• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 20
  • 15
  • 7
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 47
  • 44
  • 39
  • 27
  • 27
  • 26
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

In Situ Transmission Electron Microscopy Characterization of Nanomaterials

Lee, Joon Hwan 1977- 14 March 2013 (has links)
With the recent development of in situ transmission electron microscopy (TEM) characterization techniques, the real time study of property-structure correlations in nanomaterials becomes possible. This dissertation reports the direct observations of deformation behavior of Al2O3-ZrO2-MgAl2O4 (AZM) bulk ceramic nanocomposites, strengthening mechanism of twins in YBa2Cu3O7-x (YBCO) thin film, work hardening event in nanocrystalline nickel and deformation of 2wt% Al doped ZnO (AZO) thin film with nanorod structures using the in situ TEM nanoindentation tool. The combined in situ movies with quantitative loading-unloading curves reveal the deformation mechanism of the above nanomaterial systems. At room temperature, in situ dynamic deformation studies show that the AZM nanocomposites undergo the deformation mainly through the grain-boundary sliding and rotation of small grains, i.e., ZrO2 grains, and some of the large grains, i.e., MgAl2O4 grains. We observed both plastic and elastic deformations in different sample regions in these multi-phase ceramic nanocomposites at room temperature. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of YBCO films from the directions perpendicular and parallel to the twin interfaces. Hardness measured perpendicular to twin interfaces is ~50% and 40% higher than that measured parallel to twin interfaces, by ex situ and in situ, respectively. By using an in situ nanoindentation tool inside TEM, dynamic work hardening event in nanocrystalline nickel was directly observed. During stain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded during in situ experiments show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. In situ TEM nanoindentation has been conducted to explore the size dependent deformation behavior of two different types (type I: ~ 0.51 of width/length ratio and type II: ~ 088 ratio) of AZO nanorods. During the indentation on type I nanord structure, annihilation of defects has been observed which is caused by limitation of the defect activities by relatively small size of the width. On the other hand, type II nanorod shows dislocation activities which enhanced the grain rotation under the external force applied on more isotropic direction through type II nanorod.
142

Effect of Equal Channel Angular Extrusion on the Microstructure Evolution and Mechanical Properties of Al-5wt%Zn Alloy

Liao, Hung-Ya 19 July 2012 (has links)
In this work, ultrafine-grained (UFG) Al-5wt%Zn alloy was produced by equal channel angular extrusion (ECAE). The microstructure evolution during ECAE and the mechanical properties of the UFG Al-Zn alloy were investigated. In order to identify the effect of Zn in the Al-Zn alloy, pure aluminum (4N, 99.99%) was also studied for comparison. The grains of the Al-Zn alloy could be refined effectively by increasing the ECAE passes. However, as the ECAE passes increased, the microhardness increased initially but maintained constant after 4 ECAE passes. The dislocation density within grain interior was decreased gradually with increasing ECAE passes. After being processed to twelve ECAE passes, the UFG Al-Zn alloy exhibited 53.7% of the grain boundaries being high angle grain boundaries (HAGBs). The UFG Al-5wt%Zn alloy exhibits superior tensile strength and elongation as compared with pure aluminum fabricated by the same ECAE process. Experimental results indicated that adding Zn in aluminum alloy could provide solid-solution strengthening and considerable enhancement in tensile ductility which might be related to an improved post-uniform elongation (PUE). The strain rate sensitivity (SRS) of the UFG Al-Zn alloy also increased with increasing the ECAE passes, which might be related to the fine grain size and the contribution of grain boundary sliding. The activation volume of the UFG Al-Zn alloy was in the range of 32b3~76b3, and the pure aluminum was in the range of 57b3~122b3. Because of the small value of the activation volume, it is suggested that the controlling mechanism for dislocation glide in the UFG Al-Zn alloy might be related to the generation and absorption of dislocations in grain boundary, as well as the interaction between dislocations and solute Zn atoms in the grain boundary.
143

Grain boundary networks in RABiTS based YBa2Cu3O7[-delta] coated conductors / Korngrenzennetzwerke in YBa2Cu3O7[-delta]-Bandleitern auf RABiT Substraten

Fernández Gómez-Recuero, Laura 19 March 2004 (has links) (PDF)
This thesis deals with the transport properties and critical current limitations found in YBa2Cu3O7[-delta] coated conductors prepared by the "rolling assisted biaxially textured substrate" (RABiTS) approach. For this purpose a buffer layer system composed of CeO2 and yttria-stabilised zirconia, and subsequently a YBa2Cu3O7[-delta] film were epitaxially grown by pulsed laser deposition on a biaxially textured metallic substrate. The resulting texture of the YBa2Cu3O7[-delta] film is crucial for the achievement of high critical current densities. A propagation of the granular structure of the metallic substrate into the YBa2Cu3O7[-delta] film was detected, which leads to the formation of a YBa2Cu3O7[-delta] grain boundary network and limits the critical current density of the samples. In order to study this limitation, critical current measurements were performed on the prepared samples at different temperatures and magnetic fields, detecting a transition between intergrain and intragrain current limitation that occurs at the so-called crossover magnetic field. The crossover magnetic field was found to shift to lower values as the temperature was increased. It was concluded that the grain boundary network limits the critical current density of the YBa2Cu3O7[-delta] coated conductor only for magnetic fields below the crossover field. / In der vorliegenden Dissertation werden Transporteigenschaften und die Limitierung der kritischen Stromdichte von YBa2Cu3O7[-delta] Bandleitern untersucht. Für die Präparation wird das epitaktische Schichtwachstum auf biaxial texturierten Substraten genutzt (RABiTS-Technik). Dabei wird mittels gepulster Laserdeposition eine Pufferschicht aus CeO2 und Yttrium-stabilisiertem Zirkonoxyd (YSZ) und anschließend eine YBa2Cu3O7[-delta] Schicht epitaktisch auf ein Substrat aufgebracht. Die resultierende biaxiale Textur der YBa2Cu3O7[-delta]-Schicht spielt eine Hauptrolle, um möglichst hohe Stromdichten zu erreichen. Es zeigte sich, daß die granulare Struktur des Substrates in die YBa2Cu3O7[-delta]-Schicht übertragen wird und zur Ausbildung eines Korngrenzennetzwerkes führt, welches wiederum die zu erwartende kritische Stromdichte begrenzt. Um die Wirkung des Korngrenzennetzwerkes zu untersuchen, wurden kritische Ströme der gewachsenen Schichten in Abhängigkeit der Temperatur und des angelegten Magnetfeldes gemessen. Es stellte sich heraus, daß die Limitierung des Stroms bei schwachen Magnetfeldern zwischen den einzelnen Körnern bestimmend ist, die dann bei größeren Feldern einer Strombegrenzung innerhalb der Körner weicht. Das beide Bereiche trennende Magnetfeld wird als Übergangsfeld bezeichnet. Daraus kann geschlußfolgert werden, daß das Korngrenzennetzwerk von YBa2Cu3O7[-delta] Bandleitern den Strom nur für magnetische Felder unterhalb des Übergangsfeldes begrenzt.
144

First-Principles Multiscale Investigation of Structural and Chemical Defects in Metals

Schusteritsch, Georg January 2012 (has links)
This thesis explores multiscale approaches to describe structural and chemical defects in metals. Particular emphasis is placed on investigating processes involving grain boundaries (GBs) in combination with impurity and vacancy defects. The defects and their interactions are calculated to very high accuracy using density functional theory (DFT) and connected to the macroscopic behavior within the two multiscale formalisms presented here. We begin with a sequential approach to address chemical embrittlement of nickel by sulfur impurities. Effects at both a \(\Sigma 5 (012)\) symmetric tilt GB and in the bulk are studied by considering competing mechanisms for ductile and brittle behavior. For the bulk, this takes the form of Rice’s theory, where the ratio of the surface and unstable stacking energy is used as a measure of ductility. This is generalized to the GB by considering GB sliding (GBS) and intergranular decohesion. Clear evidence that chemical embrittlement of nickel by sulfur is a GB driven effect is found. Next, a concurrent multiscale approach is described. A small region, containing the defects, is treated with Kohn-Sham DFT and coupled to the bulk, described with the embedded atom method. We apply this novel method to elucidate the chemical embrittlement of a copper \(\Sigma 5 (012)\) symmetric tilt GB. Intergranular decohesion for three substitutional impurities, bismuth, lead and silver, is investigated by considering the work of separation \((W_s)\) and the tensile strength \((\sigma_t)\). Bismuth and lead show a significant decrease in \(W_s\) and \(\sigma_t\), consistent with embrittlement, whilst silver has only a minor effect. Then, the concurrent multiscale method is applied to the process of GBS in copper. It is found that the resistance against sliding increases significantly for bismuth, lead and silver impurities. The underlying mechanisms for this increase are found to be dominated by size effects for bismuth and lead. For silver, chemical effects are of greater importance. Similar results are found for the underlying mechanisms of intergranular decohesion. The effect of a mono-vacancy on GBS is studied for copper. The multiscale approach enables improved decoupling of the mono-vacancy. It is found that the monovacancy enhances GBS by 22%. / Engineering and Applied Sciences
145

Electrical Transport and Scattering Mechanisms in Thin Silver Films for Thermally Insulating Glazing

Philipp, Martin 20 July 2011 (has links) (PDF)
Thin silver films are widely used in low-emissivity coatings for building glazing due to their high reflectance in the infrared and high transmittance in the visible spectrum. The determining parameter for the infrared reflectance is the electrical conductance of the layer stack - the better the conductance the higher the reflectance. Electrically conductive films of thicknesses smaller than the electron mean free path exhibit a strong increase in the residual resistivity proportional to the inverse of the film thickness. Despite intensive discussions, which have extended over tens of years, it is not understood yet if this conductive behavior originates from electron scattering at interfaces (Fuchs-Sondheimer model) or grain boundaries (Mayadas-Shatzkes model). To achieve a fundamental understanding of the prevailing electron scattering mechanisms, aluminum-doped zinc oxide (ZnO:Al) / Ag / ZnO:Al layer stacks produced by magnetron sputtering were investigated concerning their electronic structure and electrical transport properties. The electronic structure of the layer stacks was probed and analyzed by electron energy-loss spectroscopy. By this technique, plasmonic excitations are observed, which can be categorized into excitations of the electrons in the bulk silver and excitations at the ZnO:Al / Ag interface. The plasmons were analyzed with respect to their dispersion and the peak width, and brought into relation with electrical conductivity measurements by calculating the plasmon lifetime and the electron scattering rate. The difficulty in determining the relative contributions of the interface and grain boundary scattering in experimental conditions is due to the fact that the way in which these scattering mechanisms depend on the film thickness, is very similar. Understanding the electron transport in thin films is of paramount importance, because the differentiation between the scattering mechanisms is a key issue for the improvement of the coatings. In the present work, the solution came from the expected difference in the temperature-dependent behavior of the resistivity between electron scattering at interfaces and electron scattering at grain boundaries. Hence, the resistivity was measured as a function of the temperature on layer stacks with different silver film thickness varying in the range of 4 to 200 nm. The data were analyzed using the extended Mayadas-Shatzkes model involving both electron scattering at interfaces (Fuchs-Sondheimer model), and electron scattering at grain boundaries. The results demonstrate that electron scattering at grain boundaries dominates for all film thicknesses. The basic layer stack was compared to more sophisticated systems, obtained either by adding a thin titanium layer in between silver and ZnO:Al, or by exposing the growing silver film to an oxygen partial pressure (oxidizing the film). Furthermore, the effect of annealing at 250°C was studied for all these systems. / Dünne Silberfilme werden aufgrund ihres hohen Reflexionsvermögens im infraroten Spektrum und ihres hohen Transmissionsvermögens im Spektrum des Sonnenlichtes als Wärmeschutzbeschichtungen für Fensterglas verwendet. Der entscheidende Parameter für das Reflexionsvermögen der Schicht ist die elektrische Leitfähigkeit - je höher die Leitfähigkeit, desto stärker wird Infrarotlicht reflektiert. Elektrisch leitende Schichten mit Schichtdicken dünner als die mittlere freie Weglänge der Elektronen weisen einen starken Anstieg des spezifischen Widerstandes auf, der sich proportional zur inversen Schichtdicke verhält. Trotz ausführlicher Diskussionen während der letzten Jahrzehnte, ist noch nicht geklärt ob dieses Verhalten auf Streuung von Elektronen an Grenzflächen (Fuchs-Sondheimer-Modell) oder an Korngrenzen (Mayadas-Shatzkes-Modell) zurückzuführen ist. Um ein grundlegendes Verständnis der vorherrschenden Streumechanismen zu erlangen, wurden Schichtstapel der Struktur Aluminium-dotiertes Zinkoxid (ZnO:Al) / Ag / ZnO:Al, welche mittels Magnetron-Sputtern hergestellt wurden, hinsichtlich ihrer Transporteigenschaften und elektronischen Struktur untersucht. Die elektronische Struktur der Schichtsysteme ist mittels Elektronen-Energieverlust-Spektroskopie untersucht und bezüglich ihrer plasmonischen Anregungen analysiert wurden. Diese können in Anregungen der Volumenelektronen des Silbers und Anregungen der Elektronen aus der ZnO:Al / Ag Grenzfläche unterteilt werden. Die Plasmonen wurden hinsichtlich ihrer Impulsabhängigkeit und Anregungsbreite analysiert und durch Berechnung der Plasmonenstreurate mit den Messungen der elektrischen Leitfähigkeit verglichen. Aufgund der Tatsache, dass Genzflächen- und Korngrenzstreuung eine ähnliche Schichtdickenabhängigkeit aufweisen, gestaltet sich die Bestimmung der relativen Beiträge beider Streumechanismen als schwierig. Diese Problem kann durch die Untersuchung der Temperaturabhängigkeit der Streumechanismen, die sich für Grenzflächen- und Korngrenzstreuung unterscheidet, gelöst werden. Der spezifische Widerstand wurde in Abhängigkeit von der Temperatur an mehreren Proben unterschiedlicher Silberschichtdicke (im Bereich von 4 bis 200 nm) gemessen. Die Daten wurden anhand des erweiterten Mayadas-Shatzkes-Modells, welches sowohl Streuung an Grenzflächen (Fuchs-Sondheimer-Modell) als auch an Korngrenzen berücksichtigt, evaluiert. Die Ergebnisse zeigen eindeutig, dass für alle Schichtdicken die Elektronenstreuung an Korngenzen der dominierende Streumechanismus ist. Die Ergebnisse der Analyse des fundmentalen Schichtsystems wurden mit denen komplexerer Systeme verglichen, bei denen zum einen durch Hinzufügen einer dünnen Titanschicht die Grenzfläche zwischen Silber und ZnO:Al modifiziert wurde und zum anderen der Silberfilm durch einen erhöhten Sauerstoff-Partialdruck während der Beschichtung oxidiert wurde. Des Weiteren wurde der Effekt einer Temperung bei 250°C an allen Systemen untersucht. / Les vitrages bas-émissifs sont fréquemment élaborés par dépôts de revêtements dont la couche active est un film mince d'argent. Le paramètre qui détermine la réflexion dans l'infra-rouge est la conductance électrique de l'empilement. La résistivité électrique résiduelle de films dont l'épaisseur est inférieure au libre parcours moyen des électrons croît fortement en fonction de l'inverse de l'épaisseur. En dépit d'intenses recherches menées pendant des dizaines d'années, l'origine de cet accroissement de résistivité - réflexion des électrons par les interfaces (modèle de Fuchs-Sondheimer) ou par les joints de grains (modèle de Mayadas-Shatzkes). Pour comprendre les mécanismes à l'œuvre dans le transport des électrons, des couches ZnO dopé aluminium (ZnO:Al) / Ag / (ZnO:Al) produites par pulvérisation plasma ont été étudiée concernant leur structure électronique et propriétés de transport électrique. Les empilements ont été examinés par spectroscopie de pertes d'énergie d'électrons. Les spectres font apparaître les excitations des électrons de volume de l'argent et les excitations à l'interface ZnO:Al / Ag. Les excitations ont été analysés concernant leur dispersion. En outre, la durée de vie moyenne des plasmons déterminée d'après la largeur du pic de plasmon d'interface se compare bien à la l'inverse de la fréquence de diffusion des électrons qui se déduit de l'application du modèle de Drude aux données relatives à la résistivité. La difficulté dans la détermination des contributions relatives des modèles de Fuchs-Sondheimer et Mayadas-Shatzkes dans les conditions expérimentales est due au fait que ces deux modèles présentent des variations très similaires en fonction de l'épaisseur des films. D'importance primordiale pour la compréhension du transport dans les films minces, la question est une clé pour l'amélioration des revêtements bas-émissifs. La solution a été apportée ici par la différence de comportement en fonction de la température des diffusions des électrons aux interfaces et aux joints de grains. D'après cela, la résistance d'empilements comportant des films d'argent d'épaisseurs comprises entre 4 et 200 nm a été mesurée en fonction de la température. Les données ont été analysées au moyen de la version du modèle de Mayadas-Shatzkes qui inclut à la fois la diffusion des électrons aux interfaces (modèle de Fuchs-Sondheimer) et la diffusion des électrons aux joints de grains. Il a té démontré que, pour toutes les épaisseurs, la diffusion des électrons aux joints de grains constitue l'effet dominant. Les résultats de l'analyse du système fondamental ont été comparées avec les résultats de systèmes plus sophistiqués, obtenus soit en intercalant une couche additionnelle de titane entre l'argent et le ZnO (méthode communément utilisée pour améliorer le mouillage du ZnO par l'argent), soit par exposition à une pression partielle du film d'argent encours de croissance (pour oxyder le film). En outre, l'effet du recuit à 250°C a été étudié pour tous ces systèmes.
146

Analyse multiéchelle des mécanismes de déformation du sel gemme par mesures de champs surfaciques et volumiques / Micromechanics of halite investigated by 2D and 3D multiscale full field measurements

Gaye, Ababacar 20 March 2015 (has links)
Dans ce travail est proposée une méthodologie générale de micromécanique expérimentale multi-échelle des polycristaux. Elle a été appliquée dans le cas d'un polycristal de sel gemme, qui en plus d'avoir des applications industrielles de stockage d'énergie et de déchets, constitue un matériau modèle de micromécanique présentant une déformation plastique aussi bien à l'ambiante qu'à haute température. La déformation ductile à l'échelle de la microstructure opère par la plasticité cristalline intra-granulaire traditionnelle, mais aussi des mécanismes de déformation inter-granulaires, tels que le glissement aux joints de grains. Nous avons dans un premier temps quantifié précisément la part de chacun de ces mécanismes locaux dans la déformation macroscopique du sel en se basant sur la technique de corrélation d'images numériques (CIN), obtenues au cours d'un essai de compression uni-axiale in-situ dans la chambre d'un microscope électronique à balayage (MEB). Afin d'augmenter la précision de cette quantification, des motifs spéciaux gravés aux interfaces des grains par micro-lithograhie ont été proposés. Ensuite, les observations surfaciques (par MEB) ont été étendues au cœur du matériau grâce à la micro-tomographie à rayons X et à la technique de corrélation d'images volumiques (CIV). Pour ce faire, des particules micrométriques de cuivre (3 % en volume) ont été dispersées dans le matériau lors de son élaboration, afin d'avoir un marquage local volumique adapté pour la CIV. Différentes microstructures (en termes de taille moyenne de grain) ont été considérées. De nouvelles procédures de CIV ont permis d'accéder à la répartition tridimensionnelle de la déformation ductile à l'échelle de la microstructure polycristalline avec une précision inferieure à la taille moyenne de grain. Les mécanismes de déformation observés à cœur d'échantillon sous chargement uni-axial sont cohérents avec ceux identifiés par les observations surfaciques. L'importance des mécanismes inter-granulaires dans la déformation ductile et dans l'endommagement diffus du sel a été confirmée. Une caractérisation tridimensionnelle de la microstructure par DCT (Diffraction Contrast Tomography) a été effectuée et comparée à des mesures surfaciques d'orientation cristalline par EBSD (Electron BackScattered Diffraction). Enfin, la comparaison des champs de déformation surfacique et volumique obtenus sur les mêmes échantillons a permis de retrouver les mêmes organisations et développements des localisations de déformation ductile en surface et en volume, et de les relier aux conditions de chargement et à la microstructure / We develop in this study new experimental methodologies for the multi-scale experimental investigation of the micromechanics of polycrystalline materials. These methodologies are applied to synthetic halite (NaCl), which is a convenient model polycristal due to its viscoplastic behavior at both ambient and high temperatures (350°C). In addition, halite is used for industrial applications such as underground energy and waste storage. The ductile deformation at the scale of the microstructure operates not only through conventional intra-granular plasticity, but also through inter-granular deformation mechanisms, such as grain-boundary sliding (GBS). First, we precisely quantify the relative contribution of each of these local mechanisms to the macroscopic deformation of halite. For this purpose, we apply digital image correlation (DIC) technique to high resolution images obtained during uniaxial compression tests in the chamber of a scanning electron microscope (SEM). The DIC algorithms have been modified to account for the discontinuous kinematics at grain boundries. We also propose a method to improve accuracy of GBS quantification, which consists in creating specific artificial patterns across grain-boundaries by electron beam lithography. The results show that GBS is present from the beginning of plastic deformation of the polycrystal. The 2D observations (using SEM) are complemented by 3D volume investigations using X-ray computed microtomography and Digital Volume Correlation (DVC) techniques. In order to obtain local volume markers differing in contrast (density) from NaCl and adapted to DVC, micrometric copper particles (3 % in volume) are dispersed into the material during its elaboration. Various microstructures (in terms of average grain size) are considered. New DVC protocols allow us to obtain the three-dimensional distribution of ductile deformation at the scale of the polycrystalline microstructure, with a spatial resolution finer than the average grain size. 3D and 2D local mechanical fields are compared on the same samples submitted to uniaxial compression. The strain patterns and the deformation mechanisms observed in depth of the sample are consistent with those identified by 2D observations. The results show the same organization and development of strain localization bands in relation with the loading conditions and microstructure, both at the surface and in volume. The importance of inter-granular mechanisms for the plastic deformation and diffuse damage of halite is also confirmed in 3D. Finally, in view of a further numerical model of the plasticity of the polycrystal, the three-dimensional polycrystalline microstructure is characterized by diffraction contrast tomography and compared to 2D measurements obtained by electron BackScattered diffraction
147

Micromechanical testing of oxidized grain boundaries

Dohr, Judith January 2016 (has links)
Primary water stress corrosion cracking (SCC) of metals in pressurized water reactors (PWRs) is known to be one of the most challenging and cost intensive modes of failure in the nuclear industry. Even though it is known that cracking in Ni-base alloys proceeds mainly intergranular (IG), the initiation and propagation of cracks in ductile metals are not yet understood and a much-desired accurate prediction of SCC related failure seems unobtainable. In this thesis, a combination of microcantilever fracture experiments, scanning electron- (SEM) and transmission electron microscopy (TEM) techniques was employed to study and compare the failure of oxidized grain boundaries of Ni-base Alloy 600 with high and low intergranular carbide coverage and different sample history. A new technique for lifting-out whole cantilevers after testing and for performing 3D focussed ion beam sequencing (3D FIB-SEM) while preserving a thin central region of the cantilever for further TEM sample preparation was developed and is presented. In lieu with recent efforts of the main project sponsor Électricité de France (EDF) to build a predictive model for IGSCC based on localized/microscopic information, one of the main objectives was the extraction of the stress at failure of individual oxidized GBs. Supported by finite element simulations, microcantilever fracture tests revealed that surface oxides on top of individual GBs have the capability to alter the mechanical response by delaying/suppressing the onset of failure. An overestimation of the failure stress (&GT; 230 MPa) was observed, proving that the presence of the surface oxide on top of the test structures cannot be neglected. The failure stress on both samples, tested without influence of the surface oxide, was found to cover a range of 300 - 600 MPa, which agreed well with finite element simulations of the tests and further demonstrates the reliability of the obtained data. The second objective was to gain a better understanding of the observed fracture behaviour and the role of local microstructure. Using the gathered microscopy data, it was found that the crack clearly favours a progression along the IG oxide-metal interface in the presence of carbide precipitates. Electron energy loss spectroscopy (EELS) revealed that the observed crack path can be linked to compositional and density variations of the IG oxide. In the presence of carbides the oxide was layered. An oxide close to the stoichiometry of chromia was located at the original GB and next to the carbides. Next to this Cr-rich oxide, Fe-rich mixed spinel oxides of varying composition and density were found. An explanation for density variations based on the possible formation of defective spinel oxides of the type A<sup>2+</sup>B<sup>3+</sup><sub>2</sub>O<sub>4</sub>, due to an unavailability of certain cation species is presented. No clear interface preference was observed in the absence of precipitation, where the IG oxide was found to be thin and often incomplete with Cr-richer oxides preferentially located at the original GB. While these observations were consistent on both samples (high and low carbide coverage), bigger void-like defects were located at the Fe-richer oxide-metal interface of the cold worked sample with high IG carbide precipitation only. These weak spots seemed to be the preferred path for crack propagation on this sample. The sample with low intergranular carbide coverage showed no obvious porosities at this interface but a Cr- depleted region was seen. Introducing a multi-faceted investigation strategy, supported by finite element simulations, the presented thesis provides the most accurate determination of the failure stress of oxidized GBs on Alloy 600 to date and and adds new valuable insights to our understanding of IGSCC and the future prediction of SCC related failures.
148

Etude expérimentale de la fissuration en fluage de l'acier 316H vieilli sous environnement CO2 / Environmentally assisted creep crack growth in 316H stainless steel

Podesta, Laurie 12 December 2016 (has links)
Des fissures intergranulaires ont été observées sur des composants évoluant dans un environnement CO2 à haute température (550°C). Le matériau, un acier austénitique inoxydable de nuance 316H, est soumis à des sollicitations en fluage. L'objectif de la thèse est de permettre une meilleure compréhension du mécanisme d'endommagement par fluage et des effets de l'environnement sur l'apparition et la propagation de ces fissures. Une synergie entre la simulation par éléments finis et la mesure de champs cinématiques au moyen de la Corrélation d'Images Numériques (CIN) a été créée pour aborder ce problème avec une approche locale, à l'échelle de la microstructure. Une méthode de CIN adaptée au suivi de la fissuration basée sur l'utilisation des expressions de la Mécanique Linéaire Elastique de la Rupture a été développée. Une validation expérimentale sur essai de traction in-situ sur microéprouvettes pré-fissurées de matériau 316H est proposée. / At elevated temperature (550°C) in CO2 environment, intergranular creep cracks have been observed in thermally and environmentally aged 316H austenitic stainless steel. The objective of this work is to enhance the understanding of the creep crack mechanism and the effects of environment on crack initiation and growth. Some microtests on Single Edge Notched Tensile specimen (SENT) have been performed to better describe the interaction between chemistry and mechanics at the microstructural scale. A creep crack monitoring procedure using Digital Image Correlation (DIC) have been developped and assessed using Finite Element Modelling (FEM) of cracked bi-crystal. Based on a projection on Linear Elastic Fracture Mechanics expressions, the crack parameters (crack tip position, orientation) can be determined and the growth can be measured. A validation on in-situ tensile tests on SENT 316H specimen is proposed.
149

Interfacial Processes in Densification of Cubic Zirconia

Maya Kini, K January 2016 (has links) (PDF)
Sintering, a process of forming dense solid bodies from powder compacts remains the most important route for processing of ceramics. The process of sintering involves formation and growth of necks during initial stage, coarsening, relative particle rotation, filling of connected pores in intermediate stage, filling of isolated pores during final stage sintering and rapid grain growth towards the end of densification. The processes involve a combi-nation of grain boundary diffusion, surface diffusion, grain boundary migration and grain boundary sliding. Studies of interfacial processes during sintering are still of interest since modifying interface structure offers a means to tailor low and high temperature mechanical properties of ceramics. Many of the studies in literature on single phase systems are based on geometric changes during sintering. Sintering has been modelled as 1D or 2D array of spheres. The simplest of these consist of a contacting pair of spherical particles. Early models studied changes in size and shape of the necks during initial stage sintering and associated mass transport mechanisms. There have been studies on coarsening that report shrinkage rates of smaller particles is a system of two particles with different radii. In both the cases of neck growth and coarsening, thermodynamic variables as given by dihedral angle (relative grain boundary to surface energy of the system) and kinetic parameters of grain boundary surface diffusivity have been found to influence the size and shape evolution with time. Also, there have been studies comparing self similar geometries at different absolute length scales such as a system of micro and nano sized particles, which show different sintering behaviour depending on the absolute particle size. There have been studies on multi particle arrays both linear and closed. Early studies on linear arrays observed rearrangement of particles and relative rotation due to non spherical shape and bond angle of an array of three particles. Also there was a study that predicted rearrangement due to differential shrinkage in an assembly containing a combi-nation of large and small particles. Similar observations were also made on closed arrays of four or more particles both in 2D and 3D. Formation of high energy local configurations such as six grain boundaries (GBs) meeting at a line were found, followed by the topological transitions such as formation of new GBs or elimination of existing ones, leading to specific features in sintering behaviour. Geometrical evolution during final stage sintering is critical for forming dense final products. While most studies related the shrinkage behaviour to shape of the pore (convex or concave) and the number of grains surrounding a pore, later the absolute size of the pore was observed to be an important parameter. In 2D simulations and experiments large convex pores were found to shrink due to mass transport from surrounding GBs. In 3D simulations, pores with large coordination number as high as 32, pore shrinkage was observed followed by gradual reduction in coordination number and final elimination. Also studied are evolution of pore -GB configuration in case of small pores as separation of these from GB and entrapment into grains will freeze further shrinkage. In addition to the geometry related changes are also crystallography related microstructural changes. Crystallographic arrangement at the atomic scale leads to anisotropy of interfacial energies and diffusivities, that effect microstructural evolution. The presence of positive and negative ions in ionic solids can result in additional features such as charged and neutral planes Crystallography can affect the rotation of powder particles in initial stage sintering to subtle differences in microstructure evolution during grain growth in final stage sintering. Conversely crystallography has to be related to diffusion at interfaces. The rotation of spheres is governed by energetics. The final configuration corresponds to local energy minima in misorientations between the spheres and the single crystal plate. This technique is useful in finding a number of crystallography related aspects such as low energy GBs and equilibrium shapes of metal droplets. Rotation of unconstrained crystal related to neighbouring crystal has also been observed in thin films. Surface energy anisotropy has often been studied using topography of annealed sur-faces studied using atomic force microscopy (AFM). While low energy stable surfaces show perfectly flat surfaces, planes close to a stable plane form terrace and ledge structures whereas unstable planes form hill and valley structures. A method of “inverse Wulff shape” of pores trapped in single crystals has been used to find relative stability of sur-face planes using a combination of electron back scattered diffraction (EBSD) and AFM. Crystallography is very much related to the phenomenon of abnormal grain growth that occurs during later stages of sintering. Similarly, polycrystal assemblies have shown varying GB migration velocities for different crystallographic planes. Most recently, 3D EBSD has been used to study crystallography of GBs in sintered polycrystalline materials. In the present study, we address two specific issues. The first is related to the effect of microstructure of polycrystalline powder particles on initial stage sintering, where we compare sintering between particles with same particle size but different grain sizes. The second is related to the crystallographic aspects of interfaces in sintered materials with specific reference to yttria stabilized cubic zirconia. The present study is mostly confined to pressure less (free) sintering where the only driving force is the reduction in interfacial energy of the system. The effect of polycrystalline nature on initial stage sintering is investigated and com-pared with the behaviour of single crystal particles. We extend the model by Coble on single crystals to polycrystalline particles containing space filling tetrakaidecahedral grains with an identical grain size. The grain boundaries within particles are considered to be additional sources for mass to be plated at the neck and the flux equations are suitably modified. A model was developed to characterize the variation with time in the growth rate (x/R), where x and R are radii of the neck and particle respectively. The model indicated that the neck growth rate for polycrystalline spheres was faster compared to single crystals towards end of initial stage sintering (large value of x/R). There is large scope for extending the model further for complex geometries, diffusion distances and grain size distributions. Sintering experiments were conducted with annealed 2D random arrays of spheres of zirconia with two different grain sizes and a particle size of 40 m. Two different forms of zirconia (8YCZ and 3YTZ) were used as model systems for a few and a large number of grains in a particle respectively. The experimental results were limited, but broadly consistent with the new model. However necks were found to grow to a value f x=R = 0:12 and they did not grow further. In the second part of our study, grain boundaries in yttria stabilized cubic zirconia were studied in the context of macroscopic crystallographic parameters of misorientations of grains on either side of the grain boundary and crystallographic coordinates of grain boundary planes. Our aim was to study the evolution of misorientations and grain bound-ary planes during sintering process, starting from formation of necks during the initial stage to grain boundary migration during later stages. Orientation imaging microscopy based on an EBSD technique in an SEM was carried out on fully dense samples and also on porous samples obtained by interrupting sintering before attaining full density. The fraction of CSL misorientations on nearly dense cubic zirconia with grain sizes varying from submicrocrystalline 0.61 to 10 m was close to a random distribution. The number fraction of necks with CSLs formed in porous cubic zirconia with microcrysatlline particles was slightly higher than a random distribution. However, the present study covers only nearly dense-microcrystalline, nearly dense- submicrocrystalline, porous - microcrystalline regime , but misorientation information could not be obtained experimentally in a low density - submi-crocrystalline regime that is critical for sintering process. We also studied the distribution of grain boundary planes in fully dense 8YCZ with a grain size of 2.8 m by a stereological method using 2D OIM data. The overall distribution of grain boundary planes showed very weak anisotropy with slight maxima with 1.1 multiples of random distribution (MRD) at {100} planes, which is consistent with observations in literature on larger grain sizes. Interestingly, the planes that were abundant were not low energy surface planes (also mentioned in literature), in clear contrast with other ceramics studied in literature. The distribution of grain boundary planes was also plotted for specific misorientations, including those around low index axes of [100], [110], [111] and low misorientations. The grain boundary character distribution (GBCD) shows a high frequency of occurrence in position of pure twists about [100] and symmetric tilts at certain low misorientations . The highest frequency of occurrence was observed for coherent twin 3 on {111} plane and symmetric tilt (higher order twin) 11 on {113} plane, both corresponding to low energy GBs reported in literature in bicrystal experiments. With pure twists on {100} for rotations about [100] axis and pure tilts with {11w} or {1ww} planes for rotations about [110], both the criteria for specialness based on surface planes forming GB or symmetric tilts are found to be valid for specific cases. Notable is the frequency of occurrence of coherent twin 3 on {111} and 11 on {113}, that was 4.8 MRD for microcrystalline 8YCZ and as high as 7.8 MRD for submicrocrystalline 8YCZ samples, which is much higher than frequency of occurrence of any GB plane in any oxide studied in literature.
150

Microstructural investigation of alloys used for power generation industries

Krishna, Ram January 2010 (has links)
Nickel based superalloys are currently being investigated for high temperature applications in advanced steam power plant operating at temperatures of 700˚C and above. Three nickel-based superalloys Inconel 617, Inconel 625 and Nimonic 263 alloys, which are of primary interest for boiler technology components such as furnace walls, superheater tubes, header and steam pipes, etc and for steam turbine technology components such as HP &IP cylinders, rotor forgings, casing and valve chest, blading, etc., have been evaluated for long and short term creep performance. Creep deformation processes occurring at high temperatures and stresses lead to the evolution of microstructures in the form of precipitation, precipitate coarsening and recovery effects. The deterioration in mechanical properties as a result of this microstructural change has been evaluated by hardness testing. This work discusses the microstructural evolution occurring in alloys in samples that have been creep exposed at a series of temperatures from 650°C to 775°C and for durations from 1000 to 45,000 hours using advanced FEGSEM, TEM, XRD and phase extraction techniques. The fractions and morphology of different phases, their locations during exposure to higher temperatures and probable creep fracture mechanism in these alloys are illustrated and discussed.

Page generated in 0.049 seconds