Spelling suggestions: "subject:"galerkin c.method"" "subject:"galerkin 20method""
121 |
Kinetic Streamlined-Upwind Petrov Galerkin Methods for Hyperbolic Partial Differential EquationsDilip, Jagtap Ameya January 2016 (has links) (PDF)
In the last half a century, Computational Fluid Dynamics (CFD) has been established as an important complementary part and some times a significant alternative to Experimental and Theoretical Fluid Dynamics. Development of efficient computational algorithms for digital simulation of fluid flows has been an ongoing research effort in CFD.
An accurate numerical simulation of compressible Euler equations, which are the gov-erning equations of high speed flows, is important in many engineering applications like designing of aerospace vehicles and their components. Due to nonlinear nature of governing equations, such flows admit solutions involving discontinuities like shock waves and contact discontinuities. Hence, it is nontrivial to capture all these essential features of the flows numerically. There are various numerical methods available in the literature, the popular ones among them being the Finite Volume Method (FVM), Finite Difference Method (FDM), Finite Element Method (FEM) and Spectral method. Kinetic theory based algorithms for solving Euler equations are quite popular in finite volume framework due to their ability to connect Boltzmann equation with Euler equations. In kinetic framework, instead of dealing directly with nonlinear partial differential equations one needs to deal with a simple linear partial differential equation. Recently, FEM has emerged as a significant alternative to FVM because it can handle complex geometries with ease and unlike in FVM, achieving higher order accuracy is easier. High speed flows governed by compressible Euler equations are hyperbolic partial differential equations which are characterized by preferred directions for information propagation. Such flows can not be solved using traditional FEM methods and hence, stabilized methods are typically introduced. Various stabilized finite element methods are available in the literature like Streamlined-Upwind Petrov Galerkin (SUPG) method, Galerkin-Least Squares (GLS) method, Taylor-Galerkin method, Characteristic Galerkin method and Discontinuous Galerkin Method.
In this thesis a novel stabilized finite element method called as Kinetic Streamlined-Upwind Petrov Galerkin (KSUPG) method is formulated. Both explicit and implicit versions of KSUPG scheme are presented. Spectral stability analysis is done for explicit KSUPG scheme to obtain the stable time step. The advantage of proposed scheme is, unlike in SUPG scheme, diffusion vectors are obtained directly from weak KSUPG formulation.
The expression for intrinsic time scale is directly obtained in KSUPG framework. The accuracy and robustness of the proposed scheme is demonstrated by solving various test cases for hyperbolic partial differential equations like Euler equations and inviscid Burgers equation. In the KSUPG scheme, diffusion terms involve computationally expensive error and exponential functions. To decrease the computational cost, two variants of KSUPG scheme, namely, Peculiar Velocity based KSUPG (PV-KSUPG) scheme and Circular distribution based KSUPG (C-KSUPG) scheme are formulated. The PV-KSUPG scheme is based on peculiar velocity based splitting which, upon taking moments, recovers a convection-pressure splitting type algorithm at the macroscopic level. Both explicit and implicit versions of PV-KSUPG scheme are presented. Unlike KSUPG and PV-KUPG schemes where Maxwellian distribution function is used, the C-KUSPG scheme uses a simpler circular distribution function instead of a Maxwellian distribution function. Apart from being computationally less expensive it is less diffusive than KSUPG scheme.
|
122 |
Sur une méthode numérique ondelettes / domaines fictifs lisses pour l'approximation de problèmes de StefanYin, Ping 25 January 2011 (has links)
Notre travail est consacré à la définition, l'analyse et l'implémentation de nouveaux algorithmes numériques pour l'approximation de la solution de problèmes à 2 dimensions du type problème de Stefan. Dans ce type de problèmes une équation aux dérivée partielle parabolique posée sur un ouvert omega quelconque est couplée avec une autre équation qui contrôle la frontière gamma du domaine lui même. Les difficultés classiquement associés à ce type de problèmes sont: la formulation en particulier de l'équation pour le bord du domaine, l'approximation de la solution liées à la forme quelconque du domaine, les difficultés associées à l'implication des opérateurs de trace (approximation, conditionnement), les difficultés liées aux de régularité fonds du domaine.De plus, de nombreuse situations d'intérêt physique par exemple demandent des approximations de haut degré. Notre travail s'appuie sur une formulation de type espaces de niveaux (level set) pour l'équation du domaine, et une formulation de type domaine fictif (Omega) pour l'équation initiale.Le contrôle des conditions aux limites est effectué à partir de multiplicateurs de Lagrange agissant sur une frontière (Gamma) dite de contrôle différente de frontière(gamma) du domaine (omega). L'approximation est faite à partir d'un schéma aux différences finies pour les dérivées temporelle et une discrétisation à l'aide d'ondelettes bi-dimensionelles pour l'équation initiale et une dimensionnelle pour les multiplicateurs de Lagrange. Des opérateurs de prolongement de omega à Omega sont également construits à partir d'analyse multiéchelle sur l'intervalle. Nous obtenons aussi: une formulation pour laquelle existence de la solution est démontrées, un algorithme convergent pour laquelle une estimation globale d'erreur (sur Omega) est établie, une estimation intérieure prouvant sur l'erreur à un domaine omega, overline omega subset Xi, des estimations sur les conditionnement associés a l'opérateur de trace, des algorithmes de prolongement régulier. Différentes expériences numériques en 1D ou 2D sont effectuées. Le manuscrit est organisé comme suit: Le premier chapitre rappelle la construction des analyses multirésolutions, les propriétés importantes des ondelettes et des algorithmes numériques liées à l'application d'opérateurs aux dérivées partielles. Le second chapitre donne un aperçu des méthodes de domaine fictif classiques, approchées par la méthode de Galerkin ou de Petrov-Galerkin. Nous y découvrons les limites de ces méthodes ce qui donne la direction de notre travail. Le chapitre trois présente notre nouvelle méthode de domaine fictif que l'on appelle méthode de domaine fictif lisse.L'approximation est grâce à une méthode d'ondelettes de type Petrov-Galerkin. Cette section contient l'analyse théorique et décrit la mise en œuvre numérique. Différents avantages de cette méthode sont démontrés. Le chapitre quatre introduit une technique de prolongement régulier. Nous l'appliquons à des problèmes elliptiques en 1D ou 2D.\par Le cinquième chapitre décrit quelques simulations numériques de problème de Stefan. Nous testons l'efficacité de notre méthode sur différents exemples dont le problème de Stefan à 2 phases avec conditions aux limites de Gibbs-Thomson. / Our work is devoted to the definition, analysis and implementation of a new algorithms for numerical approximation of the solution of 2 dimensional Stefan problem. In this type of problem a parabolic partial differential equation defined on an openset Omega is coupled with another equation which controls the boundary gamma of the domain itself. The difficulties traditionally associated with this type of problems are: the particular formulation of equation on the boundary of domain, the approximation of the solution defined on general domain, the difficulties associated with the involvement of trace operation (approximation, conditioning), the difficulties associated with the regularity of domain. Addition, many situations of physical interest, for example,require approximations of high degree. Our work is based on aformulation of type level set for the equation on the domain, and aformulation of type fictitious domain (Omega) for the initialequation. The control of boundary conditions is carried out throughLagrange multipliers on boundary (Gamma), called control boundary, which is different with boundary (gamma) of the domain (omega). The approximation is done by a finite difference scheme for time derivative and the discretization by bi-dimensional wave letfor the initial equation and one-dimensional wave let for the Lagrange multipliers. The extension operators from omega to Omega are also constructed from multiresolution analysis on theinterval. We also obtain: a formulation for which the existence of solution is demonstrated, a convergent algorithm for which a global estimate error (on Omega) is established, interior error estimate on domain omega, overline omega subset estimates on the conditioning related to the trace operator, algorithms of smooth extension. Different numerical experiments in 1D or 2D are implemented. The work is organized as follows:The first chapter recalls theconstruction of multiresolution analysis, important properties of wavelet and numerical algorithms. The second chapter gives an outline of classical fictitious domain method, using Galerkin or Petrov-Galerkin method. We also describe the limitation of this method and point out the direction of our work.\par The third chapter presents a smooth fictitious domain method. It is coupled with Petrov-Galerkin wavelet method for elliptic equations. This section contains the theoretical analysis and numerical implementation to embody the advantages of this new method. The fourth chapter introduces a smooth extension technique. We apply it to elliptic problem with smooth fictitious domain method in 1D and 2D. The fifth chapter is the numerical simulation of the Stefan problem. The property of B-spline render us to exactly calculate the curvature on the moving boundary. We use two examples to test the efficiency of our new method. Then it is used to resolve the two-phase Stefan problem with Gibbs-Thomson boundary condition as an experimental case.
|
123 |
Adaptive Large Eddy Simulations based on discontinuous Galerkin methods / Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinueNaddei, Fabio 08 October 2019 (has links)
L'objectif principal de ce travail est d'améliorer la précision et l'efficacité des modèles LES au moyen des méthodes Galerkine discontinues (DG). Deux thématiques principales ont été étudiées: les stratégies d'adaptation spatiale et les modèles LES pour les méthodes d'ordre élevé.Concernant le premier thème, dans le cadre des méthodes DG la résolution spatiale peut être efficacement adaptée en modifiant localement soit le maillage (adaptation-h) soit le degré polynômial de la solution (adaptation-p). L'adaptation automatique de la résolution nécessite l'estimation des erreurs pour analyser la qualité de la solution locale et les exigences de résolution. L'efficacité de différentes stratégies de la littérature est comparée en effectuant des simulations h- et p-adaptatives.Sur la base de cette étude comparative, des algorithmes statiques et dynamiques p-adaptatifs pour la simulation des écoulements instationnaires sont ensuite développés et analysés. Les simulations numériques réalisées montrent que les algorithmes proposés peuvent réduire le coût de calcul des simulations des écoulements transitoires et statistiquement stationnaires.Un nouvel estimateur d'erreur est ensuite proposé. Il est local, car n'exige que des informations de l'élément et de ses voisins directs, et peut être calculé en cours de simulation pour un coût limité. Il est démontré que l'algorithme statique p-adaptatif basé sur cet estimateur d'erreur peut être utilisé pour améliorer la précision des simulations LES sur des écoulements turbulents statistiquement stationnaires.Concernant le second thème, une nouvelle méthode, consistante avec la discrétisation DG, est développée pour l'analyse a-priori des modèles DG-LES à partir des données DNS. Elle permet d'identifier le transfert d'énergie idéal entre les échelles résolues et non résolues. Cette méthode est appliquée à l'analyse de l'approche VMS (Variational Multiscale). Il est démontré que pour les résolutions fines, l'approche DG-VMS est capable de reproduire le transfert d'énergie idéal. Cependant, pour les résolutions grossières, typique de la LES à nombres de Reynolds élevés, un meilleur accord peut être obtenu en utilisant un modèle mixte Smagorinsky-VMS. / The main goal of this work is to improve the accuracy and computational efficiency of Large Eddy Simulations (LES) by means of discontinuous Galerkin (DG) methods. To this end, two main research topics have been investigated: resolution adaptation strategies and LES models for high-order methods.As regards the first topic, in the framework of DG methods the spatial resolution can be efficiently adapted by modifying either the local mesh size (h-adaptation) or the degree of the polynomial representation of the solution (p-adaptation).The automatic resolution adaptation requires the definition of an error estimation strategy to analyse the local solution quality and resolution requirements.The efficiency of several strategies derived from the literature are compared by performing p- and h-adaptive simulations. Based on this comparative study a suitable error indicator for the adaptive scale-resolving simulations is selected.Both static and dynamic p-adaptive algorithms for the simulation of unsteady flows are then developed and analysed. It is demonstrated by numerical simulations that the proposed algorithms can provide a reduction of the computational cost for the simulation of both transient and statistically steady flows.A novel error estimation strategy is then introduced. It is local, requiring only information from the element and direct neighbours, and can be computed at run-time with limited overhead. It is shown that the static p-adaptive algorithm based on this error estimator can be employed to improve the accuracy for LES of statistically steady turbulent flows.As regards the second topic, a novel framework consistent with the DG discretization is developed for the a-priori analysis of DG-LES models from DNS databases. It allows to identify the ideal energy transfer mechanism between resolved and unresolved scales.This approach is applied for the analysis of the DG Variational Multiscale (VMS) approach. It is shown that, for fine resolutions, the DG-VMS approach is able to replicate the ideal energy transfer mechanism.However, for coarse resolutions, typical of LES at high Reynolds numbers, a more accurate agreement is obtained by a mixed Smagorinsky-VMS model.
|
124 |
Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equationsAhmed, Naveed, Matthies, Gunar 17 April 2020 (has links)
We present the analysis for the higher order continuous Galerkin−Petrov (cGP) time discretization schemes in combination with the one-level local projection stabilization in space applied to time-dependent convection-diffusion-reaction problems. Optimal a priori error estimates will be proved. Numerical studies support the theoretical results. Furthermore, a numerical comparison between continuous Galerkin−Petrov and discontinuous Galerkin time discretization schemes will be given.
|
125 |
Některé aspekty nespojité Galerkinovy metody pro řešení konvektivně-difuzních problémů / Některé aspekty nespojité Galerkinovy metody pro řešení konvektivně-difuzních problémůBalázsová, Monika January 2013 (has links)
In the present work we deal with the stability of the space-time discontinuous Galerkin method applied to non-stationary, nonlinear convection - diffusion problems. Discontinuous Galerkin method is a very efficient tool for numerical solution of partial differential equations, combines the advantages of the finite element method (polynomial approximations of high order of accuracy) and the finite volume method (discontinuous approximations). After the formulation of the continuous problem its discretization in space and time is described. In the formulation of the discontinuous Galerkin method the non-symmetric, symmetric and incomplete version of discretization of the diffusion term is used and there are added penalty terms to the scheme also. In the third chapter are estimated individual terms of the previously derived approximate solution by special norms. Using the concept of discrete characteristic functions and the discrete Gronwall lemma, it is shown that the analyzed scheme is unconditionally stable. At the end, in the fourth chapter, are given some numerical experiments, which verify theoretical results from the previous chapter.
|
126 |
Numerické řešení nelineárních problémů konvekce-difuze pomocí adaptivních metod / Numerické řešení nelineárních problémů konvekce-difuze pomocí adaptivních metodRoskovec, Filip January 2014 (has links)
This thesis is concerned with analysis and implementation of Time discontinuous Galerkin method. Important part of it is constructing of algorithm for solving nonlinear convection-diffusion equations, which combines Discontinuous Galerkin method in space (DGFEM) with Time discontinuous Galerkin method (TDG). Nonlinearity of the problem is overcome by damped Newton-like method. This approach provides easy adaptivity manipulation as well as high order approximation with respect to both space and time variables. The second part of the thesis is focused on Time discontinuous Galerkin method, applied to ordinary differential equations. It is shown that the solution of Time discontinuous Galerkin equals the solution obtained by Radau IIA implicit Runge-Kutta method in the roots of right Radau Quadrature. By virtue of this relation, error estimates of the order higher by one than the standard order can be obtained in these points. Furthermore, almost two times higher order can be achieved in the endpoints of the intervals of time discretization. Finally, the thesis deals with the phenomenon of stiffness, which may dramatically decrease the order of the applied method. The theoretical results are verified by numerical experiments. Powered by TCPDF (www.tcpdf.org)
|
127 |
Conservative Discontinuous Cut Finite Element Methods: Convection-Diffusion Problems in Evolving Bulk-Interface Domains / Konservativa skurna finita elementmetoder: konvektions-diffusionsproblem i tidsberoende domänerMyrbäck, Sebastian January 2022 (has links)
This work entails studying unfitted finite element discretizations for convection-diffusion equations in domains that evolve in time. In particular, these partial differential equations model the evolution of the concentration of soluble surfactants in bulk-interface domains. The work in this thesis docuses on developing numerical methods which conserve the modeled physical quantities. In this work, we propose cut finite element discretizations based on the Discontinuous Galerkin framework which are both locally and globally conservative. Local conservation is achieved on so-called macro elements, and we investigate macro element partitioning of the mesh for both stationary and time-dependent domains. Additionally, we develop globally conservative methods for time-dependent problems. We analyze the proposed methods by studying the convergence of the L2-error with respect to mesh size, condition numbers of the associated linear system matrices, and the conservation error. In numerical experiments for time-dependent problems, we show that the proposed methods have optimal convergence and that the developed macro element stabilization for time-dependent problems leads to increased accuracy while retaining stable condition numbers. Moreover, the measured conservation errors verify the global conservation of the proposed methods. / Detta arbete undersöker diskretiseringar av partiella differentialekvationer i tidsberoende domäner där beräkningsnätet inte behöver anpassas till domänens rörelse. I synnerhet betraktar vi partiella differentalekvationer som modellerar koncentrationen av lösliga ytaktiva ämnen, och skurna finita elementmetoder baserade på den Diskontinuerliga Galerkinmetoden som bevarar de modellerade fysikaliska storheterna. I detta arbete föreslås diskretiseringar som är både lokalt och globalt konservativa. Lokal konservering uppnås i så kallade makroelement, och vi undersöker makroelementpartitionering för både stationära och tidsberoende domäner. Även globalt konservativa metoder utvecklas för tidsberoende problem. De föreslagna metoderna analyseras med hjälp av numeriska exempel. Vi studerar konvergensen av L2-felet med avseende på nätstorlek, konditionstalen för de linjära systemmatriserna samt konserveringsfelet. Metoderna uppvisar optimal konvergens och makroelementstabilisering som utvecklas för tidsberoende problem leder till ökad noggrannhet, samtidigt som konditionstalen förblir stabila. Dessutom veritifierar de uppmättta konserveringsfelen den globala konserveringen hos de föreslagna metoderna.
|
128 |
Numerická analýza problémů v časově závislých oblastech / Numerical analysis of problems in time-dependent domainsBalázsová, Monika January 2021 (has links)
This work is concerned with the theoretical analysis of the space-time discontinuous Galerkin method applied to the numerical solution of nonstationary nonlinear convection-diffusion problem in a time- dependent domain. At first, the problem is reformulated by the use of the arbitrary Lagrangian-Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called ALE derivative and an additional convection term. Then the problem is discretized with the use of the ALE space-time discontinuous Galerkin method. On the basis of a technical analysis we obtain an unconditional stability of this method. An important step in the analysis is the generalization of a discrete characteristic function associated with the approximate solutionin a time-dependentdomainand the derivationof its properties. Further we derive an a priori error estimate of the method in terms of the interpolation error, as well as in terms of h and tau. Finally, some practical applications of the ALE space-time discontinuos Galerkin method in a time-dependent domain are given. We are concerned with the numerical solution of a nonlinear elasticity benchmark problem and moreover with the interaction of compressible viscous flow with elastic structures. The main attention is paid to the modeling of flow induced vocal fold...
|
129 |
Modélisation, observation et commande d’une classe d’équations aux dérivées partielles : application aux matériaux semi-transparents / Modeling, analysis and control for a class of partial differential equations : application to thermoforming of semi-transparent materialsGhattassi, Mohamed 29 September 2015 (has links)
Le travail présenté dans ce mémoire nous a permis d’étudier d’un point de vue théorique et numérique le transfert de chaleur couplé par rayonnement et conduction à travers un milieu semi-transparent, gris et non diffusant dans une géométrie multidimensionnelle 2D. Ces deux modes de transfert de chaleur sont décrits par un couplage non linéaire de l’équation de la chaleur non linéaire (CT) et de l’équation du transfert radiatif (ETR). Nous avons présenté des résultats d’existence, d’unicité locale de la solution pour le système couplé avec des conditions aux limites de type Dirichlet homogènes en utilisant le théorème du point fixe de Banach. Par ailleurs, les travaux réalisés nous ont permis de mettre au point un code de calcul qui permet de simuler la température. Nous avons utilisé la quadrature S_N pour la discrétisation angulaire de l’ETR. La discrétisationde l'ETR dans la variable spatiale est effectuée par la méthode de Galerkin discontinue (DG) et en éléments finis pour l'équation de la chaleur non linéaire. Nous avons démontré la convergence du schémanumérique couplé en utilisant la méthode du point fixe discret. Le modèle discret, sous la forme d’équations différentielles ordinairesnon linéaires obtenu après une approximation nous a permis de fairel’analyse et la synthèse d’estimateurs d’état et de lois de commandepour la stabilisation. Grâce à la structure particulière du modèle età l’aide du DMVT. Nous avons proposé un observateur d’ordre réduit.D’autre part nous avons réussi à construire une matrice de gain quiassure la stabilité de l’observateur proposé. Une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Une nouvelleinégalité matricielle (LMI) est donnée dans le cas d’une commandebasée observateur. Nous avons étendu à l’approche d’ordre réduit dans le cas de la commande basée observateur et nous avons montré la stabilité sous l’action de la rétroaction. De même une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Tous les résultats sont validés par des simulations numériques. / This thesis investigates the theoretical and numerical analysis of coupled radiative conductive heat transfer in a semi-transparent, gray and non-scattering 2D medium. This two heat transfer modes are described by the radiative transfer equation (RTE) and the nonlinear heat equation (NHE). We proved the existence and uniqueness of the solution of coupled systems with homogeneous Dirichlet boundary conditions using the fixed-point theorem. Moreover, we developed a useful algorithm to simulate the temperature in the medium. We used the quadrature $S_{N}$ for the angular discretization of the RTE. The spatial discretization of RTE was made by the discontinuous Galerkin method (DG) and the finite element method for the non-linear heat equation. We have shown the convergence and the stability of the coupled numerical scheme using the discrete fixed point. The discrète model obtained after an approximation allowed us to do the analysis and synthesis of state estimators and feedback control design for stabilization of the system. Thanks to the special structure of the model and using the Differential Mean Value Theorem (DMVT), we proposed a reduced order observer and we construct a gain matrix, which ensures the exponential stability of the proposed observer and guarantees the boundedness of the estimate vector. An extension to $\mathcal{H}_{\infty}$ filtering is also provided. We have extended the reduced order approach in the case of the observer-based controller and we proved the exponential stability under the control feedback law. Similarly, an extension to $\mathcal{H}_{\infty}$ filtering is also provided. The obtained results were validated through several numerical simulations.
|
130 |
Contribution à la Résolution Numérique de Problèmes Inverses de Diffraction Élasto-acoustique / Contribution to the Numerical Reconstruction in Inverse Elasto-Acoustic ScatteringAzpiroz, Izar 28 February 2018 (has links)
La caractérisation d’objets enfouis à partir de mesures d’ondes diffractées est un problème présent dans de nombreuses applications comme l’exploration géophysique, le contrôle non-destructif, l’imagerie médicale, etc. Elle peut être obtenue numériquement par la résolution d’un problème inverse. Néanmoins, c’est un problème non linéaire et mal posé, ce qui rend la tâche difficile. Une reconstruction précise nécessite un choix judicieux de plusieurs paramètres très différents, dépendant des données de la méthode numérique d’optimisation choisie.La contribution principale de cette thèse est une étude de la reconstruction complète d’obstacles élastiques immergés à partir de mesures du champ lointain diffracté. Les paramètres à reconstruire sont la frontière, les coefficients de Lamé, la densité et la position de l’obstacle. On établit tout d’abord des résultats d’existence et d’unicité pour un problème aux limites généralisé englobant le problème direct d’élasto-acoustique. On analyse la sensibilité du champ diffracté par rapport aux différents paramètres du solide, ce qui nous conduit à caractériser les dérivées partielles de Fréchet comme des solutions du problème direct avec des seconds membres modifiés. Les dérivées sont calculées numériquement grâce à la méthode de Galerkine discontinue avec pénalité intérieure et le code est validé par des comparaisons avec des solutions analytiques. Ensuite, deux méthodologies sont introduites pour résoudre le problème inverse. Toutes deux reposent sur une méthode itérative de type Newton généralisée et la première consiste à retrouver les paramètres de nature différente indépendamment, alors que la seconde reconstruit tous les paramètre en même temps. À cause du comportement différent des paramètres, on réalise des tests de sensibilité pour évaluer l’influence de ces paramètres sur les mesures. On conclut que les paramètres matériels ont une influence plus faible sur les mesures que les paramètres de forme et, ainsi, qu’une stratégie efficace pour retrouver des paramètres de nature distincte doit prendre en compte ces différents niveaux de sensibilité. On a effectué de nombreuses expériences à différents niveaux de bruit, avec des données partielles ou complètes pour retrouver certains paramètres, par exemple les coefficients de Lamé et les paramètres de forme, la densité, les paramètres de forme et la localisation. Cet ensemble de tests contribue à la mise en place d’une stratégie pour la reconstruction complète des conditions plus proches de la réalité. Dans la dernière partie de la thèse, on étend ces résultats à des matériaux plus complexes, en particulier élastiques anisotropes. / The characterization of hidden objects from scattered wave measurements arises in many applications such as geophysical exploration, non destructive testing, medical imaging, etc. It can be achieved numerically by solving an Inverse Problem. However, this is a nonlinear and ill-posed problem, thus a difficult task. A successful reconstruction requires careful selection of very different parameters depending on the data and the chosen optimization numerical method.The main contribution of this thesis is an investigation of the full reconstruction of immersed elastic scatterers from far-field pattern measurements. The sought-after parameters are the boundary, the Lamé coefficients, the density and the location of the obstacle. First, existence and uniqueness results of a generalized Boundary Value Problem including the direct elasto-acoustic problem are established. The sensitivity of the scattered field with respect to the different parametersdescribing the solid is analyzed and we end up with the characterization of the corresponding partial Fréchet derivatives as solutions to the direct problem with modified right-hand sides. These Fréchet derivatives are computed numerically thanks to the Interior Penalty Discontinuous Galerkin method and the code is validated thanks to comparison with analytical solutions. Then, two solution methodologies are introduced for solving the inverse problem. Both are based on an iterative regularized Newton-type methodology and the first one consists in retrieving the parameters of different nature independently, while the second one reconstructs all parameters together. Due to the different behavior of the parameters, sensitivity tests are performed to assess the impact of the parameters on the measurements. We conclude that material parameters have a weaker influence on the measurements than shape parameters, and therefore, a successful strategy to retrieve parameters of distinct nature should take into account these different levels of sensitivity. Various experiments at different noise levels and with full or limited aperture data are carried out to retrieve some of the physical properties, e.g. Lamé coefficients with shape parameters, density with shape parameters a, density, shape and location. This set of tests contributes to a final strategy for the full reconstruction and in more realistic conditions. In the final part of the thesis, we extend the results to more complex material parameters, in particular anisotropic elastic.
|
Page generated in 0.0449 seconds