• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 21
  • 11
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Merton portfolio optimization problem

Soares, Gustavo Adolfo Martins Jotta January 2017 (has links)
Submitted by Gustavo Adolfo Martins Jotta Soares (profgustavoadolfo@gmail.com) on 2018-08-20T20:28:43Z No. of bitstreams: 1 fgv_dissertacao_gustavo_VF.pdf: 1174369 bytes, checksum: 13484b7307de172258d40696645c0b75 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2018-09-24T19:13:21Z (GMT) No. of bitstreams: 1 fgv_dissertacao_gustavo_VF.pdf: 1174369 bytes, checksum: 13484b7307de172258d40696645c0b75 (MD5) / Made available in DSpace on 2018-09-27T14:22:41Z (GMT). No. of bitstreams: 1 fgv_dissertacao_gustavo_VF.pdf: 1174369 bytes, checksum: 13484b7307de172258d40696645c0b75 (MD5) Previous issue date: 2018-06-25 / Merton’s portfolio optimization problem is the choice an investor must make of how much of its wealth it should consume and how much it should allocate between stocks and a risk-free asset in order to maximize the expected utility. The focus of this work was to solve two of the cases of the Merton problem. For this, we studied some fundamental themes, such as: Dynamic Principle Programming (DPP) and the Hamilton-Jacobi-Bellmann Equation (HJB Equation). In addition, we review some concepts of Stochastic Processes and some important results of Itô Calculus. Merton’s portfolio optimization problem is well known in finance and the central ideas for solving it are adaptable to solving other finance problems.
2

Hjb Equation And Statistical Arbitrage Applied To High Frequency Trading

Park, Yonggi 01 January 2013 (has links)
In this thesis we investigate some properties of market making and statistical arbitrage applied to High Frequency Trading (HFT). Using the Hamilton-Jacobi-Bellman(HJB) model developed by Guilbaud, Fabien and Pham, Huyen in 2012, we studied how market making works to obtain optimal strategy during limit order and market order. Also we develop the best investment strategy through Moving Average, Exponential Moving Average, Relative Strength Index, Sharpe Ratio.
3

Optimal liquidation problems and HJB equations with singular terminal condition

Graewe, Paulwin 05 May 2017 (has links)
Gegenstand dieser Arbeit sind stochastische Kontrollprobleme im Kontext von optimaler Portfolioliquidierung in illiquiden Märkten. Dabei betrachten wir sowohl Markovsche sowie nicht-Markovsche Preiseinflussfunktionale und berücksichtigen den Handel sowohl im Primärmarkt als auch in Dark Pools. Besonderes Merkmal von Liquidierungsproblemen ist die durch die Liquidierungsbedingung induzierte singuläre Endbedingung an die Wertfunktion. Der Standardansatz für linear-quadratische Probleme reduziert die HJB-Gleichungen für die Wertfunktion - je nach Zustandsdynamik - auf (ein System) partielle(r) Differentialgleichungen, stochastische(r) Rückwärtsdifferentialgleichungen beziehungsweise stochastische(r) partielle(r) Rückwärtsdifferentialgleichungen (BSPDE). Wir beweisen neue Existenz-, Eindeutigkeits- und Regularitätsresultate für diese zur Lösung optimaler Liquidierungsprobleme verwendeten Differentialgleichungen mit singulärer Endbedingung, verifizieren die Charakterisierung der zugehörigen Wertfunktion anhand dieser Differentalgleichungen und geben die optimale Handelsstrategie in Feedbackform. Für Markovsche und nicht-Markovsche Preiseinflussmodelle wird eine neuartiger Ansatz basierend auf der genauen singulären Asymptotik der Wertfunktion vorgelegt. Für vollständig Markovsche Liquidierungsprobleme erlaubt uns dieser, die Existenz glatter Lösungen der singulären partiellen Differentialgleichungen zu zeigen. Für eine Klasse von Problemen mit Markovscher/nicht-Markovscher Struktur charakterisieren wir die HJB-Gleichungen durch eine singuläre BSPDE, für die wir die Existenz und Eindeutigkeit einer Lösung über einen Bestrafungsansatz herleiten. / We study stochastic optimal control problems arising in the framework of optimal portfolio liquidation under limited liquidity. Our framework is flexible enough to allow for Markovian and non-Markovian impact functions and for simultaneous trading in primary venues and dark pools. The key characteristic of portfolio liquidation models is the singular terminal condition of the value function that is induced by the liquidation constraint. For linear-quadratic models, the standard ansatz reduces the HJB equation for the value to a (system of) partial differential equation(s), backward stochastic differential equation(s) or backward stochastic partial differential equation(s) with singular terminal condition, depending on the choice of the cost coefficients. We establish novel existence, uniqueness and regularity results for (BS)PDEs with singular terminal conditions arising in models of optimal portfolio liquidation, prove that the respective value functions can indeed be described by a (BS)PDE, and give the optimal trading strategies in feedback form. For Markovian and non-Markovian impact models we establish a novel approach based on the precise asymptotics of the value function at the terminal time. For purely Markovian liquidation problems this allows us to establish the existence smooth solutions to singular PDEs. For a class mixed Markovian/non-Markovian models we characterize the HJB equation in terms of a singular BSPDE for which we establish existence and uniqueness of a solution using a stochastic penalization method.
4

An optimisation-based approach to FKPP-type equations

Driver, David Philip January 2018 (has links)
In this thesis, we study a class of reaction-diffusion equations of the form $\frac{\partial u}{\partial t} = \mathcal{L}u + \phi u - \tfrac{1}{k} u^{k+1}$ where $\mathcal{L}$ is the stochastic generator of a Markov process, $\phi$ is a function of the space variables and $k\in \mathbb{R}\backslash\{0\}$. An important example, in the case when $k > 0$, is equations of the FKPP-type. We also give an example from the theory of utility maximisation problems when such equations arise and in this case $k < 0$. We introduce a new representation, for the solution of the equation, as the optimal value of an optimal control problem. We also give a second representation which can be seen as a dual problem to the first optimisation problem. We note that this is a new type of dual problem and we compare it to the standard Lagrangian dual formulation. By choosing controls in the optimisation problems we obtain upper and lower bounds on the solution to the PDE. We use these bounds to study the speed of the wave front of the PDE in the case when $\mathcal{L}$ is the generator of a suitable Lévy process.
5

Numerical Methods for Stochastic Control Problems with Applications in Financial Mathematics

Blechschmidt, Jan 25 May 2022 (has links)
This thesis considers classical methods to solve stochastic control problems and valuation problems from financial mathematics numerically. To this end, (linear) partial differential equations (PDEs) in non-divergence form or the optimality conditions known as the (nonlinear) Hamilton-Jacobi-Bellman (HJB) equations are solved by means of finite differences, volumes and elements. We consider all of these three approaches in detail after a thorough introduction to stochastic control problems and discuss various solution terms including classical solutions, strong solutions, weak solutions and viscosity solutions. A particular role in this thesis play degenerate problems. Here, a new model for the optimal control of an energy storage facility is developed which extends the model introduced in [Chen, Forsyth (2007)]. This four-dimensional HJB equation is solved by the classical finite difference Kushner-Dupuis scheme [Kushner, Dupuis (2001)] and a semi-Lagrangian variant which are both discussed in detail. Additionally, a convergence proof of the standard scheme in the setting of parabolic HJB equations is given. Finite volume schemes are another classical method to solve partial differential equations numerically. Sharing similarities to both finite difference and finite element schemes we develop a vertex-centered dual finite volume scheme. We discuss convergence properties and apply the scheme to the solution of HJB equations, which has not been done in such a broad context, to the best of our knowledge. Astonishingly, this is one of the first times the finite volume approach is systematically discussed for the solution of HJB equations. Furthermore, we give many examples which show advantages and disadvantages of the approach. Finally, we investigate novel tailored non-conforming finite element approximations of second-order PDEs in non-divergence form, utilizing finite-element Hessian recovery strategies to approximate second derivatives in the equation. We study approximations with both continuous and discontinuous trial functions. Of particular interest are a-priori and a-posteriori error estimates as well as adaptive finite element methods. In numerical experiments our method is compared with other approaches known from the literature. We discuss implementations of all three approaches in MATLAB (finite differences and volumes) and FEniCS (finite elements) publicly available in GitHub repositories under https://github.com/janblechschmidt. Many numerical experiments show convergence properties as well as pros and cons of the respective approach. Additionally, a new postprocessing procedure for policies obtained from numerical solutions of HJB equations is developed which improves the accuracy of control laws and their incurred values.
6

Solving the Hamilton-Jacobi-Bellman Equation for Route Planning Problems Using Tensor Decomposition

Mosskull, Albin, Munhoz Arfvidsson, Kaj January 2020 (has links)
Optimizing routes for multiple autonomous vehiclesin complex traffic situations can lead to improved efficiency intraffic. Attempting to solve these optimization problems centrally,i.e. for all vehicles involved, often lead to algorithms that exhibitthe curse of dimensionality: that is, the computation time andmemory needed scale exponentially with the number of vehiclesresulting in infeasible calculations for moderate number ofvehicles. However, using a numerical framework called tensordecomposition one can calculate and store solutions for theseproblems in a more manageable way. In this project, we investi-gate different tensor decomposition methods and correspondingalgorithms for solving optimal control problems, by evaluatingtheir accuracy for a known solution. We also formulate complextraffic situations as optimal control problems and solve them.We do this by using the best tensor decomposition and carefullyadjusting different cost parameters. From these results it canbe concluded that the Sequential Alternating Least Squaresalgorithm used with canonical tensor decomposition performedthe best. By asserting a smooth cost function one can solve certainscenarios and acquire satisfactory solutions, but it requiresextensive testing to achieve such results, since numerical errorsoften can occur as a result of an ill-formed problem. / Att optimera färdvägen för flertalet au-tonoma fordon i komplexa trafiksituationer kan leda till effekti-vare trafik. Om man försöker lösa dessa optimeringsproblemcentralt, för alla fordon samtidigt, leder det ofta till algorit-mer som uppvisar The curse of dimensionality, vilket är då beräkningstiden och minnes-användandet växer exponentielltmed antalet fordon. Detta gör många problem olösbara för endasten måttlig mängd fordon. Däremot kan sådana problem hanterasgenom numeriska verktyg så som tensornedbrytning. I det här projektet undersöker vi olika metoder för tensornedbrytningoch motsvarandes algoritmer för att lösa optimala styrproblem,genom att jämföra dessa för ett problem med en känd lösning.Dessutom formulerar vi komplexa trafiksituationer som optimalastyrproblem för att sedan lösa dem. Detta gör vi genom attanvända den bästa tensornedbrytningen och genom att noggrantanpassa kostnadsparametrar. Från dessa resultat framgår det att Sequential Alternating Least Squaresalgoritmen, tillsammans medkanonisk tensornedbrytning, överträffade de andra algoritmersom testades. De komplexa trafiksituationerna kan lösas genomatt ansätta släta kostnadsfunktioner, men det kräver omfattandetestning för att uppnå sådana resultat då numeriska fel lätt kan uppstå som ett resultat av dålig problemformulering. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
7

Numerical Methods for Optimal Stochastic Control in Finance

Chen, Zhuliang January 2008 (has links)
In this thesis, we develop partial differential equation (PDE) based numerical methods to solve certain optimal stochastic control problems in finance. The value of a stochastic control problem is normally identical to the viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational inequality. The HJB equation corresponds to the case when the controls are bounded while the HJB variational inequality corresponds to the unbounded control case. As a result, the solution to the stochastic control problem can be computed by solving the corresponding HJB equation/variational inequality as long as the convergence to the viscosity solution is guaranteed. We develop a unified numerical scheme based on a semi-Lagrangian timestepping for solving both the bounded and unbounded stochastic control problems as well as the discrete cases where the controls are allowed only at discrete times. Our scheme has the following useful properties: it is unconditionally stable; it can be shown rigorously to converge to the viscosity solution; it can easily handle various stochastic models such as jump diffusion and regime-switching models; it avoids Policy type iterations at each mesh node at each timestep which is required by the standard implicit finite difference methods. In this thesis, we demonstrate the properties of our scheme by valuing natural gas storage facilities---a bounded stochastic control problem, and pricing variable annuities with guaranteed minimum withdrawal benefits (GMWBs)---an unbounded stochastic control problem. In particular, we use an impulse control formulation for the unbounded stochastic control problem and show that the impulse control formulation is more general than the singular control formulation previously used to price GMWB contracts.
8

Numerical Methods for Optimal Stochastic Control in Finance

Chen, Zhuliang January 2008 (has links)
In this thesis, we develop partial differential equation (PDE) based numerical methods to solve certain optimal stochastic control problems in finance. The value of a stochastic control problem is normally identical to the viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational inequality. The HJB equation corresponds to the case when the controls are bounded while the HJB variational inequality corresponds to the unbounded control case. As a result, the solution to the stochastic control problem can be computed by solving the corresponding HJB equation/variational inequality as long as the convergence to the viscosity solution is guaranteed. We develop a unified numerical scheme based on a semi-Lagrangian timestepping for solving both the bounded and unbounded stochastic control problems as well as the discrete cases where the controls are allowed only at discrete times. Our scheme has the following useful properties: it is unconditionally stable; it can be shown rigorously to converge to the viscosity solution; it can easily handle various stochastic models such as jump diffusion and regime-switching models; it avoids Policy type iterations at each mesh node at each timestep which is required by the standard implicit finite difference methods. In this thesis, we demonstrate the properties of our scheme by valuing natural gas storage facilities---a bounded stochastic control problem, and pricing variable annuities with guaranteed minimum withdrawal benefits (GMWBs)---an unbounded stochastic control problem. In particular, we use an impulse control formulation for the unbounded stochastic control problem and show that the impulse control formulation is more general than the singular control formulation previously used to price GMWB contracts.
9

Solvency considerations in the gamma-omega surplus model

Combot, Gwendal 08 1900 (has links)
Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous étudions en détail un modèle appelé modèle gamma-omega, qui permet de jouer sur les moments de paiement de dividendes ainsi que sur une ruine non-standard de la compagnie. Plusieurs extensions de la littérature sont faites, motivées par des considérations liées à la solvabilité. La première consiste à adapter des résultats d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité d’une stratégie de barrière pour le paiement des dividendes dans le modèle gamma-omega. La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière concerne deux différentes approches à adopter en cas de passage sous le seuil de ruine. Une liquidation forcée du surplus est mise en place dans un premier cas, en parallèle d’une liquidation à la première opportunité en cas de mauvaises prévisions de dividendes. Un processus d’injection de capital est expérimenté dans le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des dividendes espérés. Des illustrations numériques sont proposées pour chaque section, lorsque cela s’avère pertinent. / This master thesis is concerned with risk theory, and more specifically with actuarial surplus models with dividends. We focus on an important model, called the gamma-omega model, which is built to enable the study of both periodic dividend distributions and a non-standard type of ruin. We make several new extensions to this model, which are motivated by solvency considerations. The first one consists in adapting results from a 2011 paper to a new model built on the assumption of a solvency constraint. The second one, more elaborate, consists in proving the optimality of a barrier strategy to pay dividends in the gamma-omega model. The third one deals with the adaptation of a 2003 theorem on the optimality of barrier strategies in the case of solvency constraints, which was not proved right in the periodic dividend framework. We also give analogous results to the 2011 paper in case of an optimal barrier under the solvency constraint. Finally, the last one is concerned with two non-traditional ways of dealing with a ruin event. We first implement a forced liquidation of the surplus in parallel with a possibility of liquidation at first opportunity in case of bad prospects for the dividends. Secondly, we deal with injections of capital into the company reserve, and monitor their implications on the amount of expected dividends. Numerical illustrations are provided in each section, when relevant.
10

Optimal decisions in illiquid hedge funds

Ramirez Jaime, Hugo January 2016 (has links)
During the work of this research project we were interested in mathematical techniques that give us an insight to the following questions: How do we understand the trading decisions made by a manager of a hedge fund and what influences these decisions? In what way does an illiquid market affect these decisions and the performance of the fund? And how does the payment scheme affect the investor's decisions? Based on existing work on hedge fund management, we start with a fund that can be modelled with one risky investment and one riskless investment. Next, subject to the hedge fund special reward scheme we maximise the expected utility of wealth of the manager, by controlling the percentage invested in the risky investment, namely the portfolio. We use stochastic control techniques to derive a partial differential equation (PDE) and numerically obtain its corresponding viscosity solution, which provides a weak notion of solutions to these PDEs. This is then taken to a liquidity constrained scenario, to compare the behaviour of the two scenarios. Using the same approach as before we notice that due to the liquidity restriction we cannot use a simple model to combine the risky and riskless investments as a total amount, and hence the PDE is one order higher than before. We then model an investor who is investing in the hedge fund subject to the manager's optimal portfolio decisions, with similar mathematical tools as before. Comparisons between the investor's expected utility of wealth and the utility of having the money invested in the risk-free investment suggests that, in some cases, the investor is paying more to the manager than the return he is receiving for having invested in the hedge fund, compared to a risk-free investment. For that reason we propose a strategic game where the manager's action is to allocate the money between the two assets and the investor's action is to add money to the fund when he expects profit. The result is that the investor profits from the option to reinvest in the fund, although in some extreme cases the actions of the manager make the investor receive a negative value for having the option.

Page generated in 0.0184 seconds