• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 15
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A bonded discrete element approach to simulate loading with hydraulic mining excavators

Andersson, Carl January 2021 (has links)
When operating hydraulic mining excavators the loading equipment is exposed to harsh conditions which lead to extensive wear of the equipment, especially the bucket and bucket teeth. Simulations are used to better understand the wear development and to evaluate new methods to operate excavators more efficiently. At the Aitik mine, operated by the high-tech metal company Boliden Mines, hydraulic excavators are used when loading the mined ore. One of the hydraulic excavators used at Aitik is the Komatsu PC7000. In this master thesis, a simulation model for the hydraulic excavator Komatsu PC7000 was developed with the simulation software LS-DYNA. This model consists of multi rigid body dynamics to describe the motion of the excavator and a granular material model to describe the rocks loaded into the bucket of the excavator. Simulations with two different types of granular material models have been utilized to study the wear development of the bucket. One of the models (bonded DE model) uses bonded discrete elements to describe the large rocks and single discrete elements are used to describe smaller rocks. This model is compared to the current FE-DE model which is being used today at Boliden. This model uses finite elements (FE) to model the larger rocks and discrete element spheres (DES) for smaller rocks. By using the bonded DE method a 71\% reduction in simulation time could be achieved. This can be partly explained by the reduction of the number of elements included in the rock pile.  Archard's wear law was used to numerically describe the wear development of the bucket. When simulating the wear a total of 30 bucket fillings were performed with the excavator. This was done with both the bonded DE method and the FE-DE method. In this wear study, the inside of the bucket was of interest. The resulting simulated wear map was compared to experimental measurements from which the plate thickness of the bucket had been measured two times to obtain the wear depth of some points inside the bucket. The experimental measurements and two 3D scanned point clouds were used to determine the wear depth inside the bucket. Results from the simulation showed that the wear is concentrated to the center of the bucket while less wear is concentrated to the sides of the bucket. With the bonded DE method the wear appeared to be more evenly distributed inside the bucket while the wear from the FE-DE method appeared in spots inside the bucket. The experimental results also showed that the wear was more extensive in the center of the bucket and also in the back of the bucket. Both simulation methods also showed that the wear was concentrated to the back of the bucket. From the simulations, it was also seen that the behavior of the material flow differed between the two methods. In the bonded DE method the material flow had more sliding behavior while the material flow in the FE-DE method had more rolling behavior. This could also be the reason why the bonded DE method captures the wear more evenly. The rolling behavior seen in the FE-DE method leads to more impact wear which is not captured by Archard's wear law. Overall, the bonded DE method leads to a big reduction in simulation time which is favorable when it comes to simulation. The larger rocks will have simpler shapes without sharp corners. However, the method allows for a more complex shape than just an ordinary sphere which is the simplest and most common shape to describe granular material. The bonded DE method also allows for easier configuration of contact definition since fewer contact interfaces must be added to the model. Furthermore, the post-processing of wear in LS-DYNA was facilitated since the wear does not have to be divided into two wear collectors for FE elements and DE elements.
22

Experimental Study on the Frictional Instability and Acoustic Emission in Sheared Granular Materials with Implications for Landslide Mobility / 地すべり運動特性に関連するせん断状態下での粒状体の摩擦不安定性とアコースティック・エミッションの実験的研究

Jiang, Yao 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19955号 / 理博第4222号 / 新制||理||1607(附属図書館) / 33051 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 釜井 俊孝, 准教授 王 功輝, 教授 林 愛明 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
23

Multi-scale modelling of geomechanical behaviour using the Voronoi cell finite element method (VCFEM) and finite-discrete element method (VCFEM-DEM)

Karchewski, Brandon 11 1900 (has links)
The present work applies the hybrid Voronoi cell finite element method (VCFEM) within geomechanics. Coupled seepage and deformation analysis using the VCFEM incorporating body forces allows accurate analysis of earth dams. The development of a novel approach for simulating granular material behaviour using the combined finite-discrete element method (VCFEM-DEM) provides new insights into strain localization in granular materials. Chapter 1 provides background including summary literature reviews for all concepts in the title including seepage analysis, micromechanical and continuum mechanics theory, Voronoi diagrams, finite elements (FEM), discrete elements (DEM) and combined FEM-DEM. Chapter 1 concludes by detailing the contributions of the present work. Chapter 2 presents the VCFEM for seepage analysis. The numerical examples include an investigation of mesh sensitivity and a comparison of conforming shape functions. Polygonal elements with more than four nodes show a decrease in mesh sensitivity in free surface problems, compared with four-node quadrilateral elements. The choice of conforming shape function within the VCFEM analysis did not affect the results. Chapter 3 formulates and applies the VCFEM-DEM, showing that strain localization effects in granular materials are important at all scales. The VCFEM-DEM captures shear banding in biaxial compression tests, demonstrating that global shear strains and inhomogeneities in the shear stress field present after consolidation are early precursors to the failure mode. At the field scale, strain localization can lead to significant non-uniformity in subsurface stress distribution owing to self-weight. Chapter 4 presents the coupled VCFEM for seepage and deformation. A practical example of the design of an earth dam demonstrates the application of general body forces within a hybrid formulation, notably lacking in the literature. Chapter 5 concludes by summarizing the key observations of the present work, and providing direction for future research. The Appendix provides additional details related to numerical integration within the VCFEM. / Thesis / Doctor of Philosophy (PhD) / The focus of the present work is the simulation of geomechanical behaviour at multiple scales. This ranges from simulating the interaction of grains of sand in a laboratory compression test to the seepage of water through and deformation of a large dam constructed of granular material. The simulations use a numerical tool called the Voronoi cell finite element method (VCFEM), which the present work extends to allow accurate analysis of the flow of fluid through a porous medium, deformation of a granular material under load and coupled analysis of these phenomena. The development and testing of this numerical tool for use in geomechanical analysis is itself a contribution. The present work also contains new insights into how localized stresses and strains in a granular material that are present well before the peak strength can have an important influence on the mode of failure.
24

Smooth and non-smooth approaches to simulation of granular matter

Hedman, Stefan January 2011 (has links)
Granular matter is defined as a collection of particle grains, such as sand.This type of matter have different characteristics (solid, liquid and gas) depending on the energy level per grain. There are several approaches to modeling and numerical simulations of granular matter. They are used by different groups for different purposes, and the choice between the approaches is based on knowledge and tradition rather than what might be best for the purpose. The key questions are when to use what method and what physical quality is lost depending on the choice.Two regimes of discrete element granular simulations emerge: smooth and non-smooth. To compare the efficiency and physical quality of the two approaches, four physics softwares are examined including Bullet Physics, LMGC90, AgX and LIGGGHTS. Test scenes are setup in each software and the results are compared to each other or to the results of other work.The thesis is performed at UMIT Research Lab at Umeå University.
25

Instabilités dans un milieu granulaire : tôle ondulée sur un lit de sable, et ségrégation au sein des astéroïdes lâches / Instabilities in a granular material : washboard road on a sand bed, and segregation into rubble-pile asteroids

Lecomte, Charles-Edouard 13 July 2018 (has links)
Cette thèse, composée de deux parties, porte sur l’étude d’instabilités au sein d’un milieugranulaire.La première partie de cette thèse est consacrée à l’instabilité de tôle ondulée, c’est-àdirel’apparition d’un motif de rides sur une piste soumise au passage répété de véhicules.Nos travaux expérimentaux ainsi que des simulations numériques de dynamique moléculairenous ont permis de progresser dans la compréhension de ce phénomène. Pour uneroue rigide tirée à vitesse constante, nous avons étudié quantitativement l’impact de lacohésion du milieu granulaire sur les caractéristiques de l’instabilité : vitesse critique, longueurd’onde et taux de croissance. Nous avons enfin entrepris des études préliminairessur un fluide à seuil simple : un microgel de carbopol.Dans la seconde partie, nous étudions la ségrégation granulaire au sein des astéroïdeslâches. Plusieurs indices montrent qu’un grand nombre d’entre eux sont des empilementsde grains, sans cohésion interne et liés par la gravité. Leur répartition n’est pas homogène,avec des zones lisses recouvertes de fines poussières et d’autres où s’accumulent les grosblocs. Nous avons simulé numériquement un empilement granulaire et nous l’avons soumisà des secousses répétées : nous avons réussi à reproduire la ségrégation. Nous avonsétudié l’influence des paramètres physiques et numériques sur le niveau de ségrégation etla dynamique du phénomène. Nous nous sommes aussi intéressés aux phénomènes physiquespouvant causer la ségrégation : convection granulaire, tamisage cinétique, pressionde déplétion, etc. Enfin, nous avons mis en évidence une instabilité azimutale qui peutexpliquer les observations faites pendant les missions spatiales. / This thesis, consisting of two parts, is focusing on instabilities into a granular assembly.The first part deals with washboard road instability, which is the growth of a ripplepattern on a track subjected to repeated passages of vehicles. Our experimental work aswell as soft spheres numerical simulations provide us a better understanding of this phenomenon.In the case of a rigid wheel dragged at constant velocity, we quantitatively studiedthe impact of the cohesion into the granular media on the main features of the instability :critical velocity, wavelength and growth rates. Finally, we have begun preliminary studieson a yield stress fluid, namely a carbopol microgel.The second part is devoted to the granular segregation in asteroids. Several keys showthat a significant part of them are rubble-piles, without internal cohesion and held togetherby their weak self-gravity. The distribution of grains is heterogeneous : while some regionsconsist in fine sand or powder, large boulders seem to accumulate in other parts. Wenumerically simulated a granular pile and subjected it to repeated quakes : we managedto reproduce segregation. We studied the influence of physical and numerical parameterson the segregation level and the dynamics of the phenomenon. We also investigate variouscauses of the segregation : granular convection, kinetic sieving, depletion pressure, etc.Finally, we highlighted an azimuthal segregation which can explain observations duringspatial missions.
26

Modélisation multiscalaire de matériaux granulaires en application aux problèmes d'ingénierie géotechnique / Multiscale modeling of granular materials in application to geotechnical engineering problems

Xiong, Hao 11 December 2017 (has links)
Les matériaux granulaires présentent une large gamme de lois de comportement lorsqu'ils sont soumis à différents chemins de chargement. Le développement de modèles constitutifs permettant de rendre compte de ces caractéristiques a été une préoccupation constante de nombreux chercheurs depuis des décennies. Parmi les différentes options possibles, les approches par changement d’échelle semblent prometteuses. Dans ces approches, le modèle constitutif est formulé en reliant les propriétés macroscopiques du matériau aux propriétés micro-structurelles correspondantes.Cette thèse propose un modèle micromécanique tridimensionnel (le modèle H-3D) prenant en compte une échelle intermédiaire (méso-échelle). Il permet ainsi de décrire de manière naturelle un grand nombre de caractéristiques constitutives des matériaux granulaires non cohésifs. La comparaison entre essais expérimentaux et simulations numériques révèle la capacité prédictive de ce modèle. En particulier, des simulations réalisées avec différentes pressions de confinement et différents rapports de vide initiaux ont permis de démontrer la capacité du modèle à rendre compte quantitativement de l'état critique sans nécessiter d’équation spécifique et de paramètre d'état critique. Le modèle est également analysé à l’échelle microscopique, où l'évolution de certains paramètres microscopiques clés est présentée.Une approche multi-échelle 3D est ensuite présentée afin d’étudier le comportement mécanique d'un échantillon macroscopique constitué d'un assemblage granulaire, en tant que problème aux conditions limites. Le cœur de cette approche est un couplage multi-échelle, où la méthode des éléments finis est utilisée pour résoudre le problème aux conditions limites et le modèle H-3D est utilisé pour calculer la loi de comportement à l’échelle d’un volume élémentaire représentatif. Cette approche fournit un moyen pratique de relier les observations macroscopiques avec les mécanismes microscopiques intrinsèques. Des conditions de chargement biaxiaux en déformations planes sont appliquées pour simuler le phénomène de localisation des déformations. Une série de tests est effectuée, où différents motifs de rupture sont observés et analysés. Un système de bande de cisaillement apparaît naturellement dans un spécimen initialement homogène. En définissant la zone de la bande de cisaillement, les mécanismes microstructuraux sont étudiés séparément à l'intérieur et à l'extérieur de celle-ci. En outre, une analyse directionnelle de travail du second ordre est effectuée en appliquant des petits incréments de contrainte à différents états de contrainte-déformation sur des chemins de chargement biaxiaux drainés. Le travail de second ordre normalisé, introduit comme un indicateur d’instabilité du système, est analysé non seulement à l’échelle macroscopique mais aussi à l’échelle microscopique.Enfin, une analyse du travail de second ordre appliquée à des problèmes géotechniques et utilisant l'approche multi-échelle développée dans cette thèse est présentée. L'approche multi-échelle est utilisée afin de simuler des problèmes aux conditions limites homogènes et non homogènes, offrant ainsi la possibilité d’interpréter et de comprendre les micro-mécanismes qui à l’origine des phénomènes de rupture dans les problèmes géotechniques. Cette approche multi-échelle utilise un schéma numérique d’intégration dynamique-explicite afin de pouvoir étudier la rupture post-pic sans avoir à recourir à des outils mathématiques trop sophistiqués. Ainsi, en changeant le type de condition de chargement de déplacement à contrainte lorsque le système atteint son état limite, son effondrement se traduit par une augmentation soudaine de l'énergie cinétique découlant de la différence entre les travaux internes et externes du second ordre. / Granular materials exhibit a wide spectrum of constitutive features when submitted under various loading paths. Developing constitutive models which succeed in accounting for these features has been challenged by scientists for decades. A promising direction for achieving this can be the multi-scale approach. Through this approach, the constitutive model is formulated by relating material’s macroscopic properties to their corresponding microstructure properties.This thesis proposes a three-dimensional micro-mechanical model (the so-called 3D-H model) taking into account an intermediate scale (meso-scale) which makes it possible to describe a variety of constitutive features in a natural way. The comparison between experimental tests and numerical simulations reveals the predictive capability of this model. Particularly, several simulations are carried out with different confining pressures and initial void ratios, based on the fact that the critical state is quantitatively described without requiring any critical state formulations and parameter. The model is also analyzed from a microscopic view, wherein the evolution of some key microscopic parameters is investigated.Then, a 3D multi-scale approach is presented to investigate the mechanical behavior of a macroscopic specimen consisting of a granular assembly, as a boundary value problem. The core of this approach is a multiscale coupling, wherein the finite element method is used to solve a boundary value problem and the 3D-H model is employed to build the micro constitutive relationship used at a representative volume element scale. This approach provides a convenient way to link the macroscopic observations with intrinsic microscopic mechanisms. Plane-strain biaxial loading conditions are selected to simulate the occurrence of strain localization. A series of tests are performed, wherein distinct failure patterns are observed and analyzed. A system of shear band naturally appears in a homogeneous setting specimen. By defining the shear band area, microstructural mechanisms are separately investigated inside and outside the shear band. Moreover, a second-order work directional analysis is performed by applying strain probes at different stress-strain states along drained biaxial loading paths. The normalized second order work introduced as an indicator of an unstable trend of the system is analyzed not only on the macroscale but also on the microscale.Finally, a second order work analysis in application to geotechnical problems by using the aforementioned multiscale approach is presented. The multiscale approach is used to simulate a homogeneous and a non-homogeneous BVP, opening a road to interpret and understand the micro mechanisms hiding behind the occurrence of failure in geotechnical issues. This multiscale approach utilizes an explicit-dynamic integral method so that the post-peak failure can be investigated without requiring over-sophisticated mathematical ingredients. Thus, by switching the loading method from a strain control to a stress control at the limit state, the collapse of the system can be reflected in an abrupt increase of kinetic energy, stemming from the difference between both internal and external second-order works.
27

Métodos analíticos, numéricos e experimentais para o cálculo de ondas de impacto em meios líquidos

Souza, André Luís de Oliveira [UNESP] 23 November 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-11-23Bitstream added on 2014-06-13T20:11:13Z : No. of bitstreams: 1 souza_alo_me_ilha.pdf: 3367880 bytes, checksum: b588a2dedc116340aa90ecceaabc577c (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho versa sobre ondas de gravidade geradas por impacto de massas sólidas em meio líquido. Vários ensaios com materiais granulares, simulando o deslizamento, foram conduzidos em um canal de ondas provido de rampa a montante, sobre a qual esferas de vidro e seixos rolados, de diâmetros distintos, após deslizarem, vinham impactar o meio líquido gerando ondas de submersão. O canal, localizado no Laboratório de Hidráulica e Hidrometria da UNESP – Ilha Solteira, apresenta as dimensões 0,30 m de largura, 0,50 m de altura e 10,00 m de comprimento. Os ensaios com lâmina d’água variando entre 0,13 m e 0,20 m foram executados no intuito de checar algumas propriedades desse complexo processo físico de geração de ondas, quais sejam: o campo de velocidades do material granular incidente (centro de massa e frente de deslizamento), utilizando recursos de cinematografia e tratamento de imagens; determinação de alturas de ondas através de sondas capacitivas micro-controladas; e, por fim, obtenção de velocidades orbitais na zona de geração, através de sondas ADV (Acoustic Doppler Velocimeter). Com o objetivo de validar modelo numérico desenvolvido por Maciel (1991) e aprimorado por Nascimento (2001), os ensaios experimentais subsidiaram o processo de validação do referido modelo, baseado nas equações de Serre, para o caso de materiais granulares, até então não contemplado por outros trabalhos citados na literatura. Foi também brevemente testado, o que requer aprofundamento em trabalho futuro, um modelo numérico lagrangeano, apresentado no Anexo III. Na seqüência, foi também realizada uma análise da transferência de energia do material granular incidente para o meio líquido, cujo principal objetivo era de avaliar o percentual de energia cinética do deslizamento que fora convertido em energias cinética e potencial da onda gerada... / This work is about gravity waves generated by solid mass impact into liquid. Several essays with granular material, simulating a landslide, were conduced in a wave channel provided with an upstream ramp where glass spheres and pebbles (with two different diameter intervals) slide the ramp generating submersion waves. The wave channel is located at UNESP – Ilha Solteira’s Hydraulics and Hydrometrics Laboratory. Its dimension is 0,30 m (width), 0,50 m (high) and 10,00 m (length). The depth of water was from 0,13 m up to 0,20 m. Some properties of the complex physic process of landslide generated waves were investigated: granular material’s velocity field (trough cinematography method and image treatment); wave height was founded with micro controlled capacitance wave gauges; and orbital velocity was acquired by Acoustic Doppler Velocimeter (ADV) gauges. The main aim was to validate a numeric model developed by Maciel (1991) further improved by Nascimento (2001) for granular material generated waves. The experimental essays were essential to the validation of the Serre’s equation based model for granular material (do not contemplated by other works in the literature). A lagrangean numeric model was briefly tested (Anexo III). The energy transfer of the granular material to waves was also analyzed with purpose to evaluate the fraction of the solid’s kinematics energy was converted in wave’s kinematics and potential energies. In the engineering context, this work brings a chapter with several analytic, semi-empiric and empiric methods of water wave’s height estimation. They are based on geometric characteristics and slide’s dynamics. Another chapter compares those methods.
28

A Poro-Elastic Model for Porous Granular Materials

Zhuang Mo (17584011) 06 December 2023 (has links)
<p dir="ltr">Low frequency noise has been a challenge to noise control strategies for a long time due to its relatively long wavelength compared with practical thicknesses of acoustical treatments. A series of studies have drawn increasing attention to the acoustical behavior of porous granular materials such as activated carbon due to their good performance at low frequency. To better characterize this type of material, a 1-dimensional poro-elastic model is introduced in this work, which accounts for both the inner particle structure and the elasticity of the granule stack, allowing a better match of resonance features between the model prediction and measurement results. This model was then extended to a 2-dimensional finite difference (2DFD) approach under an axisymmetric assumption, with the depth-dependent stiffness of the granule stack considered. The shape of the computational domain of this 2DFD approach is close to the realistic geometry of the cylindrical standing wave tube, and it provides flexibility in assigning different types of boundary conditions at the circumferential wall of the container. The model is validated by comparing the simulation output and measurements of the acoustic response of porous granular materials in a cylindrical standing wave tube with rigid backing. The comparison demonstrates that the proposed 2DFD model is able to closely match the test results even down to detailed features, thus providing a means of accurate acoustic characterization of granular materials. The application scenarios of porous granular materials are also discussed in this work. A hybrid model based on the classical Johnson-Champoux-Allard (JCA) model and the rigid model describing the multi-level porosity within the granules is proposed to predict the performance of composite materials made of non-woven fiber matrices and porous granular materials. The performance of other practical applications such as that of a sound absorber consisting of a membrane and a cavity partially filled with the porous granular material is also discussed. These applications are shown to be promising strategies of addressing the low frequency noise problems.</p>
29

Atténuation vibratoire non-linéaire de structures modales creuses par ajout de matériaux granulaires / Non-linear vibration attenuation of hollow modal structures by the addition of granular materials

Sternberger, Antoine 30 November 2018 (has links)
L'utilisation d'un matériau granulaire au sein de structures industrielles afin de diminuer les niveaux vibratoires est une solution alternative aux revêtements viscoélastiques, qui ont une dépendance forte aux conditions de température. Pour l'industrie navale et aéronautique l'enjeu est ainsi d'améliorer la fiabilité et le confort. Les niveaux d'interaction entre les grains dépendent des paramètres de contrôle (niveaud'accélération), mais aussi des caractéristiques des matériaux constitutifs des grains, du taux d'humidité dufluide environnant, de la géométrie et des dimensions des grains, ainsi que des conditions de confinement.Pour une accélération donnée, indépendante du point de la structure, la pertinence du choix d'unmatériau granulaire par rapport à une même masse indéformable est mise en évidence par l'étude de lavibration d'une cavité rigide montée sur un oscillateur partiellement remplie. La variation paramétrique destypes de confinements dans la cavité ainsi que le matériau constitutif des grains permet d'extraire lesparamètres influents dans la dissipation d'énergie. Le développement d'un modèle analytique à constanteslocalisées permet de simuler l'énergie dissipée par le système via un nombre réduit de coefficients représentantla dynamique vibratoire de la matière en grains. La confrontation de ce modèle avec différentesexpérimentations permet de valider son efficacité et son caractère prédictif dans la dissipation de l'énergievibratoire d'un système dynamique.Pour une structure modale en vibration, où le niveau d'accélération est dépendant du point de lastructure, l'optimisation du positionnement des amas de grain est montrée. / The use of granular material in industrial structures to reduce vibration levels is an alternative toviscoelastic surfacing, which is highly dependent on temperature conditions. For the naval and aeronauticalindustry, the challenge is to improve reliability and comfort. The levels of interaction between the grainsdepend on the control parameters (acceleration level), but also on the characteristics of the constituentmaterials of the grains, the moisture content of the surrounding fluid, the geometry and dimensions of thegrains, as well as their containment conditions.For a given acceleration, independent of the point of structure, the relevance of the choice of a granularmaterial with respect to the same non-deformable mass is demonstrated by the study of the vibration of a rigidcavity mounted on an oscillator partially filled. The parametric variations of the types of confinement in thecavity as well as the constituent material of the grains make it possible to extract the influent parameters inthe energy dissipation. The development of an analytical model with localized constants allows to simulate theenergy dissipated by the system via a reduced number of coefficients representing the vibratory dynamics ofthe granular matter. The comparison of this model with experiments makes it possible to validate itseffectiveness and its predictive character in the dissipation of the vibratory energy of a dynamic system.For a modal structure, where the acceleration level is dependent on the point of the structure, theoptimization of the grain cluster positioning is shown.
30

DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE PRESSURES USING GRANULAR MATERIAL PRESSURE CELLS

Watts, Travis James 01 January 2018 (has links)
The magnitudes and relative pressure distributions transmitted to the crosstie-ballast interface of railroad track significantly influences the subsequent behavior and performance of the overall track structure. If the track structure is not properly designed to distribute the heavy-axle loads of freight cars and locomotives, deficiencies and inherent failures of the crossties, ballast, or underlying support layers can occur, requiring substantial and frequent maintenance activities to achieve requisite track geometrical standards. Incorporating an understanding of the pressure distribution at the crosstie-ballast interface, appropriate designs can be applied to adequately provide a high performing and long-lasting railroad track. Although this can be considered a simple concept, the magnitudes and distributions of pressures at the crosstie-ballast interface have historically proven to be difficult to quantifiably measure and assess over the years. This document describes the development and application of a method to measure average railroad track crosstie-ballast interfacial pressures using timber crossties and pressure cells specifically designed for granular materials. A procedure was specifically developed for recessing the cells in the bottoms of timber crossties. The validity of the test method was initially verified with a series of laboratory tests. These tests used controlled loads applied to sections of trackbed constructed in specifically designed resilient frames. The prototype trackbed section was intended to simulate typical in-track loading conditions and ballast response. Cells were subsequently installed at a test site on an NS Railway well-maintained mainline just east of Knoxville, TN. Six successive crossties were fitted with pressure cells at the ballast interface below the rail seat. Pressure cells were also installed at the center of two crossties where the ballast is typically not tamped or consolidated. Trackbed pressures at the crosstie-ballast interface were periodically measured for numerous revenue freight trains during a period of twenty-one months. After raising and surfacing the track, the ballast was permitted to further consolidate under normal train traffic before again measuring pressures. Having the ballast tightly and uniformly compacted under crossties is important to ensuring representative and reproducible pressure measurements. Measured maximum pressures under the rail at the crosstie-ballast interface ranged from 20 to 30 psi (140 to 210 kPa) for locomotives and loaded freight cars with smooth wheels producing negligible wheel/rail impacts. Crosstie-ballast interface pressures were typically 3 psi (20 kPa) maximum for empty freight cars with smooth wheels. Heavily loaded articulated intermodal car pressures for shared trucks tended to reach nearly 40 psi (280 kPa), actually higher than locomotive-produced pressures. The recorded pressures under the center of the ties were normally negligible, less than 1 psi (7 kPa) for locomotives and loaded freight cars. Wheel-Rail force parameters measured by nearby wheel-impact load detectors (WILD) were compared to crosstie-ballast pressure data for the same trains traversing the test site. Increases in peak WILD forces, either due to heavier wheel loads or increased impacts, were determined to relate favorably to increases in recorded trackbed pressures with a power relationship. The ratios between the peak and nominal wheel forces and trackbed pressures also have strong relationships.

Page generated in 0.0843 seconds