trimming inputs using "partial non-inverting paths" in the
circuit's AND-Inverter graph representation.
Experimental results show that guarded evaluation can reduce switching activity by
as much as 32% for FPGAs with 6-LUT architectures and 25% for 4-LUT architectures, on
average, and can reduce power consumption in the FPGA interconnect by
29% for 6-LUTs and 27% for 4-LUTs. A clustered architecture with four LUTs to a cluster
and ten LUTs to a cluster produced the best power reduction results.
We implement guarded evaluation at various stages of the FPGA CAD flow and analyze the reductions. We implement
the algorithm as post technology mapping, post packing and post placement optimizations. Guarded Evaluation
as a post technology mapping algorithm inserted the most number of guards and hence achieved the highest activity
and interconnect reduction. However, guarding signals come with a cost of increased fanout and stress on routing
resources. Packing and placement provides the algorithm with additional information of the circuit which is leveraged
to insert high quality guards with minimal impact on routing. Experimental results show that post-packing
and post-placement methods have comparable reductions to post-mapping with considerably lesser impact on the critical
path delay and routability of the circuit.
|
510 |
Porphyrins based detection of NH3 and CO, using field effect grid gate devicesSánchez Reátegui, Rafael January 2010 (has links)
Porphyrins consist of twenty-atom rings containing four nitrogen atoms and can be used as sensor to detect odours and gases. This thesis investigates whether or not porphyrins can be used as functional materials on grid gate devices. Drops of PVC embedded porphyrins were deposited on the surface of a grid gate which is a Metal Oxide Semiconductor (MOS) capacitor. In order to detect the gas sensing properties of the porphyrins a light addressable method called Scanning Light Pulse Technique (SLPT) has been used. Drops of porphyrins were deposited with a stretched capillary tube (1 mm diameter). The MOS capacitor has been exposed to nitrogen atmosphere as reference environment, while the target gases were carbon monoxide (100 ppm) and ammonia (500 ppm). The result from the eight porphyrins is that one of them [Pt(II) TPP] has a response for both gases, ammonia induces a change in both the work function and surface resistance, while the carbon monoxide induces only a change in the surface resistance.
|
Page generated in 0.0241 seconds