• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inversion of lunar FeO and numerical simulation of the detached dust layers on Mars / Etude de la Lune et de Mars par télédétection infrarouge

Wang, Chao 24 November 2016 (has links)
Les travaux menés dans cette thèse se partagent entre la Lune et Mars, cibles privilégiées pour les missions d'exploration spatiales. La première partie porte sur l'instrument Interference Imaging Spectrometer (IIM) qui était à bord du satellite lunaire chinois Chang’e-1. Une méthode inédite utilisant l'angle spectrale et le concept de distance Euclidienne, et visant à supprimer les mauvais pixels de IIM, est proposée. Une nouvelle procédure de calibration est utilisée, et l'inter-étalonnage des données IIM avec des données télescopiques est amélioré. Ce nouveau jeu de données permet, après inversion, d'estimer l'abondance de FeO dans le sol lunaire. Les valeurs trouvées sont comparables aux observations du satellite américain Clementine et fournissent une nouvelle référence pour les études lunaires à venir. La seconde partie est consacrée à la modélisation du phénomène de tempêtes de poussière-fusée ("rocket dust storms") générées par des mouvements convectifs meso-echelle liés au chauffage solaire des poussières. L'objectif est de reproduire numériquement les couches de poussières détachées découvertes par l'instrument Mars Climate Sounder (NASA) dans le Modèle de Climat Global (GCM) du LMD. Les simulations montrent que, durant la saison des tempêtes de poussières (printemps et été austral), ce phénomène permet d'expliquer les couches détachées, et de reproduire les observations. Cependant, durant l'autre partie de l'année où il y a très peu de tempêtes de poussières, il semble nécessaire d'inclure dans le GCM un autre processus impliquant les vents de pente, capable de réinjecter les poussières en altitude pour maintenir les couches détachées. / Moon and Mars have been the important targets for deep space missions. The studies in this thesis include two parts. The first part is concerning Chang’e-1 Interference Imaging Spectrometer (IIM) data preprocessing and global lunar FeO inversion. In order to better preprocess the IIM data, a new method using spectral angle and Euclidean distance for removing bad pixels has been proposed. A new in-flight calibration has been conducted. And cross calibration of IIM data by using the telescopic data is improved. The processed IIM data have also been used to inverse lunar FeO abundance. The IIM-derived FeO is comparable to Clementine FeO results, and can be an alternative dataset for Moon studies. The second part is concerning parameterizing rocket dust storms and daytime slope winds in LMD (Laboratoire de Météorologie Dynamique) Mars GCM (Global Climate Model) to reproduce the detached dust layers (DDLs) observed by Mars Climate Sounder (MCS) on Mars. The simulations by the GCM including rocket dust storm parameterization show that, during the Martian dusty seasons, the rocket dust storms are the key factors to explain the observed DDLs. The formation and evolution of GCM simulated DDLs are in agreement with those of MCS observation. Meanwhile, the simulation also suggests that the large variation of the DDLs’ altitudes in dusty season are contributed by the deep convection induced by rocket dust storms. The simulations by the GCM including daytime slope winds parameterization show that with the help of daytime slope winds, the GCM can reproduce the detached dust layers in Martian clear seasons, which cannot be simulated by the rocket dust storm process.
2

Modeling Aerosol - Water Interactions in Subsaturated and Supersaturated Environments

Fountoukis, Christos 05 June 2007 (has links)
The current dissertation is motivated by the need for an improved understanding of aerosol water interactions both in subsaturated and supersaturated atmospheric conditions with a strong emphasis on air pollution and climate change modeling. A cloud droplet formation parameterization was developed to i) predict droplet formation from a lognormal representation of aerosol size distribution and composition, and, ii) include a size-dependant mass transfer coefficient for the growth of water droplets which explicitly accounts for the impact of organics on droplet growth kinetics. The parameterization unravels most of the physics of droplet formation and is in remarkable agreement with detailed numerical parcel model simulations, even for low values of the accommodation coefficient. The parameterization offers a much needed rigorous and computationally inexpensive framework for directly linking complex chemical effects on aerosol activation in global climate models. The new aerosol activation parameterization was also tested against observations from highly polluted clouds (within the vicinity of power plant plumes). Remarkable closure was achieved (much less than the 20% measurement uncertainty). The error in predicted cloud droplet concentration was mostly sensitive to updraft velocity. Optimal closure is obtained if the water vapor uptake coefficient is equal to 0.06. These findings can serve as much needed constraints in modeling of aerosol-cloud interactions in the North America. Aerosol water interactions in ambient relative humidities less than 100% were studied using a thermodynamic equilibrium model for inorganic aerosol and a three dimensional air quality model. We developed a new thermodynamic equilibrium model, ISORROPIA-II, which predicts the partitioning of semi-volatiles and the phase state of K+/Ca2+/Mg2+/NH4+/Na+/SO42-/NO3-/Cl-/H2O aerosols. A comprehensive evaluation of its performance was conducted against the thermodynamic module SCAPE2 over a wide range of atmospherically relevant conditions. Based on its computational rigor and performance, ISORROPIA-II appears to be a highly attractive alternative for use in large scale air quality and atmospheric transport models. The new equilibrium model was also used to thermodynamically characterize aerosols measured at a highly polluted area. In the ammonia-rich environment of Mexico City, nitrate and chloride primarily partition in the aerosol phase with a 20-min equilibrium timescale; PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. When RH is below 50%, predictions improve substantially if the aerosol follows a deliquescent behavior. The impact of including crustal species (Ca2+, K+, M2+) in equilibrium calculations within a three dimensional air quality model was also studied. A significant change in aerosol water (-19.8%) and ammonium (-27.5%) concentrations was predicted when crustals are explicitly included in the calculations even though they contributed, on average, only a few percent of the total PM2.5 mass, highlighting the need for comprehensive thermodynamic calculations in the presence of dust.
3

Improving the representation of Arctic clouds in atmospheric models across scales using observations

Kretzschmar, Jan 29 June 2021 (has links)
With a nearly twice as strongly pronounced temperature increase compared to that of the Northern Hemisphere, the Arctic is especially susceptible to global climate change. The effect of clouds on the Arctic warming is especially uncertain, which is caused by misrepresented cloud microphysical processes in atmospheric models. This thesis aims at employing a scale- and definition-aware comparison of models and observations and will propose changes how to better parameterize Arctic clouds in atmospheric models. In the first part of this thesis, ECHAM6, which is the atmospheric component of the MPI-ESM global climate model, is compared to spaceborne lidar observations of clouds from the CALIPSO satellite. This comparison shows that ECHAM6 overestimates Arctic low-level, liquid containing clouds over snow- and ice-covered surfaces, which consequently leads to an overestimated amount of radiative energy received by the surface. Using sensitivity studies, it is shown that the probable cause of the model biases in cloud amount and phase is related to misrepresented cloud microphysical parameterization (i.e., parameterization of the Wegener-Bergeron-Findeisen process and of the cloud cover scheme) in ECHAM6. By revising those processes, a better representation of cloud amount and cloud phase is achieved, which helps to more accurately simulated the amount of radiative energy received by the Arctic in ECHAM6. The second part of this thesis will focus on a comparison of kilometer-scale simulation with the ICON model to aircraft observations from the ACLOUD campaign that took place in May/June 2017 over the sea ice-covered Arctic Ocean north of Svalbard, Norway. By comparing measurements of solar and terrestrial surface irradiances during ACLOUD flights to the respective quantities in ICON, it is shown that the model systematically overestimates the transmissivity of the mostly liquid clouds during the campaign. This model bias is traced back to the way cloud condensation nuclei get activated into cloud droplets in the two-moment, bulk microphysical scheme used. By parameterizing subgrid-scale vertical motion as a function of turbulent kinetic energy, a more realistic CCN activation into cloud droplets is achieved. This consequently results in an improved representation of cloud optical properties in the ICON simulations. Furthermore, the results of two studies to which contributions have been made during the Ph.D. will be summarized. In Petersik et al. 2018, the impact of subgrid-scale variability in clear-sky relative humidity on hygroscopic growth of aerosols in the aerosol-climate model ECHAM6-HAM2 has been explored. It was shown that the revised parameterization of hygroscopic growth of aerosols resulted in a stronger swelling of aerosol particles, which consequently causes an increased backscattering of solar radiation. In the study of Costa-Suros et al. 2019, it is explored whether it is possible to detect and attribute aerosol-cloud interactions in large-eddy simulation over Germany. It was shown that an increase in cloud droplet number concentration could be attributed to an increased aerosol load, while such an attribution was not possible for other cloud micro- and macrophysical variables.
4

Large-Scale Variability in Marine Low Stratiform Cloud Amount and Its Relationship to Lower-Tropospheric Static Stability in Terms of Cloud Types / 雲タイプの観点からみた海洋下層雲量の大規模変動特性とその下部対流圏静的安定度との関係

Koshiro, Tsuyoshi 23 July 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13202号 / 論理博第1561号 / 新制||理||1635(附属図書館) / 京都大学大学院理学研究科・地球惑星科学専攻 / (主査)教授 塩谷 雅人, 准教授 重 尚一, 教授 秋友 和典 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
5

A Gcm Comparison of Plio-Pleistocene Interglacial-Glacial Periods in Relation to Lake El’gygytgyn, Ne Arctic Russia

Coletti, Anthony J 01 January 2013 (has links) (PDF)
Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El’gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 ºC warmer than today during MIS 5e, 11c, and 31 respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El’gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Vegetation-land surface feedback simulations during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El’gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and frigid conditions can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea-ice cover causing albedo-enhanced feedback.
6

Changement climatique en Antarctique : études à l'aide d'un modèle atmosphérique de circulation générale à haute résolution régionale / Antarctic climate change : studies with an atmospheric general circulation model at a high regional resolution

Beaumet, Julien 04 December 2018 (has links)
L'augmentation du bilan de masse en surface de la calotte polaire Antarctique causée par celle des chutes de neige est la seule contribution négative à l'élévation du niveau de mer attendue dans le courant du 21ème siècle dans le cadre du réchauffement climatique causé par les activités humaines. La régionalisation dynamique de projections climatiques issues de modèles couplés océans-atmosphère est la méthode la plus couramment utilisée pour estimer les variations futures du climat Antarctique. Néanmoins, de nombreuses incertitudes subsistent suite à l'application de ces méthodes, en particulier en raison des biais conséquents sur les conditions océaniques de surface et sur la circulation atmosphérique aux hautes latitudes de l’Hémisphère Sud dans les modèles couplés.Dans la première partie de ce travail, différentes méthodes de corrections de biais des conditions océanique de surface ont été évaluées. Les résultats ont permis de retenir une méthode quantile-quantile pour la température de surface de l'océan et une méthode d'analogues pour la concentration en glace de mer. En raison de la forte sensibilité du climat future Antarctique aux variations de couverture de glace de mer dans l'Océan Austral, les conditions océaniques issues de deux modèles couplés, NorESM1-M et MIROC-ESM, présentant des diminutions d’étendues de glace de mer hivernales largement différentes (-14 et -45%) ont été retenues. Les conditions océaniques provenant d'un scénario RCP8.5 de ces deux modèles ont été corrigées afin de forcer le modèle atmosphérique global ARPEGE.Par la suite, ARPEGE a été utilisé dans une configuration grille-étirée, permettant d'atteindre une résolution horizontale de 40 kilomètres sur l'Antarctique. Il a été contraint aux limites par les conditions océaniques de surface observées et celles issues des simulations historiques des modèles NorESM1-M et MIROC-ESM pour la période récente (1981-2010). Pour la fin du 21ème siècle (2071-2100), les forçages océaniques originaux et corrigés issus de ces deux derniers modèles ont été utilisés. L'évaluation pour le présent a permis de mettre en évidence, la capacité du modèle ARPEGE de reproduire le climat et le bilan de masse de surface Antarctique ainsi que la persistance d'erreurs substantielles sur la circulation atmosphérique y compris dans la simulation forcée par les conditions océaniques observées. Pour le climat futur, l'utilisation des forçages océaniques MIROC-ESM corrigés a engendré des augmentations supplémentaires significatives à l'échelle continentale pour les températures hivernales et le bilan de masse annuel.Enfin, ARPEGE a été corrigé en ligne, à l'aide d'une climatologie des termes de rappel du modèle issus d'une simulation guidée par les réanalyses climatologiques. L'application de cette méthode sur la période récente a très largement amélioré la modélisation de la circulation atmosphérique et du climat de surface Antarctique. L'application pour le climat futur suggère des augmentations de températures (+0.7 à +0.9 C) et de précipitations (+6 à +9%) supplémentaires par rapport à celles issues des scénarios réalisés sans correction atmosphérique. Le forçage de modèles climatiques régionaux ou de dynamique glaciaire avec les scénarios ARPEGE corrigés est à explorer au regard des impacts potentiellement importants pour la calotte Antarctique et sa contribution à l'élévation du niveau des mers. / The increase of the Antarctic ice-sheet surface mass balance due to rise in snowfall is the only expected negative contribution to sea-level rise in the course of the 21st century within the context of global warming induced by mankind. Dynamical downscaling of climate projections provided by coupled ocean-atmosphere models is the most commonly used method to assess the future evolution of the Antarctic climate. Nevertheless, large uncertainties remain in the application of this method, particularly because of large biases in coupled models for oceanic surface conditions and atmospheric large-scale circulation at Southern Hemisphere high latitudes.In the first part of this work, different bias-correction methods for oceanic surface conditions have been evaluated. The results have allowed to select a quantile-quantile method for sea surface temperature and an analog method for sea-ice concentration. Because of the strong sensitivity of Antarctic surface climate to the variations of sea-ice extents in the Southern Ocean, oceanic surface conditions provided by two coupled models, NorESM1-M and MIROC-ESM, showing clearly different trends (respectively -14 and -45%) on winter sea-ice extent have been selected. Oceanic surface conditions of the ``business as usual" scenario (RCP8.5) coming from these two models have been corrected in order to force the global atmospheric model ARPEGE.In the following, ARPEGE has been used in a stretched-grid configuration, allowing to reach an horizontal resolution around 40 kilometers on Antarctica. For historical climate (1981-2010), the model was driven by observed oceanic surface conditions as well as by those from MIROC-ESM and NorESM1-M historical simulation. For late 21st century (2071-2100), original and bias corrected oceanic conditions from the latter two model have been used. The evaluation for present climate has evidenced excellent ARPEGE skills for surface climate and surface mass balance as well as large remaining errors on large-scale atmospheric circulation even when using observed oceanic surface conditions. For future climate, the use of bias-corrected MIROC-ESM oceanic forcings has yielded an additionally significant increase in winter temperatures and in annual surface mass balance at the continent-scale.In the end, ARPEGE has been corrected at run-time using a climatology of tendency errors coming from an ARPEGE simulation driven by climate reanalyses. The application of this method for present climate has dramatically improved the modelling of the atmospheric circulation and antarctic surface climate. The application for the future suggests significant additional warming (~ 0.7 to +0.9 C) and increase in precipitation (~ +6 to +9 %) with respect to the scenarios realized without atmospheric bias correction. Driving regional climate models or ice dynamics model with corrected ARPEGE scenarios is to explored in regards of the potentially large-impacts on the Antarctic ice-sheet and its contribution to sea-level rise.
7

Model estimations of possible climate changes of surface solar radiation at regional scales over Southern Africa and the South West Indian Ocean / Modélisation régionale du climat et estimations des changements climatiques possibles du rayonnement en surface dans le sud-ouest de l'océan Indien

Tang, Chao 01 December 2017 (has links)
Les variations du rayonnement solaire en surface (SSR) peuvent avoir un impact significatif sur divers aspects du système climatique, et notamment sur le développement socio-économique d’un pays. Pour identifier les impacts possibles du changement climatique sur le rayonnement solaire en surface à l'échelle régionale (~ 50 km) en Afrique australe jusqu'à la fin du 21ème siècle, on a analysé les données mensuelles produites dans le cadre du projet CORDEX-Afrique sur la période 1979-2099. Ces données sont issues des sorties de 5 modèles régionaux de climat (RCM) forcés par 10 modèles globaux de climat (GCM) CMIP5, pour deux scénarios d’émissions, RCP4.5 et RCP8.5, en Afrique australe (SA) et sur une partie du SWIO (0-40°S ; 0- 60°E). Pour contribuer au projet futur proposé qui vise à approfondir l'étude des changements de SSR à l'échelle locale (~ 1 km de résolution horizontale) à l'île de la Réunion et à l'île Maurice, situées dans le Sud-ouest de l'océan Indien (SWIO), près du bord d’Est du domaine CORDEX-Afrique, des simulations climatiques ont été réalisées sur trois fenêtres temporelles de 10 ans : a) le passé 1996-2005 ; et b) le futur 2046-2055 et 2090-2099, en utilisant la version 4 du RCM RegCM (RegCM4), forcé par : 1) les réanalyses climatiques ERA-Interim (ERAINT) du centre européen pour les prévisions météorologiques à moyen terme (ECMWF) pour simuler un passé récent seulement ; et 2) deux GCMs (HadGEM2-ES et GFDL-ESM2M) de l’exercice CMIP5 de simulations du climat passé et futur pour le scénario d’émissions RCP8.5 à l’échelle régionale de 50km en Afrique australe et dans le sud-ouest de l’océan Indien (0-40°S ; 0- 100°E). L’analyse de l’impact du changement climatique sur le SSR sur la base de ces simulations reste cependant limitée, à cause de leur couverture temporelle (3 périodes de 10 ans) et du nombre de modèles (2 GCMs, 1 RCM) et de scénarios (1 RCP) utilisés. Il ressort de l’analyse des simulations de l’ensemble CORDEX-Afrique que : 1) sur la période passée récente, les GCMs forceurs surestiment généralement SSR d'environ 1 W/m2 en été austral (DJF : Décembre-Janvier-Février), et de 7,5 W/m2 en hiver austral (JJA : Juin-Juillet-Août), tandis que les RCMs, forcés par ces GCMs, sous-estiment SSR d'environ -32 W/m2 et de -14 W/m2 en été et en hiver, respectivement. 2) Les projections multi-modèles de changement de SSR simulées par les RCMs et leurs GCMs forceurs sont assez cohérentes. Les GCMs prévoient, en moyenne multi-modèles, une augmentation statistiquement significative de SSR d'environ 8 W/m2 en 2099 selon le scénario RCP4.5 et de 12 W/m2 en 2099 selon le scénario RCP8.5 sur le Centre de l’Afrique australe (SA-C), et une diminution de SSR, avec un degré de confiance élevé, d'environ -5 W/m2 en 2099 selon le scénario RCP4.5 et de -10 W/m2 en 2099 selon le scénario RCP8.5, pendant la saison DJF, en Afrique équatoriale (EA-E). Dans ces deux régions, les RCMs produisent, en moyenne multi-modèles, des tendances similaires (avec un degré de confiance élevé) à celles des GCMs, mais sur des zones d’extension spatiale plus faible que celle des GCMs. Cependant, pour la saison JJA, une augmentation de SSR, d'amplitude similaire dans les simulations GCMs et RCMs (~5 W/m2 en 2099 selon le scénario RCP4.5 et 10 W/m2 selon le scénario RCP8.5), est attendue dans la région EA-E. 3). Une diminution significative de la nébulosité (environ -6% en 2099) est attendue sur le continent sud-africain pour les GCMs comme pour les RCMs. 4) Le scénario RCP8.5 produit des changements d’amplitude supérieure de 2.5W/m2 pour les GCMs forceurs et de 5W/m2 pour les RCMs en 2099 à celle pour le scénario RCP4.5. 5). Comme pour les sorties du modèle RegCM4, les structures des biais ou des changements de SSR issu des RCMs du programme CORDEX-Afrique sont globalement corrélées avec celles de couverture nuageuse totale des RCMs. L’analyse des sorties du modèle RegCM4 indique que : ..... / Changes in Surface Solar Radiation (SSR) have the potential to significantly impact diverse aspects of the climate system, and notably the socio-economic development of any nation. To identify the possible impacts of climate change on SSR at regional scales (~50 km) over Southern Africa and the South West Indian Ocean (SA-SWIO; 0-40°S ; 0- 100°E) up to the end of the 21st century, a slice downscaling experiment consisting of simulations covering three temporal windows: a) the present 1996-2005; b) the future 2046-2055 and 2090-2099 conducted with the Regional Climate Model (RCM) RegCM version 4, driven by the European Center for Medium-range Weather Forecasting (ECMWF) ERA-Interim reanalysis (ERAINT, only present) and 2 Global Climate Model (GCMs: HadGEM2-ES and GFDL-ESM2M) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5 scenario, are performed and evaluated. Since the slice simulation is of limited temporal coverage, number of regional and driven global models and climate change forcings, mainly because of the limit of available computational resources, the study towards a comprehensive knowledge of SSR changes in context of climate change is thus extended: an ensemble consisting of outputs from 20 regional climate downscaling realisations based on 5 RCMs that participated in the Coordinated Regional Downscaling Experiment (CORDEX) program (CORDEX-Africa) along with their 10 driving GCMs from CMIP5 covering southern Africa (0-40°S; 0- 100°E) during the period of 1990-2099 is analyzed under RCP4.5 and RCP8.5 up to 2099.The slice experiment indicates that 1) RegCM4 simulates present-day seasonal climatology, (surface air temperature, precipitation and SSR) quite well, but has a negative total cloud cover bias (about -20% in absolute percentage) when forced by the ERAINT and the two GCMs. 2) Internal variability of RegCM4-simulated annual means SSR (about 0.2 W/m2) is of one order smaller than the model bias compared with reference data. 3) RegCM4 simulates SSR changes in opposite signs when driven by the different GCMs under RCP8.5 scenario. 4) Electricity potential calculated using first-order estimation based on the RegCM simulations indicates a change less then 2% to 2099 with respect on present level.It is also found from the ensemble study that: 1) GCMs ensemble generally overestimates SSR by about 1 W/m2 in austral summer (December, January, and February, short as DJF) and 7.5 W/m2 in austral winter (June, July and August, short as JJA), while RCMs ensemble mean shows underestimations of SSR by about -32 W/m2 and -14 W/m2 in summer and winter seasons respectively when driven by GCMs. 2) Multi-model mean projections of SSR change patterns simulated by the GCMs and their embedded RCMs are fairly consistent. 3) GCMs project, in their multi-model means, a statistically significant increase of SSR of about 8 W/m2 in RCP4.5 and 12 W/m2 in RCP8.5 by 2099 over Centre Southern Africa (SA-C) and a highly confident decreasing SSR over Eastern Equatorial Africa (EA-E) of about -5 W/m2 in RCP4.5 and -10 W/m2 in RCP8.5 during the DJF season. RCMs simulate SSR change with statistical confidence over SA-C and EA-E area as well with a little spatial extension compared to GCMs. However, in the JJA season, an increase of SSR is found over EA-E of about 5 W/m2 by 2099 under RCP4.5 and 10 W/m2 under RCP8.5, of similar amplitudes in both the GCMs and RCMs simulations. 4) Significant cloudiness decrease (about -6 % to 2099) is found over continent of SA for GCMs and also shown in RCMs. 5) Larger SSR changes are found in the RCP8.5 scenario than in the RCP4.5 scenario in 2099, with about 2.5 W/m2 enhanced changes in GCMs and about 5 W/m2 in RCMs. 6) Either the biases or the changes pattern of SSR are overall correlated with the patterns of total cloud cover from RCMs in CORDEX-Africa program (for RegCM4 as well). The slice experiment indicates that ...
8

Space-Time Evolution of the Intraseasonal Variability in the Indian Summer Monsoon and its Association with Extreme Rainfall Events : Observations and GCM Simulations

Karmakar, Nirupam January 2016 (has links) (PDF)
In this thesis, we investigated modes of intraseasonal variability (ISV) observed in the Indian monsoon rainfall and how these modes modulate rainfall over India. We identified a decreasing trend in the intensity of low-frequency intraseasonal mode with increasing strength in synoptic variability over India. We also made an attempt to understand the reason for these observed trends using numerical simulations. In the first part of the thesis, satellite rainfall estimates are used to understand the spatiotem-poral structures of convection in the intraseasonal timescale and their intensity during boreal sum-mer over south Asia. Two dominant modes of variability with periodicities of 10–20-days (high-frequency) and 20–60-days (low-frequency) are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial In-dian Ocean linked with eastward propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space-time structure with a northwestward propagating anoma-lous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastwards. This could be related to ver-tical shear of zonal wind over northern India. The two modes exhibit variability in their intensity on the interannual time scale and contribute a significant amount to the daily rainfall variability in a season. The intensities of the 20–60-day and 10–20-day modes show significantly strong inverse and direct relationship, respectively, with the all-India June–September rainfall. This study also establishes that the probability of occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. There also exists a phase-locking between the two modes. In the second part of the thesis, we investigated the changing nature of these intraseasonal modes over Indian region, and their association with extreme rainfall events using ground based observed rainfall. We found that the relative strength of the northward propagating 20–60-day mode has a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon. This reduction is compensated by a gain in synoptic-scale (3–9 days) variability. The decrease in the low-frequency ISV is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by a significant increasing trend in the percentage of extreme events in break phase. We also find a significant rise in occurrence of extremes during early- and late-monsoon months, mainly over the eastern coastal regions of India. We do not observe any significant trend in the high-frequency ISV. In the last part of the thesis, we used numerical simulations to understand the observed changes in the ISV features. Using the atmospheric component of a global climate model (GCM), we have performed two experiments: control experiment (CE) and heating experiment (HE). The CE is the default simulation for 10 years. In HE, we prescribed heating in the atmosphere in such a way that it mimics the conditions for extreme rainfall events as observed over central India during June– September. Heating is prescribed primarily during the break phase of the 20–60-day mode. This basically increases the number of extremes, majority of which are in break phase. The design of the experiment reflects the observed current scenario of increased extreme events during breaks. We found that the increased extreme events in the HE decreased the intensity of the 20–60-day mode over the Indian region. This reduction is associated with a reduction of rainfall in active phase and increase in the length of break phase. A reduction in the seasonal mean over India is also observed. The reduction of active phase rainfall is linked with an increased stability of the atmosphere over central India. Lastly, we propose a possible mechanism for the reduction of rainfall in active phase. We found that there is a significant reduction in the strength of the vertical easterly shear over the northern Indian region during break–active transition phase. This basically weakens the conditions for the growth of Rossby wave instability, thereby elongating break phase and reducing the rainfall intensity in the following active phase. This study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario, which is further tested in a modeling study. The results presented in this thesis will provide a pathway to understand, using observations and numerical model simulations, the ISV and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.
9

Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

Al Janabi, Firas 21 January 2015 (has links) (PDF)
The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh). / Die Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).
10

Present and Future Wind Energy Resources in Western Canada

Daines, Jeffrey Thomas 17 September 2015 (has links)
Wind power presently plays a minor role in Western Canada as compared to hydroelectric power in British Columbia and coal and natural gas thermal power generation in Alberta. However, ongoing reductions in the cost of wind power generation facilities and the increasing costs of conventional power generation, particularly if the cost to the environment is included, suggest that assessment of the present and future wind field in Western Canada is of some importance. To assess present wind power, raw hourly wind speeds and homogenized monthly mean wind speeds from 30 stations in Western Canada were analyzed over the period 1971-2000 (past). The hourly data were adjusted using the homogenized monthly means to attempt to compensate for differences in anemometer height from the standard height of 10m and changes in observing equipment at stations. A regional reanalysis product, the North American Regional Reanalysis (NARR), and simulations conducted with the Canadian Regional Climate Model (CRCM) driven with global reanalysis boundary forcing, were compared to the adjusted station wind-speed time-series and probability distributions. The NARR had a better temporal correlation with the observations, than the CRCM. We posit this is due to the NARR assimilating regional observations, whereas the CRCM did not. The NARR was generally worse than the CRCM in reproducing the observed speed distribution, possibly due to the crude representation of the regional topography in NARR. While the CRCM was run at both standard (45 km) and fine (15 km) resolution, the fine grid spacing does not always provide better results: the character of the surrounding topography appears to be an important factor for determining the level of agreement. Multiple simulations of the CRCM at the 45 km resolution were also driven by two global climate models (GCMs) over the periods 1971-2000 (using only historic emissions) and 2031-2060 (using the A2 emissions scenario). In light of the CRCM biases relative to the observations, these simulations were calibrated using quantile-quantile matching to the adjusted station observations to obtain ensembles of 9 and 25 projected wind speed distributions for the 2031-2060 period (future) at the station locations. Both bias correction and change factor techniques were used for calibration. At most station locations modest increases in mean wind speed were found for most of the projected distributions, but with a large variance. Estimates of wind power density for the projected speed distributions were made using a relationship between wind speed and power from a CRCM simulation for both time periods using the 15km grid. As would be expected from the wind speed results and the proportionality of wind power to the cube of wind speed, wind power at the station locations is more likely than not to increase in the 2031-2060 period from the 1971-2000 period. Relative changes in mean wind speeds at station locations were found to be insensitive to the station observations and choice of calibration technique, suggesting that we estimate relative change at all 45km grid points using all pairs of past/future mean wind speeds from the CRCM simulations. Overall, our results suggest that wind energy resources in Western Canada are reasonably likely to increase at least modestly in the future. / Graduate / 0725 / 0608 / jtdaines@uvic.ca

Page generated in 0.0705 seconds