• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 107
  • 14
  • 11
  • 9
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 335
  • 335
  • 132
  • 131
  • 122
  • 108
  • 82
  • 42
  • 38
  • 35
  • 31
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Spatial variability of hydraulic properties as affected by physical properties of selected soil types in South Africa

Maripa, Mahlodi Ramsy 20 September 2019 (has links)
MSCAGR / Department of Soil Science / Soil hydraulic and hydraulic-related physical properties are key to soil productivity and these properties are widely studied. Nevertheless, their spatial variability is least understood. Two sites were selected for this study (University of Venda Experimental farm and Roodeplaat, Agricultural Research Council farm). The objectives of this study were to determine the spatial variability of soil water content, water infiltration and hydraulic conductivity on selected soils. Field measurements were done on a 20 m × 20 m. Soil hydraulic and hydraulic-related physical properties were studied at two depths, 0 – 0.2 m top soil and 0.2 – 0.4 m sub soil. The field was irrigated to saturation and let to drain freely for two days. The soil was quickly secured in water cans to avoid further loss of water by evaporation and taken to the laboratory for analysis. Data was analysed using ordinary kriging method in ArcMap® software version 10.4 to generate spatial variability maps and semi variograms. The University of Venda Experimental farm had lesser spatial variability with coefficient of variation ranging from 9.6 to 33.4%. The spatial variability of soil was very low confirmed by contour maps depicting slightly homogeneity. Whereas, the soil hydro-physical properties displayed greater spatial variability at Roodeplaat, Agricultural Research Council Experimental farm. The empirical variograms of spherical model fits were also assuming weak spatial dependence with a curve variogram. The coefficient of variation ranged from 10.5 to 51.9%. Therefore, the greater variability at Roodeplaat, Agricultural Research Council Experimental farm indicated that coarse soil texture under conventional tillage has a greater influence on the spatial variability of the soil hydro-physical properties. / NRF
202

Vliv CaO na strukturu a propustnost jílovité zeminy / Influence of CaO on structure and permeability of clayey soil

Pastyriková, Zdeňka January 2016 (has links)
The aim of this study was to determine the effect of quicklime (1 - 8% CaO) and maturation time (1 - 540 days) on the structure of clayey soil compacted at optimum moisture content by Proctor standard energy and whether expected change in structure affects the long - term permeability. The change of pore space of compacted loess with 1-8% lime (CaO) was studied by mercury porosimetry (MIP) for a long period of maturation (from 1 to 540 days). Development of pozzolanic reactions were monitored by measuring the pH. The development of new mineral phases (calcium silicate hydrates, calcium aluminate hydrates and calcium aluminate carbonate hydrate) in the treated soil was investigated by using X-Ray diffraction. The MIP indicated that 2% of CaO were sufficient for long term pozzolanic reaction. The threshold value is below the initial consumption of lime determined from the pH measurements (Eades and Grim, 1966). The alteration of the voids of the lime treated soil is noticeable, but the pH value can not drop below 11.7. At 4% of CaO, at 8% of CaO respectively, the macroporosity kept decreasing due to increasing mesoporosity for 360 curing days, for 540 curing days respectively, due to the new mineral phases. At 2% of CaO, the decrease of the macroporosity stops after 120 days. Below 2% of lime, the...
203

Effects of Polyacrylamide on Rangeland Soils and Plants

Al-Rowaily, Saud Leily R. 01 May 1992 (has links)
The objectives of this study were to determine the effects of two forms of polyacrylamide (PAM) conditioners (Cross-linked and Non-cross-linked PAM) on evaporation, saturated hydraulic conductivity, water retention, crust and crack formation of soils, seed germination, and seedling and tubeling growth. The two PAM conditioners, 0.2% concentration by weight, were mixed with seven soils of different textures (sandy loam, silt, silty clay loam, silt loam, fine sand, medium sand, and coarse sand) to investigate the effects on evaporation, saturated hydraulic conductivity, and water retention. Soil samples of different textures were brought to field capacity and placed in a growth chamber for two weeks to measure evaporation under a controlled environment. A second experiment was carried out in the field to determine the effects of the two PAM conditioners on seedling emergence of crested wheatgrass, Agropyron desertorum, as well as on soil cracking, penetrometer resistance, and soil moisture. The two PAMs were mixed with a silt loam Xerollic Calciorthid at 0.2% concentration by weight. Seedling emergence was monitored directly for two weeks. Soil moisture was measured by TDR. Cracking was described by photographic means. Penetrometer resistance was measured by a hand-held. penetrometer. The third experiment was also carried out in the field, using the same soil texture as in experiment 2, to investigate the effects of the two PAMs on soil moisture at depths between 25 to 45 cm and on sagebrush (Artemisia tridentata) growth. Evaporation was found to be significantly lower in the fine-textured controls than under the two PAM treatments. The sandy loam and sandy soils experienced significantly higher evaporation from the controls. The two PAM conditioners significantly reduced saturated hydraulic conductivity on all soil textures. Water retention increased in the PAM-treated textures at the matric potential range used (0.0, 0.05, 0.1, 1.5 MPa) • The PAM application also did not improve grass seedling emergence or improve soil moisture, and did not have any significant affects on sagebrush growth. Larger cracks were found in the two plots treated with PAM than the controls. Lower penetrometer resistance occurred in the two PAM treatments compared to the untreated control. From this study, it can be concluded that the application of PAM conditioners, at relatively high concentrations used, could be more viable on sandy textures. Other researchers are advised to try lower application rates than used here, particularly with finer textured soils.
204

Geoenvironmental Reliability of Soil-Bentonite Mixture Cutoff Walls / ソイルベントナイト遮水壁の地盤環境的信頼性

Takai, Atsushi 24 March 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(地球環境学) / 乙第12827号 / 論地環博第7号 / 新制||地環||24(附属図書館) / 31314 / (主査)教授 勝見 武, 教授 三村 衛, 准教授 乾 徹 / 学位規則第4条第2項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
205

The Effects of Two Types of Reclamation on Abandoned Non-Coal Surface Mines in Cuyahoga Valley National Park, Ohio

Ruhm, Catherine Terese 04 December 2018 (has links)
No description available.
206

Uncertainty in Estimation of Field-scale Variability of Soil Saturated Hydraulic Conductivity

Abhishek Abhishek (7036820) 19 July 2022 (has links)
<p>Saturated hydraulic conductivity (<em>K</em><sub><em>s</em></sub>) is among the most important soil properties that influence the partitioning of rainfall into surface and subsurface waters and is needed for understanding and modeling hydrologic processes at the field-scale. Field-scale variability of <em>K</em><sub><em>s</em></sub> is often represented as a lognormal random field, and its parameters are assessed either by making local- or point-scale measurements using instruments such as permeameters and infiltrometers or by calibrating probabilistic models with field-scale infiltration experiments under natural/artificial rainfall conditions. This research quantifies the uncertainty in the <em>K</em><sub><em>s</em></sub> random field when using observations from the above techniques and provides recommendations as to what constitutes a good experiment to assess the field-scale variability of <em>K</em><sub><em>s</em></sub>. Infiltration experiments with instruments sampling larger areas (or volumes) are typically expected to be more representative of field conditions than those sampling smaller ones; hence, the uncertainty arising from the field-scale natural rainfall-runoff experiments was evaluated first. A field-averaged infiltration model and Monte Carlo simulations were employed in a Bayesian framework to obtain the possible <em>K</em><sub><em>s</em></sub> random fields that would describe experimental observations over a field for a rainfall event. Results suggested the existence of numerous parameter combinations that could satisfy the experimental observations over a single rainfall event, and high variability of these combinations among different events, thereby providing insights regarding the identifiable space of <em>K</em><sub><em>s</em></sub> distributions from individual rainfall experiments. The non-unique parameter combinations from multiple rainfall events were subsequently consolidated using an information-theoretic measure, which provided a realistic estimate of our ability to quantify the spatial variability of <em>K</em><sub><em>s</em></sub> in natural fields using rainfall-runoff experiments. </p> <p>  </p> <p>With the resolving ability from rainfall-runoff experiments constrained due to experimental limitations, the <em>K</em><sub><em>s</em></sub> estimates from in-situ point infiltration devices could provide additional information in conjunction with the rainfall-runoff experiments. With this hypothesis, the role of three in-situ point infiltration devices --- the double-ring infiltrometer, CSIRO version of tension permeameter, and Guelph constant-head permeameter --- was then evaluated in characterizing the field-scale variability of <em>K</em><sub><em>s</em></sub>. Results suggested that <em>K</em><sub><em>s</em></sub> estimates from none of the instruments could individually represent the field conditions due to the presence of measurement and structural errors besides any sampling biases; hence any naive efforts at assimilating their data (e.g., data pooling, instrument-specific transforms, etc.) and augmenting with field-scale rainfall-runoff observations as informative prior distributions would not be fruitful. In the absence of benchmarks establishing the true <em>K</em><sub><em>s</em></sub> field, it is also impossible to quantify these errors; therefore, a posterior coarsening method was used to alleviate their impact when estimating the field-scale variability of <em>K</em><sub><em>s</em></sub>. </p> <p>  </p> <p>Finally, the impact of censored moments on the maximum likelihood (ML) estimates of the <em>K</em><sub><em>s</em></sub> distribution parameters was studied. Results highlighted the rainfall event's ability to only be able to resolve a fraction of the <em>K</em><sub><em>s</em></sub> field, and that the time and duration of peak rainfall intensity play a role in resolving the <em>K</em><sub><em>s</em></sub> field, besides the peak rainfall intensity. The reliability of the ML estimates is a function of the fraction of the <em>K</em><sub><em>s</em></sub> field resolved by the rainfall event, until a limit when the estimates start to overfit the calibration data. Rainfall-runoff experiments for which the ML estimates resolve 30--80 % of the <em>K</em><sub><em>s</em></sub> distribution are likely to be good calibration events. </p>
207

Hydrostratigraphy of the Paris Moraine in the Guelph Area, Ontario, Canada

Trapp, Andrew 11 1900 (has links)
Many growing southern Ontario communities, including Guelph, rely on fractured bedrock aquifers for drinking water. Contamination and overexploitation pose a threat to these water resources, necessitating characterization of vulnerability, risks, and recharge areas. Quaternary sediments southeast of the City of Guelph, including the Paris Moraine, were investigated in order to delineate hydrostratigraphy. This was achieved through study of 9 cored-holes, as well as existing MOE, GRCA, and University of Guelph data. Falling head permeameter measurements and empirical grain-size distribution measurements and analysis were employed for determination of 𝐾𝑠𝑎𝑡 values, which were used to construct a hydrostratigraphy. Of 19 methods evaluated, The Kozeny-Carman empirical grain-size method for determining 𝐾𝑠𝑎𝑡 was found to be more representative of measured values for the study area. The area is dominated by a conductivity regime of 2.72x10-7 – 1.40x10-6 m/s with local heterogeneity present on the scale of 10’s to 100’s of meters. The Paris Moraine, particularly its backslope, is at higher risk due to its relatively high conductivity, greater occurrence of aquifer units, as well as prevalence of small-scale topographic (hummocky topography), and bedrock topographic lows. / Thesis / Master of Science (MSc)
208

Abundance, Distribution, and Geometry of Naturally Occurring Macropores in Stream Banks

McEwen, Amiana Marie 13 June 2018 (has links)
Preferential flow paths are areas of substantially higher permeability than surrounding media. Macropores and soil pipes are a type of preferential flow path where conduit-like voids in the subsurface are typically greater than three millimeters in diameter. They are known to occur in agricultural and forest soils, often as a result of biological and physical processes. Macropores also exist in stream banks and have the potential to enhance the exchange of water and solutes between the channel and riparian groundwater, yet the geographic distribution of bank macropores is unknown. Here we determined the abundance, distribution, and geometry of naturally occurring surface-connected macropores in the banks of 20 streams across five physiographic provinces in the Eastern United States. We identified a total of 1,748 macropores, which were present in all 20 streams, with 3.8 cm average width, 3.3 cm average height, 11.5 cm average depth, and 27.9 cm average height above water surface elevation. Macropore abundance, distribution and geometry were statistically different between physiographic provinces, stream orders, and soil textures, with the latter being the most important. Macropores tended to be larger and more abundant in soils with a high cohesiveness and a low hydraulic conductivity compared to soils with a low cohesiveness and high hydraulic conductivity. As a result, streams with greater longitudinal heterogeneity of soil texture also had greater heterogeneity of macropore density. However, macropore size and height above baseflow water surface elevation also increased with stream order and therefore stream size. This work represents the first attempt to characterize macropores across a variety of riverine systems and presents evidence that macropores may play an important role in hyporheic exchange within stream banks. These results may have water quality implications, where macropores may enhance hyporheic exchange yet reduce the filtering capacity of riparian buffer zones. / MS / Preferential flow paths are soil cavities or areas of highly permeable porous media surrounded by media with a significantly lower permeability. Macropores are a type of preferential flow path where conduit-like voids in the subsurface are typically greater than three millimeters in diameter. Their formation is often the result of biological processes, such as animal burrows and plant roots, erosive action in subsurface flow, or cracks in the soil, and can enable rapid movement of water. Macropores are known to exist in stream banks and have the potential to enhance the exchange of water and solutes between the stream channel and riparian groundwater, yet the geographic distribution of bank macropores is unknown. This research examines the distribution, abundance, and geometry of naturally occurring macropores in the banks of 20 streams across five physiographic provinces in the eastern United States. Macropores were present in all 20 streams despite variations in physiographic province, stream order, and soil texture. However, soil texture appeared to have the greatest influence on the distribution, abundance, and geometry of macropores. For example, soils primarily containing silt and clay had more macropores than soils consisting of sand or gravel. We suspect this is due to differences in soil cohesiveness and/or hydraulic conductivity. This work represents the first attempt to characterize macropores across a variety of riverine systems and presents evidence that macropores may play an important role in surface water and groundwater exchange within stream banks. These results may have water quality implications, for example, how macropores affect the pollutant filtering capacity of riparian buffer zones.
209

Enhancing Geotechnical Properties of High-Water Content Clay Using Finely Shredded Paper / 古紙微細粉体を用いた高含水粘土の地盤工学的諸特性の改良

Kebede, Teshome Birhanu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25251号 / 工博第5210号 / 新制||工||1994(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 安原 英明, 准教授 橋本 涼太, 准教授 澤村 康生 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
210

Hydraulic conductivity measurement of permeable friction course (PFC) experiencing two-dimensional nonlinear flow effects

Klenzendorf, Joshua Brandon 04 October 2010 (has links)
Permeable Friction Course (PFC) is a layer of porous asphalt pavement with a thickness of up to 50 millimeters overlain on a conventional impervious hot mix asphalt or Portland cement concrete roadway surface. PFC is used for its driver safety and improved stormwater quality benefits associated with its ability to drain rainfall runoff from the roadway surface. PFC has recently been approved as a stormwater best management practice in the State of Texas. The drainage properties of PFC are typically considered to be governed primarily by two hydraulic properties: porosity and hydraulic conductivity. Both of these hydraulic properties are expected to change over the life of the PFC layer due to clogging of the pore space by trapped sediment. Therefore, proper measurement of the hydraulic properties can be problematic. Laboratory and field tests are necessary for accurately determining the hydraulic conductivity of the PFC layer in order to ensure whether the driver safety and water quality benefits will persist in the future. During testing, PFC experiences a nonlinear flow relationship which can be modeled using the Forchheimer equation. Due to the two-dimensional flow patterns created during testing, the hydraulic conductivity cannot be directly measured. Therefore, numerical modeling of the two-dimensional nonlinear flow relationship is required to convert the measureable flow characteristics into the theoretical flow characteristics in order to properly determine the isotropic hydraulic conductivity. This numerical model utilizes a new scalar quantity, defined as the hydraulic conductivity ratio, to allow for proper modeling of nonlinear flow in two-dimensional cylindrical coordinates. PFC core specimens have been extracted from three different roadway locations around Austin, Texas for the past four years (2007 to 2010). Porosity values of the core specimens range from 12% to 23%, and the porosity data suggest a statistical decrease over time due to trapped sediment in the pore space. A series of constant head tests used in the laboratory and a falling head test used in the field are recommended for measurement of PFC hydraulic characteristics using a modified Forchheimer equation. Through numerical modeling, regressions equations are presented to estimate the hydraulic conductivity and nonlinear Forchheimer coefficient from the measureable hydraulic characteristics determined during experimental testing. Hydraulic conductivity values determined for laboratory core specimens range from 0.02 centimeters per second (cm/s) to nearly 3 cm/s. Field measurements of in-situ hydraulic conductivity vary over a range from 0.6 cm/s to 3.6 cm/s. The results of this research provide well-defined laboratory and field methods for measurement of the isotropic hydraulic conductivity of PFC experiencing two-dimensional nonlinear flow and characterized by the Forchheimer equation. This methodology utilizes a numerical model which presents a proper solution for nonlinear flow in two-dimensions. / text

Page generated in 0.0207 seconds