• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 107
  • 14
  • 11
  • 9
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 335
  • 335
  • 132
  • 131
  • 122
  • 108
  • 82
  • 42
  • 38
  • 35
  • 31
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Aplicação dos modelos poro neutro e média geométrica na estimativa da condutividade hidráulica de um latossolo / Comparison between the models of geometric average and neutral pore for the determination of the unsaturated hydraulic conductivity of a latossolo

Comiran, Gilberto 21 July 2006 (has links)
Made available in DSpace on 2017-05-12T14:48:17Z (GMT). No. of bitstreams: 1 Gilberto Comiran.pdf: 1846926 bytes, checksum: 1b96f9d3924516f3c3a1814a89cd0014 (MD5) Previous issue date: 2006-07-21 / In this work, it is shown an application of a model to obtain the hydraulic conductivity of soils no saturated using concepts Fractal Geometry and the laws of Laplace and of Poiseuille. For the obtaining of the soil water retention curve it was used the camera of pressure of Richards and the experimental data of hydraulic conductivity in function of the soil water content were obtained through the Method of Hillel with the tensiometry use, according to a potency model. The equation van Genuchten with their parameters was used for the obtaining of the hydraulic conductivity. The application of the models of the Geometric Average and of the Neutral Pore suggested by Fuentes was shown simple and capable of predicting the hydraulic conductivity satisfactorily. / Neste trabalho, apresenta-se a aplicação de um modelo para se estimar a condutividade hidráulica de solos não saturados, utilizando os conceitos da Geometria Fractal e das leis de Laplace e de Poiseuille. Para a obtenção da curva de retenção de água, foi utilizada a câmara de pressão de Richards e os dados experimentais de condutividade hidráulica, em função da umidade do solo, foram obtidos através do Método de Hillel com a utilização de tensiometria, conforme um modelo de potência. A equação de van Genuchten, com seus parâmetros, foi utilizada para a obtenção da condutividade hidráulica. A aplicação dos modelos da Média Geométrica e do Poro Neutro sugerido por Fuentes mostrou-se simples e capaz de predizer a condutividade hidráulica satisfatoriamente.
232

Upscaling of water flow and mass transport in a tropical soil: numerical, laboratory and field studies / Mudança de escala do fluxo de água e do transporte de massa em um solo tropical: estudos numéricos, laboratoriais e de campo

Godoy, Vanessa Almeida de 28 March 2018 (has links)
Numerical models are becoming fundamental tools to predict a range of complex problems faced by geotechnical and geo-environmental engineers. However, to render the model reliable for future predictions, the model input parameters must be determined with consideration of the scale effects. If there is a difference of scales between the observation and the model scales there are two possible ways to consider it: or models are constructed with elements of a size similar to that at which the data were measured, or some upscaling rules must be defined. In this context, this thesis focuses on upscaling of water flow and mass transport in a tropical soil by means of numerical, laboratory and field studies. This thesis is organized in four parts. First, the heterogeneity, correlation and cross-correlation between solute transport parameters (dispersivity, α, and partition coefficient, Kd) and soil properties are studied in detail. In this part, it is verified that the hydraulic conductivity (K) and solute transport parameters are highly heterogeneous, while soil properties are not. Spatial correlation of α, K, and statistically significant variables are studied, and it would probably improve the estimation only in a small-scale study, since the spatial correlation are only observed up to 2.5 m. This study is a first attempt to evaluate the spatial variation in the correlation coefficient of transport parameters of a reactive and a nonreactive solute, indicating the more relevant variables and the one that should be included in future studies. In the second part, scale effect on K, dispersivity and partition coefficient of potassium and chloride are studied experimentally by means of laboratory and field experiments. The purpose is to contribute to the discussion about scale effects on K, α and Kd and understanding how these parameters behave with the change in the scale of measurement. Results show that K values increases with scale, regardless of the method of measurement, except for the results obtained from double-ring infiltrometer tests. Dispersivity trends to increase exponentially with the sample height. Partition coefficient tends to increase with sample length, diameter and volume. These differences in the parameters according to the scale of measurement must be considered when these observations are later used as input to numerical models, otherwise the responses can be misrepresented. Third, stochastic analysis of three-dimensional hydraulic conductivity upscaling is performed using a simple average and the Laplacian-with-skin methods for a variety of block sizes based on real K measurements. In this part it is demonstrated the errors that can be introduced by using a deterministic upscaling using simple averages of the measured K without accounting for the spatial correlation. Results show that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler. The aspects to consider when performing the upscaling are also discussed. Finally, the dependence of the exponent of the p-norm as a function of the block size is analyzed. In the last part, stochastic upscaling of hydrodynamic dispersion coefficient (D) and retardation factor (R) is performed using real data aiming to reduce the lack in experimental upscaling of reactive solute transport research. The enhanced macrodispersion coefficient approach is used to upscale the local scale hydrodynamic dispersion (D) and, as a novelty, the impact of heterogeneity of local dispersivity is also taken into account. To upscale retardation factor (R), a p-norm is used to compute an equivalent R. Uncertainty analyses are also performed and a good propagation of the uncertainties is achieved after upscaling. Simple upscaling methods can be incorporated to the modeling practice using commercial transport codes and properly reproduce de transport at coarse scale but may require corrections to reduce smoothing of the heterogeneity caused by the upscaling procedure. / Modelos numéricos estão se tornando ferramentas fundamentais para prever uma série de problemas complexos enfrentados por engenheiros geotécnicos e geoambientais. No entanto, para que o modelo seja confiável para previsões futuras, seus parâmetros de entrada devem ser determinados com a consideração do efeito da escala. Se há uma diferença de escalas entre a escala da observação e a escala do modelo, existem duas maneiras possíveis de considerá-la: ou constrói-se modelos com elementos de tamanhos semelhantes àqueles em que os dados foram medidos, ou definem-se algumas regras de mudança de escala. Neste contexto, esta tese enfoca a mudança de escala do fluxo de água e do transporte de massa em um solo tropical, por meio de estudos numéricos, laboratoriais e de campo. Esta tese é organizada em quatro partes. Em primeiro lugar, estudou-se em detalhe a heterogeneidade, a correlação e a correlação cruzada entre os parâmetros de transporte de soluto (dispersividade, α, e coeficiente de partição, Kd) e as propriedades do solo. Nesta parte, verificou-se que a condutividade hidráulica (K) e os parâmetros de transporte de soluto são altamente heterogêneos, enquanto as propriedades do solo não o são. A correlação espacial de α, K e das variáveis estatisticamente significativas foi estudada, e, provavelmente, melhoraria a estimativa apenas em um estudo em pequena escala, uma vez que a correlação espacial só foi observada até 2,5 m. Este estudo foi uma primeira tentativa de avaliar a variação espacial no coeficiente de correlação dos parâmetros de transporte de um soluto reativo e não-reativo, indicando as variáveis mais relevantes e as que devem ser incluídas em estudos futuros. Na segunda parte, o efeito de escala em K, na dispersividade e no coeficiente de partição de potássio e cloreto é estudado experimentalmente por meio de ensaios laboratoriais e de campo. O objetivo foi contribuir com a discussão sobre os efeitos de escala em K, α e Kd e entender como esses parâmetros se comportam com a mudança na escala da medição. Os resultados mostram que K aumenta com a escala, independentemente do método de medição. A dispersão tende a aumentar de maneira exponencial com a altura da amostra. O coeficiente de partição tende a aumentar tanto com o comprimento, quanto com o diâmetro e o volume da amostra. Essas diferenças nos parâmetros de acordo com a escala de medida devem ser consideradas quando essas observações são posteriormente usadas como entrada para modelos numéricos, caso contrário, as respostas podem ser mal representadas. Em terceiro lugar, uma análise estocástica tridimensional da mudança de escala da condutividade hidráulica foi realizada usando tanto média simples quanto o método Laplaciano-com-pele para vários tamanhos de blocos usando medidas K reais. Nesta parte, foram demonstrados os erros que podem ser introduzidos ao se usar métodos determinísticos de mudança de escala, usando médias simples das medições de K sem se considerar a correlação espacial. A aplicação das técnicas de mudança de escala mostra que a heterogeneidade de K pode ser incorporada na prática diária do modelador geotécnico. Os aspectos a serem considerados ao realizar a mudança de escala também foram discutidos. Finalmente, analisou-se a dependência do expoente da norma p em função do tamanho do bloco. Na última parte, uma aplicação de mudança de escala estocástica do coeficiente de dispersão hidrodinâmica (D) e do fator de retardo (R) foi realizada usando dados reais visando reduzir a falta pesquisas no tema de mudança de escala do transporte de soluto reativo. A mudança de escala do D foi feito usando o método de macrodispersão. O método da média simples baseado na norma p foi usado para executar a mudança de escala de R. A incerteza foi propagada satisfatoriamente. Métodos simples de mudança de escala podem ser incorporados à prática de modelagem usando programas comerciais, e reproduzir corretamente o transporte em escala grossa, mas podem exigir correções para reduzir o efeito suavizado da heterogeneidade causada pelo procedimento de mudança de escala.
233

Efeito da irrigação com efluente de esgoto tratado nas propriedades físico-hídricas de um latossolo / Effects of treated sewage effluent on physical and hydraulic properties of an oxisol

Gloaguen, Roberta Alessandra Bruschi Gonçalves 02 December 2005 (has links)
Do ponto de vista agronômico, a irrigação com efluente tem a grande vantagem de permitir a economia de água e adubos, uma vez que o efluente é naturalmente rico em nutrientes e matéria orgânica; no entanto, é também neste ponto que surgem as preocupações relacionadas ao ambiente. Se mal planejada esta aplicação, o excesso de nutrientes e matéria orgânica pode causar poluição e provocar alterações nas propriedades do solo, tanto químicas quanto físicas e hídricas. Tendo em vista a problemática acima exposta, o presente trabalho teve como objetivo estudar o efeito da irrigação com efluentes de esgoto tratado nas propriedades físicas e hídricas de um latossolo. A área experimental situa-se no município de Lins-SP e é composta de três parcelas: parcela Água (A), parcela Efluente (E) e parcela Testemunha (T), numa vertente imediatamente ao lado das lagoas. Todo o estudo foi realizado em 8 profundidades, até 1,875m. Determinou-se, em campo, através do método do perfil instantâneo, a condutividade hidráulica do solo em meio não saturado, K(&#952;); da mesma forma, determinou-se em laboratório através do método da carga decrescente, a condutividade hidráulica do solo saturado, Ksat. Avaliou-se também K(&#952;) em laboratório pelo sistema Wind (baseado na evaporação), comparando-o ao método do perfil instantâneo (baseado na drenagem). Analisou-se a porosidade do solo, através da distribuição do diâmetro dos poros obtida a partir das curvas de retenção de água. Os resultados mostraram que houve alterações da condutividade hidráulica do solo em ambas as parcelas irrigadas, com água e com efluente, em relação à parcela tomada como referência. Isto demonstra que, não só o efluente, mas também a irrigação convencional deve ser planejada com precauções na região em estudo, uma vez que a própria água de abastecimento utilizada é rica em sódio. As parcelas irrigadas apresentaram diminuição significativa de K(&#952;) em relação à parcela Testemunha nas umidades elevadas; por outro lado, o K(&#952;) aumentou nas parcelas irrigadas nas umidades baixas, o que sugere uma mudança na estrutura e na porosidade do solo. Em relação à Ksat, identificou-se um decréscimo nas parcelas irrigadas em relação à Testemunha ao longo de todo o perfil de solo. O sistema de laboratório Wind, mostrou-se mais adaptado a solos irrigados com águas sódicas do que o método do perfil instantâneo. A irrigação com efluente e com água (águas sódicas) levou à diminuição da microporosidade, isto é, a classe de poros de diâmetro entre 0,2 µm e 50 µm. Por outro lado o aumento significativo da criptoporosidade (<0,2 µm) foi identificado em todo o perfil de solo estudado. Houve correlações significativas entre os volumes de microporos e criptoporos, a porcentagem de argila dispersa em água e o Na+, o que resultou da ocorrência dos processos de dispersão e expansão dos agregados. / From the agronomic point of view, irrigation using treated sewage effluent has a great advantage in saving water and fertilizers, once effluent is naturally rich in nutrients and organic matter. However, some concerns related to the environment are raised regarding this aspect. The excess of nutrients and organic matter can cause pollution and provoke changes in the soil chemical, physical and hydraulic properties, in case this application is not well planned. The present work aimed to study the effect of irrigation using sewage treated effluent on the physical and hydraulic properties of an Oxisol. The experimental area is located in Lins-SP, and it is composed of three plots: Water plot, Effluent plot and Control plot located on a slope beside the ponds. All the study was carried out in 8 depths up to 1,875 m. The unsaturated soil hydraulic conductivity K(&#952;) was determined under field conditions using the instantaneous profile method. Similarly, saturated soil hydraulic conductivity, Ksat, was determined by using the falling head method. K(&#952;) was also evaluated, under laboratory conditions, by using the Wind system (based on evaporation), which was compared afterwards to the instantaneous profile method (based on drainage). The soil porosity was analyzed by means of the pores diameter distribution obtained from the water retention curve. The results showed that there were changes in the soil hydraulic conductivity in both plots irrigated with water and effluent, in relation to the reference one. This fact demonstrates that not only the irrigation with effluent, but also the conventional one must be managed with precautions in the studied area, once the water supplied to the city is rich in sodium. The irrigated plots presented a significant decrease in K(&#952;) in relation to the Control plot with higher water contents. On the other hand, K(&#952;) increased in the irrigated plots with lower water content, suggesting a change in the soil porosity. In relation to Ksat, a decrease in the irrigated plots in relation to the Control was identified along the whole soil profile. The Wind system showed to be more adapted to soils irrigated with sodium-rich water when compared to the instantaneous profile method. The irrigation with effluent and with water (sodium-rich waters) induced a decrease in the microporosity, that is, the pores class with diameter comprising between 0,2 µm and 50 µm. On the other hand, a significant increase in criptoporosity (<0,2 µm) was identified in the whole soil profile. Significant correlations among micropores and criptopores volumes, water clay dispersion, and Na+, which resulted from the aggregates dispersion and expansion processes.
234

Carbon and water dynamics of peat soils in the Australian Alps

Grover, Samantha Patricia Power, samgrover1@gmail.com January 2006 (has links)
This research investigated carbon dynamics, water dynamics and peat formation at Wellington Plain peatland in the Victorian Alps. The properties of bog peat and dried peat were measured, and the ensuing results are outlined below. The carbon chemistries of both bog peat and dried peat displayed changes with depth consistent with an increase in the extent of decomposition of the organic material. Representative changes in the alkyl:O-alkyl ratio down the profile were 0.14 to 0.96 for bog peat and 0.28 to 1.07 for dried peat. Laboratory incubations on the influence of chemistry, particle size, water content and sample preparation indicated that, in the absence of confounding factors, peat chemistry was the most important factor in determining the size of the mineralisable carbon pool. Water content was the most important factor in determining the rate of carbon mineralization. In the field, both bog peat and dried peat emitted an average of 2 g CO2/m2/d from the surface. Carbon mineralisation was related to both soil temperature and soil water content, and this relationship was used to model peat mineralisation under a range of possible future climate scenarios. Below the surface, however, I measured lower rates of decomposition in the dried peat than in the bog peat. The water-holding capacity of peat was measured in the laboratory, as was the rate of water movement through peat. Specific yield decreased down the profile in both bog peat (0.88 to 0.45 cm3/cm3) and dried peat (0.36 to 0.11 cm3/cm3). Hydraulic conductivity also decreased down the profile in both peats: 5.1x10-4 to 3.0x10-6 m/s in bog peat, and 1.0x10-4 to 7.0x10-6 m/s in dried peat. Relationships between the hydrologic properties of peat and its physical and chemical properties were identified. In the field, fluctuations in the watertable were monitored in concert with rainfall. These laboratory and field measurements enabled me to develop models of the hydrology of bog peat and dried peat. Radioisotope dating indicated that both bog peat and dried peat began forming around 3300 years ago. The bog peat appeared to have drained to form dried peat between 131 and 139 years ago. Since that time, erosion appeared to have contributed more to the loss of organic material from dried peat than carbon mineralisation had.
235

Tidal Dynamics in Coastal Aquifers

Teo, Hhih-Ting, h.teo@griffith.edu.au January 2003 (has links)
The prediction of coastal groundwater movement is necessary in coastal management. However, the study in this field is still a great challenge due to the involvement of tidal-groundwater interactions and the phenomena of hydrodynamic dispersion between salt-fresh water in the coastal region. To date, numerous theories for groundwater dynamic have been made available in analytical, numerical and also experimental forms. Nevertheless, most of them are based on the zeroth-order shallow flow, i.e. Boussinesq approximation. Two main components for coastal unconfined aquifer have been completed in this Thesis: the vertical beach model and the sloping beach model. Both solutions are solved in closed-form up to higher order with shallow water parameter ([epsilon]) and tidal amplitude parameter ([alpha]). The vertical beach solution contributes to the higher-order tidal fluctuations while the sloping beach model overcomes the shortcomings in the existing solutions. From this study, higher-order components are found to be significant especially for larger value of [alpha] and [epsilon]. Other parameters such as hydraulic conductivity (K) and the thickness of aquifer (D) also affect the water table fluctuations. The new sloping solution demonstrated the significant influence of beach slope ([beta]) on the water table fluctuations. A comprehensive comparison between previous solution and the present sloping solution have been performed mathematically and numerically and the present solution has been demonstrated to provide a better prediction
236

Fosforavskiljning och hydraulisk konduktivitet i markbaserade reningssystem – Kornstorleksfördelningens betydelse / Phosphorus removal and hydraulic conductivity in WSAS - Influence of grain size distribution

Elmefors, Elin January 2011 (has links)
Fosforutsläpp kan leda till övergödning i vattenrecipienten om kritiska nivåer överskrids. De enskilda avloppen står idag för en relativt stor andel av Sveriges fosforutsläpp jämfört med de kommunala avloppen. Detta kan sättas i bakgrund av att staten, alltsedan 1970-talet, har lagt ner stora resurser på att reducera utsläppen hos kommunala avlopp, medan en motsvarande satsning på de enskilda avloppen uteblivit. Merparten av dagens enskilda avlopp utgörs av markbaserade reningssystem, det vill säga avloppslösningar där avloppsvattnet får passera genom markmaterial för att renas. Fosforreningen i markbaserade reningssystem har forskningshistoriskt sett inte varit en prioriterad fråga, vilket har lett till kunskapsbrist inom området. Naturvårdsverket har i och med miljöbalkens införande skärpt sina krav på fosforreningen hos enskilda avlopp. Trots att Naturvårdsverket nu har satt upp exakta kravgränser på fosforutsläpp, exempelvis att en normal skyddsnivå motsvarar en rening på 70 %, saknas dock råd för hur gemene man, inför byggandet av ett markbaserat reningssystem, ska kunna uppskatta fosforreningsförmågan i markmaterialet. Emellertid rekommenderar Naturvårdsverket att man inför byggandet ska uppskatta markmaterialets hydrauliska konduktivitet, en uppskattning som ofta utförs genom att mäta markmaterialets kornstorleksfördelning. Det finns även forskning som tyder på att kornstorleksfördelningen skulle kunna ha samband med fosforreningen. Syftet med detta examensarbete var framförallt att utvärdera om kornstorleks- fördelningen kan användas som ett mått på fosforreningen. Som ett sidospår till detta utvärderades även om den hydrauliska konduktiviteten kan bestämmas ur kornstorleks- fördelningen. Empiriska formler har vid tidigare studier etablerats för detta, men frågan är om dylika empiriska formler gäller för de undersökta markbaserade reningssystemen. Undersökningens resultat tydde på ett samband mellan kornstorlek och hydraulisk konduktivitet medan det inte kunde påvisas något samband mellan kornstorleks- fördelning och fosforrening. Det är därmed önskvärt att finna ett annat mått på fosforreningen i markbaserade reningssystem. Kan vi inte uppskatta hur mycket de markbaserade reningssystemen bidrar till övergödningen kan vi inte heller väga denna negativa miljöpåverkan mot de markbaserade systemens fördelar, såsom relativt låg energiförbrukning och relativt små utsläpp av växthusgaser. / Release of phosphorus is one of the contributing factors of eutrophication in aquatic recipients. In Sweden, on-site wastewater treatment represents large emissions of phosphorous per person in comparison to municipal wastewater treatment. This can be put in the context of the Government’s large investments for reducing phosphorus in municipal wastewater treatment plants, while no corresponding investment has yet been made in the field of on-site wastewater treatment. In Sweden, the on-site wastewater treatment systems of today mainly consist of WSAS (Wastewater soil absorption systems), i.e. systems where wastewater is cleaned by passing though soil material. During the history of research about WSAS issues of phosphorous removal have not been first priority, which has led to a considerable lack of knowledge regarding these issues. Since 1999, when the Swedish regulations of environmental law were established, the SEPA (Swedish Environmental Protection Agency) has tightened up their demands of phosphorus removal in on-site wastewater treatment systems, for instance by stating that a phosphorous removal of 70% shall be reached to accomplish a “normal level of protection”. Despite this fact, there are no recommendations of how to estimate phosphorus removal in the soil material. However, the SEPA recommends estimation of hydraulic conductivity before building WSAS. This estimation is usually made by measuring grain size distribution in the soil material. One interesting fact is that there, according to some scientists, might be a connection between grain size distribution and phosphorus removal. The aim of this thesis was mainly to investigate if measure of grain size distribution can be used in order to estimate phosphorus removal. The aim was also to evaluate if grain size distribution is a good indicator of hydraulic conductivity in the investigated WSAS. It was concluded that grain size distribution is a suitable indicator of hydraulic conductivity, but not a suitable indicator of phosphorus removal. Thus, we still need to find an easy way to estimate the phosphorus removal in WSAS. If we do not know the extent of impact on eutrophication by WSAS, we cannot weigh this negative impact against the positive aspects of relatively low energy usage and low release of green house gases compared to other on-site wastewater treatment systems.
237

Prediction Of Engineering Properties Of Fine-Grained Soils From Their Index Properties

Nagaraj, H B 02 1900 (has links)
Prediction as a tool in engineering has been used in taking right judgement in many of the professional activities. This being the fact, the role and significance of prediction in geotechnical practice needs no emphasis. Bulk of all man made structures are either made of soil or are resting on natural soil, involving large quantities of soil. Thus, it is often necessary for the geotechnical engineer to quickly characterize the soil and determine their engineering properties, so as to assess the suitability of the soil for any specific purpose. Obtaining these properties requires undisturbed samples, which involves time and money, and also elaborate laboratory procedures. Thus, it is desirable to find simpler and quicker methods of testing, using the data of which the engineering properties can be predicted satisfactorily especially so, for preliminary design purposes. Most often this can be achieved from simple tests known as inferential tests, and the engineering properties namely, compressibility, swell/collapse, hydraulic conductivity, strength and compaction characteristics can be obtained from empirical/semi-empirical correlations. The index tests namely the Atterberg limits form the most important inferential soil tests with very wide universal acceptance. These tests are relatively simple to perform and have provided a basis for explaining most engineering properties of soils in geotechnical practice. In this direction, this investigation has been carried out to correlate the engineering properties with the simple index properties and their indices, namely, the liquid limit, plastic limit, shrinkage limit, plasticity index and shrinkage index (liquid limit - shrinkage limit). Any good correlation in the prediction of engineering properties with the index properties will enhance the use of simple test for prediction purposes. This thesis is an attempt towards this direction. It is often necessary to identify the basic mechanisms controlling the engineering properties from a micro-mechanistic point of view and correlate with the index properties, thereby facilitating prediction of engineering properties better. Though attempts have been made in the past to predict the engineering properties of soils from the index properties/indic­es, they are not quite satisfactory. This thesis is an attempt to predict the engineering properties of fine-grained soils from the index properties taking into consideration the mechanisms controlling them. Since, the index properties are used for prediction of engineering properties, the existing methods of determining the same have been examined carefully and critically. It's satisfactory determination is found important because other indices namely plasticity index, Ip and shrinkage index, Is = (wL - ws), are determined based on it. Also the liquid limit is one of the important and widely used parameter in various existing correlations. In this direction, two new methods of determining the liquid limit have been developed, namely (i) absorption water content and liquid limit of soils and (ii) liquid limit from equilibrium water content under Ko-stress. In the absorption water content method, the water absorbed by an oven dried soil pat at equilibrium gives a good correlation with the liquid limit of soils. Here, the water holding capacity at equilibrium goes well with the mechanism of liquid limit, which is also the water holding capacity of a soil at a particular small but measurable shear strength. A good relationship is found to exit between the absorption water content, wA and the liquid limit, wL, and it is given as : WA = 0.92 wL (i) In the second method, namely, the liquid limit from equilibrium water content under K0-stress, which is the equilibrium water content under a Ko stress of 0.9 kPa is found to be equal to the liquid limit obtained from the cone penetration method of determining the liquid limit It is found that this method of determining the liquid limit overcomes the limitations of the conventional methods of determining the liquid limit, also easy to determine with a simple apparatus and has good repeatability. Determination of plastic limit of the soils by the rolling thread method often poses a problem especially when the soil is less plastic. Hence, to overcome this problem, a new method has been proposed to predict the plasticity index in terms of the flow index. The relationship between the plasticity index and the flow index by the cone penetration cup method is found to be better than by the percussion cup method. Since, the cone penetration method of the liquid limit determination is more popular than the percussion cup method, the flow index from the cone method is recommended to determine the plasticity index from the correlation as given below: (/p)c = 0.74 Ifc (ii) Thus, the plastic limit can be determined with the plasticity index, thereby dispensing with the determination of plastic limit by the thread method. The determination of consolidation characteristics form an important aspect in the design of foundations and other earth retaining structures. The determination of consolidation characteristics namely the compression index, the coefficient of consolidation and the coefficient of secondary compression is time consuming. So, researchers have resorted to correlating the compressibility behaviour with simple index properties. While attempts have been made in the past to correlate the compressibility behaviour with various index properties individually, all the important properties affecting the compressibility behaviour has not been considered together in any single study to examine which of the index property/properties of the soils correlates better with the compressibility behaviour, especially with the same set of test results. Number of existing correlations with the liquid limit alone as a primary index property correlating with the compression index have limitations in that they do not consider the plasticity characteristics of the soils fully. The index parameter, shrinkage index, Is has a better correlation with the compression index, Cc and also the coefficient of volume change, mv than plasticity index. Coefficient of consolidation, Cv has also shown to correlate well with shrinkage index than the plasticity index. Even the coefficient of secondary compression, Cαε has shown to have a better correlation with shrinkage index than the plasticity index. However, liquid limit has a poor correlation with all the compressibility characteristics. The correlation of Cc and Cv with shrinkage index, Is is as given below: Cc = 0.007 (Is + 18) (iii) Cv = 3x10-2 (Is)-3.54 (in m2/sec) Further, to reduce the testing time of conventional consolidation test in order to obtain the compressibility characteristics, a new method known as rapid method of consolidation has been proposed, which is very effective in enormously reducing the time of consolidation without sacrificing the accuracy of the end results. The time required in the rapid method of consolidation testing could be as low as 4 to 5 hours to complete the whole test as compared to 1 to 2 weeks as the case may be by the conventional consolidation test. Using any curve fitting procedure the degree of consolidation, U for any pressure increment can be found out. Thus, the effective pressure at that stage can be calculated and further the pressure incremented without further delay. This procedure is repeated for every pressure increment with a load increment ratio of unity till the desired pressure level is reached. Even for a highly compressible soil like BC soil with a liquid limit of 73.5 %, the consolidation test could be completed within 5 hours by the rapid method, without any sacrifice of the accuracy of the results as compared to 7 days by the conventional method to reach a pressure of 800 kPa. Hydraulic conductivity is one of the basic engineering properties of soils. Of late hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. From the present investigation it is found that hydraulic conductivity with water for each pair of soils having nearly the same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index. A method to predict the hydraulic conductivity of fine -grained soils as a function of void ratio is proposed with the use of shrinkage index as given below: k = C [ ] (in m/sec) (v) 1 + e C = 2.5 x 10-4 (/s)-5.89 and n = 4 (vi) It has also been brought out that as the dielectric constant of the pore fluid decreases; there is a drastic increase in the intrinsic permeability of soil. These changes are attributed to the significant reduction in the thickness of diffuse double layer, which in turn is mainly dependent on the dielectric constant of the pore fluid. The quantification of the change in the hydraulic conductivity with the change in the pore fluids of extreme dielectric constant, i.e., from water to carbon tetrachloride could be expressed in terms of the volume of water held in the diffuse double layer and the same has a good correlation with shrinkage index. With the advancement in the knowledge of the engineering behaviour of fine-grained soils, there is an increasing trend toward larger involvement of fine-grained soils in earth structures and foundations. Though extensive work has been done in the past to understand the swelling behaviour of expansive soils and the mechanisms involved therein, it is yet not satisfactory. From the literature it can be seen that lot of work has been done to correlate the swell potential with various physical properties. The simple means of identifying the swelling type of soils is by means of free swell tests with the ratio of free swell with carbon tetrachloride to the free swell of water. The same has found to correlate well with the percent swell/collapse of the ten soils used in the present investigation. However, it was found that shrinkage index has a better correlation with the swell/collapse behaviour of fine-grained soils, compared to the liquid limit or the plasticity index. In this study, it is also shown that neither the liquid limit nor the plasticity index can qualitatively describe the swell/collapse behaviour of fine-grained soils. This has been attributed primarily to two different mechanisms governing montmorillonitic and kaolinitic soils separately. Even swelling pressure has shown to have a good correlation with shrinkage index. It is found that the compression index of the samples consolidated from the swollen condition correlates well with the shrinkage index. Laboratory determination of the compaction characteristics are very much important for use in earth work constructions. It is found that only the plastic limit bears a good correlation with the compaction characteristics namely optimum moisture content and maximum dry unit weight. This conclusion is also supported by the data from the literature. The correlations are given as: OMC = 0.92 wp (in percent) (viii) and ydmax = 0.23 (93.3 - wp) (inkN/m3) (ix) Liquid limit, plasticity index and shrinkage index do not bear any correlation with the compaction characteristics. It is quite possible that, the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, possibly the good correlation. A simple method to predict the compaction curve is proposed based on the plastic limit of the soils. Of all the important engineering properties, both volume change (compressibility and swelling) and hydraulic conductivity have good correlation with the shrinkage index. However, the compaction characteristics correlate well with the plastic limit. Herein, an hypothesis is proposed to possibly explain why shrinkage index has shown to be a better parameter to correlate with most of the engineering properties with the exception of the compaction characteristics. The liquid limit is a parameter which takes part of the plasticity characteristics of a soil. Recently it has been well brought out that shrinkage limit is primarily a function of how the varying grain sizes are distributed in a soil. Thus, shrinkage limit takes care of the gradation of the soil fractions in it. Thus, by considering the shrinkage index, which is the difference of the liquid limit water content on one end and shrinkage limit water content on the other end, the primary physical properties of the soils namely the plasticity and the grain size distribution are considered. This possibly explains the good correlation of shrinkage index with the engineering properties of fine-grained soils. However, compaction being a moulding of the soils into a compact state, it has a good correlation with the plastic limit, which is the optimum water content of a saturated soil at which it behaves as a plastic material, and thus can be moulded to any shape, thereby the soil can be compacted or moulded to the densest possible state at that water content. Hence, the good correlation. As the present investigation gives the correlative equations to predict the engineering properties of fine-grained soils from the appropriate index properties, which are obtained from simple and quick laboratory tests, it is hoped that this will go a long way in being a handy tool for a practicing geotechnical engineer in the preliminary assessment of fine-grained soils and thereby take appropriate judgement in various aspects of geotechnical constructions with it.
238

Analysis Of Solute Transport In Porous Media For Nonreactive And Sorbing Solutes Using Hybrid FCT Model

Srinivasan, C 01 1900 (has links)
The thesis deals with the numerical modeling of nonreactive and nonlinearly sorbing solutes in groundwater and analysis of the effect of heterogeneity resulting from spatial variation of physical and chemical parameters on the transport of solutes. For this purpose, a hy­brid flux corrected transport (FCT) and central difference method based on operator-split approach is developed for advection-dispersion solute transport equation. The advective transport is solved using the FCT technique, while the dispersive transport is solved using a conventional, fully implicit, finite difference scheme. Three FCT methods are developed and extension to multidimensional cases are discussed. The FCT models developed are anlaysed using test problems possessing analyt­ical solutions for one and two dimensional cases, while analysing advection and dispersion dominated transport situations. Different initial and boundary conditions, which mimic the laboratory and field situations are analysed in order to study numerical dispersion, peak cliping and grid orientation. The developed models are tested to study their relative merits and weaknesses for various grid Peclet and Courant numbers. It is observed from the one dimensional results that all the FCT models perform well for continuous solute sources under varying degrees of Courant number restriction. For sharp solute pulses FCT1 and FCT3 methods fail to simulate the fronts for advection dominated situations even for mod­erate Courant numbers. All the FCT models can be extended to multidimensions using a dimensional-split approach while FCT3 can be made fully multidimensional. It is observed that a dimensional-split approach allows use of higher Courant numbers while tracking the fronts accurately for the cases studied. The capability of the FCT2 model is demonstrated in handling situations where the flow is not aligned along the grid direction. It is observed that FCT2 method is devoid of grid orientation error, which is a common problem for many numerical methods based on Cartesian co-ordinate system. The hybrid FCT2 numerical model which is observed to perform better among the three FCT models is extended to model transport of sorbing solutes. The present study analyses the case of nonlinear sorption with a view to extend the model for any reactive transport situation wherein the chemical reactions are nonlinear in nature. A two step approach is adopted in the present study for coupling the partial differential equation gov­erning the transport and the nonlinear algebraic equation governing the equilibrium sorp­tion. The suitability of explicit-implicit (EI - form) formulation for obtaining accurate solution coupling the transport equation with the nonlinear algebraic equation solved using a Newton-Raphson method is demonstrated. The performance of the numerical model is tested for a range of Peclet numbers for modelling self-sharpening and self-smearing con­centration profiles resulting from nonlinear sorption. It is observed that FCT2 model based on this formulation simulates the fronts quite accurately for both advection and dispersion dominated situations. The delay in the solute mobility and additional dispersion are anal­ysed varying the statistical parameters characterising the heterogeneity namely, correlation scale and variance during the transport of solutes and comparisons are drawn with invariant, cases. The impact of dispersion during the heterogeneous transport is discussed.
239

Analyse und Konzeption von Messstrategien zur Erfassung der bodenhydraulischen Variabilität / Analysis and Conception of Measurement Strategies to Quantify the Soil Hydraulic Variability

Morgenstern, Yvonne 07 March 2008 (has links) (PDF)
Die Berücksichtigung der flächenhaften bodenhydraulischen Variabilität gilt bei der Modellierung von Wasser- und Stofftransportprozessen als problematisch. Dies liegt vorrangig an ihrer Erfassung, die kosten- und zeitintensiv ist. Die vorliegende Arbeit untersucht verschiedene Messstrategien, die zur Abbildung der flächenhaften Bodenhydraulik mit wenigen, einfach zu bestimmenden und physikalisch begründeten Bodenparametern führen. Die Vorgehensweise erfolgt mit der Anwendung eines Ähnlichkeitskonzeptes, das die Böden in bodenhydraulisch ähnliche Klassen unterteilt. Innerhalb einer Klasse kann die Variabilität der Retentions- und hydraulischen Leitfähigkeitcharakteristik auf einen freien Parameter (Skalierungsparameter) reduziert werden. Die Analyse der Zusammenhänge zwischen Boden- und Skalierungsparametern führt letztendlich zu den geeigneten Parametern die eine flächenhafte Abbildung möglich machen. Diese Untersuchungen bilden die Grundlage für die weitere Entwicklung eines stochastischen Modellansatzes, der die Variabilität der Bodenhydraulik bei der Modellierung des Bodenwassertransportes im Feldmaßstab berücksichtigen kann. An Hand von drei Datensätzen unterschiedlicher Skalenausbreitung konnte dieses Konzept angewendet werden. Die Ergebnisse zeigen, dass die Beschreibung der hydraulischen Variabilität nur für die vertikale (Profil) nicht aber für die flächenhafte Ausbreitung mit einfachen Bodenparametern möglich ist. Mit einer ersten Modellanwendung konnte gezeigt werden, dass über die Variabilität der Bodenparameter Trockenrohdichte und Tongehalt auch die Variabilität der Bodenhydraulik und damit die Berechnung des Bodenfeuchteverlaufs am Standort darstellbar ist. / The consideration of the spatial variability of the unsaturated soil hydraulic characteristics still remains an unsolved problem in the modelling of the water and matter transport in the vadose zone. This can be mainly explained by the rather cumbersome measurement of this variability, which is both, time-consuming and cost-intensive. The presented thesis analyses various measurement strategies which aim at the description of the soil-hydraulic heterogeneity by a small number of proxy-parameters, which should be easily measurable and still have a soil-physical meaning. The developed approach uses a similarity concept, which groups soils into similar soil hydraulic classes. Within a class, the variability of the retention and hydraulic conductivity curves can be explained by a single parameter (scaling parameter). The analysis of the correlation between the soil parameters and the scaling parameters can eventually indicate which soil parameters can be used for describing the soil hydraulic variability in a given area. This investigation forms the basis for the further development of a stochastic model, which can integrate the soil-hydraulic variability in the modelling of the soil water transport. Three data sets, all covering different scales, were subsequently used in the application of the developed concept. The results show that depth development of the soil-hydraulic variability in a soil profile can be explained by a single soil parameter. Contrarily, the explanation of the horizontal variability of the soil-hydraulic properties was not possible with the given data sets. First model applications for a soil profile showed that including the variability of the soil parameters bulk density and clay fraction in the water transport simulations could describe the variability of the soil-hydraulic variability and thus, the dynamics of the soil water content at the investigated profile.
240

Field and Laboratory Comparison of the Hydraulic Performance of Two Ceramic Pot Water Filters

Peabody, Duncan 01 January 2012 (has links)
Currently 884 million people worldwide are living without access to an improved source of drinking water (WHO/UNICEF, 2011). Piped-water on premises is the ultimate goal of World Health Organization (WHO) due to the ability to treat all of the water and distribute it safely in pressurized pipes. However, Household Water Treatment and Safe Storage (HWTS) is an option for improving the quality of drinking water where that infrastructure is not yet developed, especially where there is a risk of recontamination between point of collection and point of use (Clasen, 2006). This study analyzed one such HWTS, the ceramic pot water filter. The study compared the hydraulic properties of the FilterPure (FP) and Potters for Peace (PFP) ceramic pot filters through a thirteen-month field study in the Dominican Republic and laboratory studies at the University of South Florida. In the field study 55 filters were tested for first hour flow rate and hydraulic conductivity. Eight first hour flow rate tests were conducted in the field on one month intervals during months 7- 13. FP filters had an average first hour flow rate of 553 ml/hr and PFP Filters had a first hour flow rate of 395 ml/hr. No significant change in first hour flow rate was observed over time in FP filters. PFP experienced an average increase of 31 ml/hr per month during the seven-month testing period. Falling head tests were conducted on four filters in the laboratory and the flow rate was modeled to determine hydraulic conductivity. Hydraulic conductivity values for FP filters ranged from k = 0.0495 - 0.0831 cm/hr and for PFP filters ranged from k = 0.0136 - 0.0389 cm/hr. Eight out of 29 (26%) Potters for Peace filters in the field had first hour flow rates of less than 250 ml/hr by month nine of the study and had to be replaced and removed from the study. In total 24 of 55 (44%) filters (8 FP and 16 PFP) had to be removed from the study due to several reasons discussed in this thesis.

Page generated in 0.0477 seconds