• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 55
  • 17
  • 12
  • 8
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 296
  • 101
  • 61
  • 45
  • 42
  • 36
  • 31
  • 31
  • 28
  • 26
  • 25
  • 22
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The use of word prediction as a tool to accelerate the typing speed and increase the spelling accuracy of primary school children with spelling difficulties

Herold, M.P. (Marina Patricia) 23 September 2004 (has links)
Word prediction has been offered as support for children with spelling difficulties. The literature however has shown wide-ranging results, as the use of word prediction is at the cost of time and fatigue due to increased visual-cognitive demands. Spelling support with word prediction is through word completion, keystroke reduction and the interactive process between spelling and reading. The research project was a cross-over within-subject design using 80 Grade 4 – 6 children with spelling difficulties in a school for special needs. The research task took the form of entering 30 words through an on-screen keyboard, with and without the use of word prediction software. The subjects were divided into four groups, who completed the research task in combinations of one of two equivalent wordlists and the presentation order of the typing method used. The Graded Word Spelling Test, administered before the study began, served to investigate whether there was a relationship between the children’s current spelling knowledge and word prediction efficacy. The results indicated an increase in spelling accuracy with the use of word prediction, but at the cost of time and the tendency to use word approximations, which decreased as grade and age increased. Children’s current spelling knowledge could not serve as an indicator of who would be most likely to benefit from word prediction use. The cross-over design counter-balanced the effects of the inequalities in the two wordlists and the effects of practice and fatigue noted in the presentation order. Further research into the impact that more extensive training and practice would have on word prediction efficacy and the usefulness of word prediction in more functional writing is necessary. / Dissertation (M (Augmentative and Alternative Communication))--University of Pretoria, 2005. / Centre for Augmentative and Alternative Communication (CAAC) / unrestricted
232

Lipid Mobilization In Exercising Salmonids

Turenne, Eric D. January 2018 (has links)
Animals rely on lipids as a major fuel for endurance exercise because they pack more joules per gram than any other fuel. However, in contrast to mammals, information on how the mobilization of lipids from endogenous stores is managed to meet the needs of energy metabolism in swimming fish is sparse. Information on in vivo rates of lipid mobilization in swimming fish has been limited to relatively low exercise intensities and has only been investigated in a single species. Therefore, the goal of my thesis was to address this paucity of information by quantifying lipolytic rate in rainbow trout during graded exercise and fatty acid mobilization in Atlantic salmon during prolonged endurance exercise. In the first part of my work, I hypothesized that like mammals, rainbow trout stimulate lipolysis above resting levels to a peak with increasing work intensity, but subsequently lower its rate at high intensities when ATP production from carbohydrates becomes dominant. To test this hypothesis, I measured the rate of appearance of glycerol (Ra glycerol) in the blood (resulting from the breakdown of triacylglycerol (TAG)) of trout at rest (control) and during graded exercise from rest to Ucrit. Results showed that Ra glycerol in trout averaged 1.24 ± 0.10 µmol kg -1 min-1 and that this rate was unaffected by exercise of any intensity. These experiments revealed that rainbow trout do not modulate lipolysis during exercise. Furthermore, I calculated that baseline lipolytic rate was much higher in trout than in mammals and that this rate is in constant excess of the requirements of energy metabolism. My second investigation focused on measuring fatty acid mobilization in Atlantic salmon. To date, the majority of studies on energy metabolism in salmonids have used rainbow trout as the ubiquitous model for salmonids. I postulated that domesticated rainbow trout may be far less impressive athletes than their wild anadromous form and other salmonids. In this regard, I proposed that studying energy metabolism in Atlantic salmon (even those from aquaculture) may help to deepen our understanding of the physiology of true long-distance migrant fish. To study the effects of prolonged endurance exercise on the mobilization of fatty acids from endogenous stores in these fish, I monitored the rate of appearance of fatty acids (Ra NEFA calculated from Ra Palmitate) in the blood during 72 hours of sustained swimming. I found that contrary to what has been previously described in rainbow trout, Ra Palmitate (and by proxy, Ra NEFA) is reduced by approximately 64% (from 0.75 ± 0.12 µmol kg-1min-1 to 0.27 ± 0.06 µmol kg-1min-1 and from 19.3 ± 7.8 µmol kg-1min-1 to 6.9 ± 2.0 µmol kg-1min-1 for Ra Palmitate and Ra NEFA, respectively) during prolonged endurance exercise in Atlantic salmon. However, like in trout, even this reduced rate of fatty acid mobilization exceeds the requirements of energy metabolism at rest and during swimming. While further experiments will be necessary, I speculated that this reduction in Ra NEFA may be caused by a partial inhibition of lipolysis to reduce the energetic cost of TAG:FA cycling and optimize fuel budgets during prolonged endurance exercise. This thesis provides the first in vivo measurements of lipolysis during graded exercise in salmonids and the first in vivo measurements of fatty acid mobilization in Atlantic salmon. From the results mentioned above, I concluded that salmonids mobilize lipids in constant excess of the requirements for energy metabolism, possibly to allow for rapid reorganization of membrane phospholipids in response to changing environmental conditions. However, more anadromous and migratory phenotypes may rely on a tighter control of lipolysis to minimize the costs of substrate cycling and conserve energy on limited fuel stores.
233

About E-infinity-structures in L-algebras / Sur les E-infini-structures dans les L-algèbres

Sánchez, Jesús 06 December 2016 (has links)
Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d'être un modèle algébrique des types d'homotopie. L'objectif principal de cette thèse est la description d'une structure de E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Ceci peut être vu comme une généralisation de la structure de E-infini-coalgèbre sur le complexe des chaînes d'un ensemble simplicial, telle que décrite par Smith dans Iterating the cobar construction, 1994. Nous construisons une E-infini-opérade, notée K, utilisée pour construire la E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Cette structure de E-infini-coalgèbre montre que la L-algèbre canoniquement associée à un ensemble simplicial contient au moins autant d'information homotopique que la E-infini-coalgèbre couramment associée à un ensemble simplicial / In this thesis we recall the notion of L-algebra. L-algebras are intended as algebraic models for homotopy types. L-algebras were introduced by Alain Prouté in several talks since the eighties. The principal objective of this thesis is the description of an E-infinity-coalgebra structure on the main element of an L-algebra. This can be seen as a generalization of the E-infinity-coalgebra structure on the chain complex associated to a simplicial set given by Smith in Iterating the cobar construction, 1994. We construct an E-inifity-operad, denoted K, used to construct the E-inifity-coalgebra on the main element of a L-algebra. This E-inifity-coalgebra structure shows that the canonical L-algebra associated to a simplicial set contains at least as much homotopy information as the E-inifity-coalgebras usually associated to simplicial sets.
234

ADDITIVE MANUFACTURING OF VISCOUS MATERIALS: DEVELOPMENT AND CHARACTERIZATION OF 3D PRINTED ENERGETIC STRUCTURES

Monique McClain (9178199) 28 July 2020 (has links)
<p>The performance of solid rocket motors (SRMs) is extremely dependent on propellant formulation, operating pressure, and initial grain geometry. Traditionally, propellant grains are cast into molds, but it is difficult to remove the grains without damage if the geometry is too complex. Cracks or voids in propellant can lead to erratic burning that can break the grain apart and/or potentially overpressurize the motor. Not only is this dangerous, but the payload could be destroyed or lost. Some geometries (i.e. internal voids or intricate structures) cannot be cast and there is no consistent nor economical way to functionally grade grains made of multiple propellant formulations at fines scales (~ mm) without the risk of delamination between layers or the use of adhesives, which significantly lower performance. If one could manufacture grains in such a way, then one would have more control and flexibility over the design and performance of a SRM. However, new manufacturing techniques are required to enable innovation of new propellant grains and new analysis techniques are necessary to understand the driving forces behind the combustion of non-traditionally manufactured propellant.</p> <p>Additive manufacturing (AM) has been used in many industries to enable rapid prototyping and the construction of complex hierarchal structures. AM of propellant is an emerging research area, but it is still in its infancy since there are some large challenges to overcome. Namely, high performance propellant requires a minimum solids loading in order to combust properly and this translates into mixtures with high viscosities that are difficult to 3D print. In addition, it is important to be able to manufacture realistic propellant formulations into grains that do not deform and can be precisely functionally graded without the presence of defects from the printing process. The research presented in this dissertation identifies the effect of a specific AM process called Vibration Assisted Printing (VAP) on the combustion of propellant, as well as the development of binders that enable UV-curing to improve the final resolution of 3D printed structures. In addition, the combustion dynamics of additively manufactured layered propellant is studied with computational and experimental methods. The work presented in this dissertation lays the foundation for progress in the developing research area of additively manufactured energetic materials. </p> <p>The appendices of this dissertation presents some additional data that could also be useful for researchers. A more detailed description of the methods necessary to support the VAP process, additional viscosity measurements and micro-CT images of propellant, the combustion of Al/PVDF filament in windowed propellant at pressure, and microexplosions of propellant with an Al/Zr additive are all provided in this section. </p>
235

Optical Property Study of 2D Graded Photonic Super-Crystals for Photon Management

Hassan, Safaa 05 1900 (has links)
In this dissertation, we study the optical property of 2D graded photonic super-crystals (GPSCs) for photon management. We focused primarily on manipulation and control of light by using the newly discovered GPSCs which present great opportunity for electromagnetic wave control in photonic devices. The GPSC has been used to explore the superior capability of improving the light extraction efficiency of OLEDs. The enhancement of extraction efficiency has been explained in term of destructive interference of surface plasmon resonance and out-coupling of surface plasmon through phase matching provided by GPSC and verified by e-field intensity distributions. A large light extraction efficiency up to 75% into glass substrate has been predicted through simulation. We also study the light trapping enhancement in GPSCs. Broadband, wide incident angle, and polarization independent light trapping enhancement is achieved in silicon solar cells patterned with the GPSCs. In addition, novel 2D GPSCs were fabricated using holographic lithography through the interference lithography by two sets of multiple beams arranged in a cone geometry using a spatial light modulator (SLM). Finally, we also report a fabrication of GPSCs with a super-cell size of 12a×12a by using e-beam lithography. Diffraction pattern from GPSCs reveals unique diffraction properties. In an application aspect, light emitting diode arrays can be replaced by a single light emitting diode shinning onto the diffraction pattern for a uniform fluorescence.
236

Analisis de vibracion de vigas funcionalmente graduadas aplicando el metodo de elemento finitos

Marquina Chamorro, Benjamín Flaviano, Dominguez Chávez, Juan Pablo 22 October 2020 (has links)
El presente trabajo, tiene como objetivo el estudio de la vibración libre de vigas Timoshenko aplicados a materiales funcionalmente graduados; esto se resuelve utilizando el método de elementos finitos (MEF) , al implementarlo en el software MATLAB, con el fin de obtener las frecuencias fundamentales y las gráficas de los modos de vibración para cada caso. Se define el campo de desplazamientos según la teoría Timoshenko considerando tres variables fundamentales; asimismo, se utiliza el Principio de Hamilton para obtener las vibraciones libres del elemento. Para el desarrollo de las relaciones constitutivas se usa la La ley de potencia, el cual describe como varían las propiedades de un material heterogéneo e isotrópico FGM (FGM por sus siglas en inglés) en el peralte de la viga. Los resultados obtenidos se compararon con otros estudios de la literatura validados por revistas como SCOPUS y SPRINGER, demostrando que el modelo es bastante preciso y satisfactorio. / The present work aims to study the free vibration of Timoshenko beams applied to functionally graduated materials; This is solved using the finite element method (FEM), when implemented in the MATLAB software, in order to obtain the fundamental frequencies and the graphs of the vibration modes for each case. The field of displacements is defined according to the Timoshenko theory considering three fundamental variables; likewise, the Hamilton Principle is used to obtain the free vibrations of the element. For the development of the constitutive relationships, the power law is used, which describes how the properties of a heterogeneous and isotropic material FGM vary in the heightn of the beam. The results obtained were compared with other literature studies validated by journals such as SCOPUS and SPRINGER, showing that the model is quite accurate and satisfactory. / Tesis
237

Mechanical behaviors of bio-inspired composite materials with functionally graded reinforcement orientation and architectural motifs

Di Wang (8782580) 01 May 2020 (has links)
<p>Naturally-occurring biological materials with stiff mineralized reinforcement embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. Interestingly, nature offers a broad diversity of architectural motifs, exemplify the multitude of ways in which exceptional mechanical properties can be achieved. Such diversity is the source of bio-inspiration and its translation to synthetic material systems. In particular, the helicoid and the “brick and mortar” architectured materials are two key architectural motifs we are going to study and to synthesize new bio-inspired materials. </p> <p>Due to geometry mismatch(misorientation) and incompatibilities of mechanical properties between fiber and matrix materials, it is acknowledged that misoriented stiff fibers would rotate in compliant matrix beneath uniaxial deformation. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present project, fiber reorientation values of single misoriented laminae, mono-balanced laminates and helicoid architectures under uniaxial tensile are calculated and compared. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.</p> <p>In addition to fiber, rod-like, reinforced laminate, platelet reinforced composite materials, “brick and mortar” architectures, are going to be discussed as well, since it can provide in-plane isotropic behavior on elastic modulus that helicoid architecture can offer as well, but with different geometries of reinforcement. Previous “brick and mortar” models available in the literature have provided insightful information on how these structures promote certain mechanisms that lead to significant improvement in toughness without sacrificing strength. In this work, we present a detailed comparative analysis that looks at the three-dimensional geometries of the platelet-like and rod-like structures. However, most of these previous analyses have been focused on two-dimensional representations. We 3D print and test rod-like and tablet-like architectures and analyze the results employing a computational and analytical micromechanical model under a dimensional analysis framework. In particular, we focus on the stiffness, strength and toughness of the resulting structures. It is revealed that besides volume fraction and aspect ratio of reinforcement, the effective shear and tension area in the matrix governs the mechanical behavior as well. In turns, this leads to the conclusion that rod-like microstructures exhibit better performance than tablet-like microstructures when the architecture is subjected to uniaxial load. However, rod-like microstructures tend to be much weaker and brittle in the transverse direction. On the other hand, tablet-like architectures tend to be a much better choice for situations where biaxial load is expected.</p> <p>Through varying the geometry of reinforcement and changing the orientation of reinforcement, different architectural motifs can promote in-plane mechanical properties, such as strain stiffening under uniaxial tensile, strength and toughness under biaxial tensile loading. On the other hand, the various out-of-plane orientation of the reinforcement leads to functionally graded effective indentation stiffness. The external layer of nacre shell is composed of calcite prisms with graded orientation from surface to interior. This orientation gradient leads to functionally graded Young’s modulus, which is confirmed to have higher fracture resistance than homogenous materials under mode I fracture loading act.</p> <p>Similar as graded prism orientation in calcite layer of nacre, the helicoid architecture found in nature exhibits gradients on geometrical parameters as well. The pitch distance of helicoid architecture is found to be functionally graded through the thickness of biological materials, including the dactyl club of mantis shrimp and the fish scale of coelacanth. This can be partially explained by the long-term evolution and selection of living organisms to create high performance biological materials from limited physical, chemical and geometrical elements. This naturally “design” procedure can provide us a spectrum of design motifs on architectural materials. </p> <p>In the present work, linear gradient on pitch distance of helicoid architectures, denoted by functionally graded helicoid (FGH), is chose to be the initial pathway to understand the functionality of graded pitch distance, associated with changing pitch angle. Three-point bending on short beam and low-velocity impact tests are employed in FEA to analyze the mechanical properties of composite materials simultaneously. Both static(three-point bending) and dynamic(low-velocity impact) tests reveal that FGH with pitch angle increasing from surface to interior can provide multiple superior properties at the same time, such as peak load and toughness, while the helicoid architectures with constant pitch angle can only provide one competitive property at one time. Specifically, helicoid architectures with smaller pitch angle, such as 15-degree, show higher values on toughness, but less competitive peak load under static three-point bending loading condition, while helicoid architectures with middle pitch angle, larger than or equal to 22.5-degree and smaller than 45-degree, exhibit less value of toughness, but higher peak load. The explanation on this trend and the benefits of FGH is addressed by analyzing the transverse shear stresses distribution through the thickness in FEA, combined with analytical prediction. In low-velocity impact tests, the projected delamination area of helicoid architectures is observed to increase when the pitch angle is decreasing. Besides, laminates with specific pitch angles, such as 45-degree, classical quasi-isotropic laminate, 60-degree, specific angle ply, and 90-degree, cross-ply, are designed to compare with helicoid architectures and FGH.</p>
238

Centra of Quiver Algebras

Gawell, Elin January 2014 (has links)
A partly (anti-)commutative quiver algebra is a quiver algebra bound by an (anti-)commutativity ideal, that is, a quadratic ideal generated by monomials and (anti-)commutativity relations. We give a combinatorial description of the ideals and the associated generator graphs, from which one can quickly determine if the ideal is admissible or not. We describe the center of a partly (anti-)commutative quiveralgebra and state necessary and sufficient conditions for the center to be finitely genteratedas a K-algebra.Examples are provided of partly (anti-)commutative quiver algebras that are Koszul algebras. Necessary and sufficient conditions for finite generation of the Hochschild cohomology ring modulo nilpotent elements for a partly (anti-)commutative Koszul quiver algebra are given.
239

Graded Rings and Hilbert Functions

Uliczka, Jan 06 July 2010 (has links)
Die Arbeit basiert auf zwei Veröffentlichungen zur graduierten kommutativen Algebra: Thema des ersten Artikels ist die Übertragung eines klassischen Ergebnisses zur Höhe von Primidealen in Polynomringen auf allgemeine multigraduierte Ringe; einige Anwendungen für die multigraduierte Dimensionstheorie werden vorgestellt. Der zweite Artikel behandelt Hilbertreihen von Moduln über einem standard-graduierten Polynomring über einem Körper. Ausgehend von einem grundlegenden Ergebnis über gewisse formale Laurentreihen werden unter anderem die möglichen Hilbertreihen und h-Vektoren solcher Moduln charakterisiert.
240

Extension pondérée des logiques modales dans le cadre des croyances graduelles / Modal logic weighted extensions for a graded belief framework

Legastelois, Bénédicte 30 November 2017 (has links)
Dans le domaine de la modélisation du raisonnement, plusieurs approches se basent sur les logiques modales qui permettent de formaliser le raisonnement sur des éléments non factuels, comme la croyance, le savoir ou encore la nécessité. Une extension pondérées de ces logiques modales permet de moduler les éléments non factuels qu'elle décrit. En particulier, nous nous intéressons à l'extension pondérée des logiques modales qui permet de formaliser des croyances graduelles : nous traitons des aspects sémantiques et axiomatiques ainsi que des aspects syntaxiques liés à la manipulations de telles croyances modulées. Ainsi, les travaux de cette thèse sont organisés en trois parties. Nous proposons, d'une part, une sémantique proportionnelle qui étend la sémantique de Kripke classiquement utilisée pour les logiques modales ; ainsi qu'une étude des axiomes modaux dans le contexte de cette sémantique des modalités pondérées. D'autre part, nous proposons un modèle ensembliste flou pour représenter et manipuler des degrés de croyances. Enfin, nous mettons en œuvre ces modèles théoriques dans deux applications : un outil de vérification de formules modales pondérées et un joueur artificiel pour le jeu coopératif Hanabi dont la prise de décision repose sur un raisonnement sur ses propres croyances. / In the field of reasoning models, many approaches are based on modal logics, which allow to formalise the non-factual reasoning, as belief, knowledge or necessity reasoning. A weighted extension for these modal logics aims at modulating the considered non-factual elements. In particular, we examine the weighted extension of modal logics for graded beliefs: we study their semantical and axiomatical issues related to manipulating such modulated beliefs. Therefore, this thesis works are organised in three parts. We first propose a proportional semantics which extends the Kripke semantics, classically used for modal logics. We also study modal axioms regarding the proposed semantics. Then, we propose a fuzzy set model for representing and manipulating belief degrees. We finally use these two formal models in two different applications: a model checking tool for weighted modal formulae and an artifical player for a cooperative game called Hanabi in which decision making is based on graded belief reasoning.

Page generated in 0.0542 seconds