1 |
An Investigation of Secondary Formations of High Temperature Solid Oxide Fuel CellsKaseman, Brian J. 18 April 2012 (has links)
No description available.
|
2 |
Performance Anaylsis Of An Intermediate Temperature Solid Oxide Fuel CellTimurkutluk, Bora 01 October 2007 (has links) (PDF)
An intermediate temperature solid oxide fuel cell (SOFC) is developed and its
performance is investigated experimentally and theoretically. In the experimental
program, a gadolinium doped ceria based membrane electrode group is developed
with the tape casting and screen printing methodology and characterized. An
experimental setup is devised for the performance measurement of SOFCs and the
performance of produced cells is investigated over a range of parameters including
the electrolyte thickness, the sintering temperature, the operation temperature etc.
The experimental setup is then further modified to measure the temperature
distribution in the large SOFC single cells. The effects of operating parameters on
the temperature distribution are investigated and the parameter spaces leading high
efficiency without cracking the ceramic membrane are identified.
In theoretical study a mathematical model is developed to represent the fluid flow,
the heat transfer, the species transport and the electrochemical reaction in
intermediate temperature of solid oxide fuel cells.The differential equations are
solved numerically with a commercial CFD code which employs a control volume
based approach. The temperature distribution and species distribution during theSOFC operation is analyzed. The effects of operation parameters on critical SOFC
characteristics and the performance are numerically investigated over a range of
parameter space.
The experimental and numerical results are compared to validate the mathematical
model. The mathematical model is found to agree reasonable with experimental data.
|
3 |
Synthesis and In Situ Environmental Transmission Electron Microscopy Investigations of Ceria-Based Oxides for Solid Oxide Fuel Cell AnodesJanuary 2011 (has links)
abstract: The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to perform the basic nanoscale characterization of the anode materials, but also to observe in real-time, the dynamic changes in the anode material under near-reaction conditions. The earlier part of this dissertation is focused on the synthesis and characterization of Pr- and Gd-doped cerium oxide anode materials. A novel spray drying set-up was designed and constructed for preparing nanoparticles of these mixed-oxides and nickel oxide for anode fabrication. X-ray powder diffraction was used to investigate the crystal structure and lattice parameters of the synthesized materials. Particle size distribution, morphology and chemical composition were investigated using transmission electron microscope (TEM). The nanoparticles were found to possess pit-like defects of average size 2 nm after subjecting the spray-dried material to heat treatment at 700 °C for 2 h in air. A novel electron energy-loss spectroscopy (EELS) quantification technique for determining the Pr and Gd concentrations in the mixed oxides was developed. Nano-scale compositional heterogeneity was observed in these materials. The later part of the dissertation focuses mainly on in situ investigations of the anode materials under a H2 environment in the ETEM. Nano-scale changes in the stand-alone ceramic components of the cermet anode were first investigated. Particle size and composition of the individual nanoparticles of Pr-doped ceria (PDC) were found to affect their reducibility in H2 gas. Upon reduction, amorphization of the nanoparticles was observed and was linked to the presence of pit-like defects in the spray-dried material. Investigation of metal-ceramic interactions in the Ni-loaded PDC nanoparticles indicated a localized reduction of Ce in the vicinity of the Ni/PDC interface at 420 °C. Formation of a reduction zone around the interface was attributed to H spillover which was observed directly in the ETEM. Preliminary results on the fabrication of model SOFCs and in situ behavior of Ni/Gd-doped ceria anodes have been presented. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
|
4 |
Self-assembled nanostructures in oxide ceramicsAnsari, Haris M. 17 December 2012 (has links)
No description available.
|
5 |
Use of Kinase Inhibitors to Illuminate Signaling Pathways in Breast CancerSmith, Nicole R. 01 February 2018 (has links)
In the United States, breast cancer is the most commonly diagnosed cancer and is the second most common cause of cancer-related deaths among women. Among the various subtypes of breast cancer, 25-30% of diagnoses present themselves as human epidermal growth factor receptor 2 positive (HER-2+). HER-2 is a protein receptor located on the cell surface that interacts with other proteins and signaling molecules to translate extracellular signals into cellular process such as cell growth and replication. However, in breast cancer, there is a drastic increase in the number of HER-2 proteins on the cell surface, that causes excessive cell growth and proliferation, and ultimately tumor formation. The most frequent treatment of HER-2+ breast cancers includes the use of a single agent inhibitor that directly blocks the HER-2 protein to prevent over-signaling and cell growth. However, after continuous use, breast cancer cells develop drug resistance, as other proteins such as the insulin-like growth factor 1 receptor (IGF-1R) and the protein kinase B (AKT) can also interfere and cause cell growth and replication. In this study, we propose that the use of a multi-agent treatment targeting the HER-2, IGF-1R, and AKT proteins will be more effective than a single-agent treatment of HER-2 alone. Through protein analysis by mass spectrometry, we intend to illuminate the different cellular responses to both treatment types. The results indicate that the single drug treatment targeting Her-2 appears to increase processes related cellular repair, while the multi-drug treatment indicates an increase in processes related to programmed cell death; both treatments appear to block the transmission of protein signaling. / MS / In the United States, breast cancer is the most commonly diagnosed cancer and is the second most common cause of cancer-related deaths among women. Among the various subtypes of breast cancer, 25-30% of diagnoses present themselves as human epidermal growth factor receptor 2 positive (HER-2+). HER-2 is a protein receptor located on the cell surface that interacts with other proteins and signaling molecules to translate extracellular signals into cellular process such as cell growth and replication. However, in breast cancer, there is a drastic increase in the number of HER-2 proteins on the cell surface, that causes excessive cell growth and proliferation, and ultimately tumor formation. The most frequent treatment of HER-2+ breast cancers includes the use of a single agent inhibitor that directly blocks the HER-2 protein to prevent over-signaling and cell growth. However, after continuous use, breast cancer cells develop drug resistance, as other proteins such as the insulin-like growth factor 1 receptor (IGF-1R) and the protein kinase B (AKT) can also interfere and cause cell growth and replication. In this study, we propose that the use of a multi-agent treatment targeting the HER-2, IGF-1R, and AKT proteins will be more effective than a single-agent treatment of HER-2 alone. Through protein analysis by mass spectrometry, we intend to illuminate the different cellular responses to both treatment types. The results indicate that the single drug treatment targeting Her-2 appears to increase processes related cellular repair, while the multi-drug treatment indicates an increase in processes related to programmed cell death; both treatments appear to block the transmission of protein signaling.
|
6 |
Développement de piles à combustible en technologie planaire couches épaisses. Application à l'étude de dispositifs en configuration monochambreUdroiu, Sorina-Nicoleta 21 April 2009 (has links) (PDF)
Cette étude est dédiée au développement de piles à combustible de type SOFC en configuration monochambre. L'originalité de ce type de pile SOFC est l'absence de séparation physique entre les compartiments anodique et cathodique. Un mélange d'hydrocarbure et d'air est injecté sur l'ensemble du dispositif comportant l'électrolyte et les deux électrodes de la pile SOFC. Le principe de fonctionnement de ce type de pile repose sur la différence d'activité catalytique entre les deux électrodes. L'anode doit être sélective pour l'oxydation des hydrocarbures et la cathode pour la réduction de l'oxygène. Cette configuration originale permet de s'affranchir des problèmes d'étanchéité des configurations conventionnelles deux atmosphères, ainsi que d'éviter les contraintes sur l'épaisseur de l'électrolyte suivant la disposition des électrodes (coplanaires ou de part et d'autre de l'électrolyte). Cette configuration conduit à des dispositifs simplifiés du point de vue technologique, et donc moins coûteux.<br />Dans cette étude, les électrodes ont été déposées en couches épaisses par la technologie de sérigraphie sur des pastilles support d'électrolyte. Au niveau matériaux, des électrolytes à base de cérine (en particulier GDC et SDC) ont été utilisés afin de diminuer la température de fonctionnement des piles de type SOFC (par rapport à celles avec un électrolyte YSZ). Des électrodes à propriétés catalytiques bien spécifiques vis à vis du mélange gazeux, ont été aussi étudiés : cermets Ni - GDC ou Ni - SDC pour l'anode, cathodes à base de LSM, BSCF ou SSC. Les poudres initiales ainsi que les couches sérigraphiées ont été caractérisées (analyse de phase, microstructure, stabilité chimique, conductivité électrique...) par diverses méthodes physico-chimiques. Différentes piles ont été élaborées et testées dans un réacteur monochambre sous des mélanges air-propane. L'influence des conditions gazeuses (débit, composition) ainsi que de la température de fonctionnement sur les performances des piles a été étudiée. Compte tenu de nos conditions de test, les performances se sont avérées relativement modestes (densité de puissance maximale de l'ordre de 12 mW.cm-2). Néanmoins, cette étude confirme la validité du concept des piles SOFC monochambres, et a aussi permis de développer un savoir-faire au niveau du laboratoire pour poursuivre les études sur cette thématique.
|
7 |
Conducteurs mixtes nanostructurés pour les piles à combustible à oxyde solide (SOFC) : élaboration et performances de nouvelles architecturesBenamira, Messaoud 27 November 2008 (has links) (PDF)
La réduction de la température de fonctionnement des piles à combustible à oxyde solide, de 1000°C à moins de 700°C, est la meilleure solution pour en diminuer les coûts de fabrication et augmenter la durée de vie. Néanmoins, l'abaissement de la température de fonctionnement s'accompagne d'une chute ohmique au sein de l'électrolyte et une augmentation des surtensions aux électrodes entraînant une diminution des performances de la pile. Dans cette optique, notre étude est centrée sur la recherche de nouveaux matériaux et de nouvelles architectures pour les piles SOFC. Des demi-cellules cathode/électrolyte avec des couches minces interfaciales de YSZ, LSM et La2NiO4 ont été élaborées sur des substrats denses de YSZ par différentes techniques (ALD, PVD et sol-gel). Ces demi-cellules ont été caractérisées par plusieurs techniques physico-chimiques (microscopie électronique à balayage, diffraction des rayons X) ; leurs propriétés électriques ont été étudiées par spectroscopie d'impédance. Une deuxième étude a été menée sur l'élaboration par ALD et les caractérisations physico-chimiques et électriques de couche minces d'oxyde zirconium dopé à l'oxyde d'indium (IDZ) présentant un gradient de composition, permettant de passer d'une conduction ionique à une conduction électronique. La dernière partie de ce travail a été dédiée à un nouveau matériau composite d'électrolyte, GDC-carbonates, dont l'étude des propriétés électriques et de vieillissement a montré des résultats encourageants.
|
8 |
Fabrication et étude du comportement électrochimique en atmosphère réductrice de couches minces à base de cérine en vue de leur interaction dans des dispositifs électrochimiques à oxyde solideMedina-Lott, Bianca 27 September 2012 (has links) (PDF)
L'abaissement de la température de fonctionnement des SOFC vers 600-750°C est un impératif incontournable pour en augmenter la durée de vie et permettre l'utilisation d'interconnecteurs moins onéreux. Cependant, ceci s'accompagne d'une incrémentation de la chute ohmique de l'électrolyte et des surtensions aux électrodes et, par conséquent, la diminution des performances électrochimiques de la pile. Différentes solutions sont à explorer : substituer l'électrolyte, diminuer la résistance de l'électrolyte usuel en réduisant son épaisseur (<5 µm) et, de toute façon, en améliorant les réactions aux interfaces par adjonction de couches minces fonctionnelles. D'une part, cette étude analyse différentes approches d'élaboration de couches minces de CeO2 et de cérine dopée, dont le rôle est avéré, notamment au niveau de l'oxydation à l'anode : le dépôt par couches atomiques, ALD (Atomic Layer Deposition), et le dépôt chimique en solution CBD (Chemical Bath Deposition) ont été explorés. D'autre part, l'exploitation d'un nouveau matériau composite (cérine dopée au gadolinium et Li2CO3-K2CO3 à l'état fondu) est analysée en tant que matériau d'électrolyte pour les SOFC. Finalement, les propriétés électrochimiques de ces électrolytes, combinés à des couches minces de cérine et de cérine dopée préparées par ALD, sont étudiées en particulier en conditions anodiques. Le but global est d'explorer le rôle des couches minces et de nouveaux électrolytes prometteurs, essentiellement dans les conditions anodiques des SOFC.
|
9 |
Ultra-thin solid oxide fuel cells: materials and devicesKerman, Kian 06 June 2014 (has links)
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 - 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 - 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities. / Engineering and Applied Sciences
|
10 |
Síntese e propriedades de Ce1-xGdxO2-x/2 (x=0;0,1 e 0,2) obtidos pelo método hidrotermal assistido por micro-ondas / Synthesis and properties of Ce1-xGdxO2-x/2 (x=0;0,1 e 0,2) obtained by microwave assisted hydrothermal methodCarregosa, João Domingos Covello 07 February 2017 (has links)
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The solid solution of Gd3+ doped CeO2 (GDC) is a promising candidate for electrolyte in SOFCs (Solid Oxide Full Cells) operating in intermediate and low temperatures. The reduction of the working temperature of these energy conversion devices is the great technological challenge to its marketing. In this work, nanocrystalline powders of Ce1-xGdxO2-x/2 with x=0; 0.1 e 0.2 were obtained by microwave-assisted hydrothermal synthesis at low temperature and times of synthesis (10 and 20 min at 120 °C). The powders were analyzed by TG-DTA, SEM, XRD and dilatometry. The results showed characteristic peaks of the cubic fluorite structure, referring to the cerium oxide (CeO2), without the presence of secondary peaks. We also observed that the samples synthesized at 10 and 20 minutes showed distinct behaviors in function of the concentrations of Gd3+. In addition, immersion tests were performed for the sintered ceramics, by Archimedes method. The relative density values were above 92% for all the proposed formulations. / A solução sólida de CeO2 dopada com Gd3+ (CGO) é um promissor candidato para eletrólito de SOFCs (Solid Oxide Full Cells) operantes em temperaturas intermediárias e baixas. A redução da temperatura de trabalho destes dispositivos de conversão de energia é o grande desafio tecnológico para a sua comercialização. Nesse trabalho, pós nanocristalinos de Ce1-xGdxO2-x/2 com x=0; 0,1 e 0,2 foram obtidos via síntese hidrotérmica assistida por micro-ondas em temperatura e tempos de síntese baixos (10 e 20 min à 120 °C). Os pós foram analisados por TG-DTA, MEV, DRX e dilatometria. Os resultados indicaram picos característicos da estrutura cúbica tipo fluorita, referente ao óxido de cério (CeO2), sem presença de picos secundários. Observou-se também que as amostras processadas em patamares de 10 e 20 minutos apresentaram comportamentos distintos frente aos teores de Gd3+ estudados. Além disso, foram realizados ensaios de imersão das cerâmicas sinterizadas, pelo método de Arquimedes. Os valores de densidade relativa ficaram acima de 92% para todas as formulações propostas.
|
Page generated in 0.0266 seconds