• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 75
  • 72
  • 32
  • 28
  • 16
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 304
  • 242
  • 71
  • 70
  • 66
  • 57
  • 54
  • 48
  • 48
  • 47
  • 46
  • 46
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Differences and Similarities between Coronavirus and other Viruses

Abdul-Al, Mohamed, Abd-Alhameed, Raed, Youseffi, Mansour, Qahwaji, Rami S.R., Shepherd, Simon J. 03 September 2020 (has links)
Yes / Coronavirus is the most dangerous virus in the world wide and it can easy spread between people, animals and plants because it is existing on one strand of RNA (Ribonucleic Acid) and it can duplicate faster than any virus. The source of coronavirus is still unknown, but some sources said that it came from seafood market and other sources said that it came from bat and snakes. It starts in Wuhan; China and every day the fatality increases. The symptoms are like a SARS-CoV (acute respiratory syndrome coronavirus)) and MERS-CoV (Middle East Respiratory Syndrome Coronavirus). By using nucleotide sequence of coronavirus from NCBI (National Center for Biotechnology Information) and some programs that ran on Matlab, the results show that there are some differences and similarities between coronavirus and other viruses such as Ebola, Flu-b, Hepatitis B, HIV and Zika especially for DEBs (distinct excluded blocks) program that shows at 5bp (base pair) there is a common with slightly difference between coronavirus “cgggg” and Ebola virus “cgtgg”. The aim from this study is to find a way to help doctors and scientists to stop spreading the coronavirus or to destroy it.
352

Therapiestrategien bei Patienten mit Hepatitis-C-Virusinfektion an der Universitätsmedizin Göttingen: Eine retrospektive Analyse von Therapieergebnissen / Therapeutic strategies in patients with hepatitis C virus infection at the University Medical Center Göttingen: a retrospective analysis of therapeutic results

Mathes, Sarah 30 June 2016 (has links)
No description available.
353

Structural studies on a hepatitis C virus-related immunological complex and on Ebola virus polymerase cofactor VP35

Fadda, Valeria January 2015 (has links)
Hepatitis C virus (HCV) is one of the leading causes of hepatocellular carcinoma worldwide. HCV-neutralizing antibody AP33 recognizes a linear, highly conserved epitope on the viral entry protein E2, disrupting the interaction with the cellular receptor CD81 that leads to viral entry. AP33-related anti-idiotypes (Ab₂s) have the potential to carry the internal image of the antigen E2, eliciting the production of AP33-like antibodies in humans. This study reports the mid-resolution structure of the Fab fragment of anti-idiotype A164.3 and the high-resolution structure of the Fab fragment of AP33 in complex with the Fv fragment of anti-idiotype B2.1A. Analysis of the structures and comparison with the previously published structure of AP33 in complex with a peptide corresponding to the E2 epitope, suggests that while A164.3 does not mimic the antigen E2, B2.1A is characterized by high surface complementarity with AP33 and functional antigen mimicry. Thus, B2.1A can be classified as an Ab₂-β, a subgroup of anti-idiotypes carrying the internal image of the antigen. Preliminary binding studies show that AP33 binds B2.1A with nanomolar affinity, supporting the role of B2.1A as an idiotypic vaccine candidate. Zaire ebola virus causes severe, often lethal hemorrhagic fever in humans. Ebola virus polymerase cofactor VP35 is a multifunctional protein involved in, among other functions, dsRNA binding and inhibition of the host's interferon pathways. VP35 contains an N-terminal oligomerization domain and a C-terminal dsRNA-binding domain (RBD). Preliminary results on the oligomerization domain of VP35 suggest that this region contains a coiled-coil motif, as previously reported. In order to validate a recently-discovered dsRNA end-capping pocket as a drug target, the structure of VP35 RBD I278A mutant was solved at high resolution, showing that even a small perturbation in the binding pocket can cause dramatic binding impairment due to loss of contacts with dsRNA.
354

Pesquisa de marcadores sorológicos e moleculares da infecção pelo Vírus da Hepatite E (HEV) em indivíduos portadores do Vírus da Imunodeficiência Humana (HIV) / Serological and molecular markers of hepatitis E virus infection (HEV) in HIV-infected individuals

Ferreira, Ariana Carolina 28 April 2016 (has links)
A infecção pelo HEV é reconhecida como um considerável problema de saúde pública em diversas regiões do mundo. Embora caracterizada como uma infecção benigna com um curso evolutivo autolimitado, recentes estudos têm mostrado sua evolução para cronicidade em indivíduos imunocomprometidos. Além disso, tem sido verificado que nesses indivíduos a infecção crônica pelo HEV pode evoluir para fibrose hepática progressiva, culminando com o desenvolvimento de cirrose. Não existem dados acerca da prevalência da infecção pelo HEV em pacientes infectados pelo HIV no Brasil, onde a circulação deste vírus tem sido demonstrada em diversos grupos de indivíduos imunocompetentes e, até mesmo, em alguns animais provenientes de diferentes regiões do país. Com base nisso, este trabalho teve como objetivo estimar a prevalência de marcadores sorológicos e moleculares da infecção pelo HEV, bem como a padronização de uma PCR em tempo real para a detecção e quantificação da carga viral do HEV na população de soropositivos da cidade de São Paulo. Foram incluídos neste estudo soro e plasma de pacientes infectados pelo HIV (n=354), que foram divididos em grupos de acordo com a presença ou ausência de coinfecção pelos vírus das hepatites B (HBV) e C (HCV). Essas amostras foram coletadas entre 2007 e 2013. Anticorpos anti-HEV IgM e IgG foram pesquisados pela técnica de ELISA (RecomWell HEV IgM/ IgG - MIKROGEN®), e, em alguns casos, confirmados por Immunoblotting (RecomLine HEV IgM/ IgG - MIKROGEN®). Todas as amostras foram submetidas à pesquisa de HEV RNA através da PCR em tempo real padronizada. Cerca de 72% dos indivíduos avaliados pertenciam ao sexo masculino. A média de idade entre a população analisada foi de 48,4 anos. Os anticorpos anti-HEV IgM e IgG foram encontrados em 1,4% e 10,7% dos indivíduos dessa população, respectivamente. Apenas dois pacientes apresentaram positividade simultânea para anti-HEV IgM e IgG. Não houve diferença estatisticamente relevante quanto à presença de marcadores sorológicos nos grupos de estudo. Além disso, foi detectado o HEV RNA em 10,7% das amostras analisadas, entre as quais, seis apresentaram simultaneamente algum marcador sorológico (5 anti-HEV IgG e 1 IgM). A presença deste marcador foi predominante no grupo de pacientes com coinfecção pelo HCV. Através deste trabalho pôde-se constatar, portanto, que o HEV é circulante entre a população de infectados pelo HIV em São Paulo, e que o seguimento desses pacientes se faz necessário dado a possibilidade de progressão para infecção crônica e cirrose / HEV infection is recognized as a significant public health problem in different world regions. Although initially characterized as a benign infection with selflimited course, recent studies have showing its evolution to chronicity in immunocompromised individuals. Furthermore, in these individuals the chronic infection can develop progressive liver fibrosis leading to cirrhosis. There are no data regarding prevalence of HEV infections in HIV- infected patients in Brazil, where the circulation of this virus has been demonstrated in different individuals groups and in some animals from different regions of the country. Based on this, this study aimed to assess the prevalence of serological and molecular makers of HEV infection and the standardization of real-time PCR for the detection and quantification of HEV viral load in HIV-infected individuals in São Paulo. Serum and plasma samples of HIV-infected patients (n=354), collected between 2007 and 2013, were included and organized in groups of co-infection (HIV/ HBV, HIV/HCV and HIV/ HBV/ HCV) and HIV mono-infection. Antibodies anti-HEV IgM and IgG were detected by ELISA (RecomWell HEV IgM/ IgG - MIKROGEN®), and in some cases confirmed by immunoblotting (RecomLine HEV IgM/ IgG - MIKROGEN®). All samples were submitted to research HEV RNA by real-time PCR. About 72% of the patients were male. The mean age of this population was 48.4 years. The anti-HEV IgM and IgG antibodies were found in 1.4% and 10.7%, respectively. Only two patients presented simultaneous anti-HEV IgM and anti- HEV IgG. There was no statistically significant difference in the presence of serological makers among the HIV infection groups. In addition, HEV RNA was detected in 10.7% of samples and six of these samples presented simultaneously a serological maker (5 anti-HEV IgG and 1 IgM). The presence of this maker was more frequent in the co-infection HIV/ HCV group. Through this work, we observed that HEV is circulating among the HIV-infected population in São Paulo, and the monitoring these patients is necessary because of the possibility progression to chronic infection and cirrhosis
355

Bedeutung des cytosolischen Teils des großen Hüllproteins für die Umhüllung des Hepatitis B Virus Nukleokapsids / Relevance of the cytosolic range of the large surface protein for the envelopment of hepatitis b virus nucleocapsid

Schläger, Michaela 24 April 2002 (has links)
No description available.
356

Pesquisa de marcadores sorológicos e moleculares da infecção pelo Vírus da Hepatite E (HEV) em indivíduos portadores do Vírus da Imunodeficiência Humana (HIV) / Serological and molecular markers of hepatitis E virus infection (HEV) in HIV-infected individuals

Ariana Carolina Ferreira 28 April 2016 (has links)
A infecção pelo HEV é reconhecida como um considerável problema de saúde pública em diversas regiões do mundo. Embora caracterizada como uma infecção benigna com um curso evolutivo autolimitado, recentes estudos têm mostrado sua evolução para cronicidade em indivíduos imunocomprometidos. Além disso, tem sido verificado que nesses indivíduos a infecção crônica pelo HEV pode evoluir para fibrose hepática progressiva, culminando com o desenvolvimento de cirrose. Não existem dados acerca da prevalência da infecção pelo HEV em pacientes infectados pelo HIV no Brasil, onde a circulação deste vírus tem sido demonstrada em diversos grupos de indivíduos imunocompetentes e, até mesmo, em alguns animais provenientes de diferentes regiões do país. Com base nisso, este trabalho teve como objetivo estimar a prevalência de marcadores sorológicos e moleculares da infecção pelo HEV, bem como a padronização de uma PCR em tempo real para a detecção e quantificação da carga viral do HEV na população de soropositivos da cidade de São Paulo. Foram incluídos neste estudo soro e plasma de pacientes infectados pelo HIV (n=354), que foram divididos em grupos de acordo com a presença ou ausência de coinfecção pelos vírus das hepatites B (HBV) e C (HCV). Essas amostras foram coletadas entre 2007 e 2013. Anticorpos anti-HEV IgM e IgG foram pesquisados pela técnica de ELISA (RecomWell HEV IgM/ IgG - MIKROGEN®), e, em alguns casos, confirmados por Immunoblotting (RecomLine HEV IgM/ IgG - MIKROGEN®). Todas as amostras foram submetidas à pesquisa de HEV RNA através da PCR em tempo real padronizada. Cerca de 72% dos indivíduos avaliados pertenciam ao sexo masculino. A média de idade entre a população analisada foi de 48,4 anos. Os anticorpos anti-HEV IgM e IgG foram encontrados em 1,4% e 10,7% dos indivíduos dessa população, respectivamente. Apenas dois pacientes apresentaram positividade simultânea para anti-HEV IgM e IgG. Não houve diferença estatisticamente relevante quanto à presença de marcadores sorológicos nos grupos de estudo. Além disso, foi detectado o HEV RNA em 10,7% das amostras analisadas, entre as quais, seis apresentaram simultaneamente algum marcador sorológico (5 anti-HEV IgG e 1 IgM). A presença deste marcador foi predominante no grupo de pacientes com coinfecção pelo HCV. Através deste trabalho pôde-se constatar, portanto, que o HEV é circulante entre a população de infectados pelo HIV em São Paulo, e que o seguimento desses pacientes se faz necessário dado a possibilidade de progressão para infecção crônica e cirrose / HEV infection is recognized as a significant public health problem in different world regions. Although initially characterized as a benign infection with selflimited course, recent studies have showing its evolution to chronicity in immunocompromised individuals. Furthermore, in these individuals the chronic infection can develop progressive liver fibrosis leading to cirrhosis. There are no data regarding prevalence of HEV infections in HIV- infected patients in Brazil, where the circulation of this virus has been demonstrated in different individuals groups and in some animals from different regions of the country. Based on this, this study aimed to assess the prevalence of serological and molecular makers of HEV infection and the standardization of real-time PCR for the detection and quantification of HEV viral load in HIV-infected individuals in São Paulo. Serum and plasma samples of HIV-infected patients (n=354), collected between 2007 and 2013, were included and organized in groups of co-infection (HIV/ HBV, HIV/HCV and HIV/ HBV/ HCV) and HIV mono-infection. Antibodies anti-HEV IgM and IgG were detected by ELISA (RecomWell HEV IgM/ IgG - MIKROGEN®), and in some cases confirmed by immunoblotting (RecomLine HEV IgM/ IgG - MIKROGEN®). All samples were submitted to research HEV RNA by real-time PCR. About 72% of the patients were male. The mean age of this population was 48.4 years. The anti-HEV IgM and IgG antibodies were found in 1.4% and 10.7%, respectively. Only two patients presented simultaneous anti-HEV IgM and anti- HEV IgG. There was no statistically significant difference in the presence of serological makers among the HIV infection groups. In addition, HEV RNA was detected in 10.7% of samples and six of these samples presented simultaneously a serological maker (5 anti-HEV IgG and 1 IgM). The presence of this maker was more frequent in the co-infection HIV/ HCV group. Through this work, we observed that HEV is circulating among the HIV-infected population in São Paulo, and the monitoring these patients is necessary because of the possibility progression to chronic infection and cirrhosis
357

Unravelling The Regulators Of Translation And Replication Of Hepatitis C Virus

Ray, Upasana January 2011 (has links) (PDF)
Unravelling the regulators of translation and replication of Hepatitis C virus Hepatitis C virus (HCV) is a positive sense, single stranded RNA virus belonging to the genus Hepacivirus and the family Flaviviridae. It infects human liver cells predominantly. Although, the treatment with α interferon and ribavirin can control HCV in some cases, they fail to achieve sustained virological response in others, thus emphasizing the need of novel therapeutic targets. The viral genome is 9.6 kb long consisting of a 5’ untranslated region (5’UTR), a long open reading frame (ORF) that encodes the viral proteins and the 3’ untranslated region (3’UTR). The 5’UTR contains a cis acting element, the internal ribosome entry site (IRES) that mediates the internal initiation of translation. The HCV 5’UTR is highly structured and consists of four major stem-loops (SL) and a pseudoknot structure. HCV proteins are synthesized by the IRES mediated translation of the viral RNA, which is the initial obligatory step after infection. The viral proteins are synthesized in the form of a long continuous chain of proteins, the polyprotein, which is then processed by the host cell and the viral proteases. Once viral proteins are synthesized sufficiently, the viral RNA is replicated. However the mechanism of switch from translation to viral RNA replication is not well understood. Several host proteins as well as the viral proteins help in the completion of various steps in the HCV life cycle. In this thesis, the role of two such factors in HCV RNA translation and replication has been characterized and exploited to develop anti-HCV peptides. The HCV proteins are categorized into two major classes based on the functions broadly: the non structural and the structural proteins. HCV NS3 protein (one of the viral non structural proteins) plays a central role in viral polyprotein processing and RNA replication. In the first part of the thesis, it has been demonstrated that the NS3 protease (NS3pro) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding owing to the participation of the catalytic triad residue (Ser 139) in this RNA protein interaction. More importantly, NS3pro binding to the SLIV region hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, thus resulting in the inhibition of HCV-IRES activity. Moreover excess La protein could rescue the inhibition caused by the NS3 protease. Additionally it was observed that the NS3 protease and human La protein could out-compete each other for binding to the HCV SL IV region indicating that these two proteins share the binding region near the initiator AUG which was further confirmed using RNase T1 foot printing assay. Although an over expression of NS3pro as well as the full length NS3 protein decreased the level of HCV IRES mediated translation in the cells, replication of HCV RNA was enhanced significantly. These observations suggested that the NS3pro binding to HCV IRES reduces translation in favour of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might contribute in the regulation of the molecular switch from translation to replication of HCV. In the second part the interaction of NS3 protease and HCV IRES has been elucidated in detail and the insights obtained were used to target HCV RNA function. Computational approach was used to predict the putative amino acid residues within the protease that might be involved in the interaction with the HCV IRES. Based on the predictions a 30-mer peptide (NS3proC-30) was designed from the RNA binding region. This peptide retained the RNA binding ability and also inhibited IRES mediated translation. The NS3proC-30 peptide was further shortened to 15-mer length (NS3proC-C15) and demonstrated ex vivo its ability to inhibit translation as well as replication. Additionally, its activity was tested in vivo in a mice model by encapsulating the peptide in Sendai virus based virosome followed by preferential delivery in mice liver. This virosome derived from Sendai virus F protein has terminal galactose moiety that interacts with the asialoglycoprotein receptor on the hepatocytes leading to membrane fusion and release of contents inside the cell. Results suggested that this peptide can be used as a potent anti-HCV agent. It has been shown earlier from our laboratory, that La protein interacts with HCVIRES near initiator AUG at GCAC motif by its central RNA recognition motif, the RRM2 (residues 112-184). A 24 mer peptide derived from this RRM2 of La (LaR2C) retained RNA binding ability and inhibited HCV RNA translation. NMR spectroscopy of the HCV-IRES bound peptide complex revealed putative contact points, mutations at which showed reduced RNA binding and translation inhibitory activity. The residues responsible for RNA recognition were found to form a turn in the RRM2 structure. A 7-mer peptide (LaR2C-N7) comprising this turn showed significant translation inhibitory activity. The bound structure of the peptide inferred from transferred NOE (Nuclear Overhauser Effect) experiments suggested it to be a βturn. Interestingly, addition of hexa-arginine tag enabled the peptide to enter Huh7 cells and showed inhibition HCV-IRES function. More importantly, the peptide significantly inhibited replication of HCVRNA. Smaller forms of this peptide however failed to show significant inhibition of HCV RNA functions suggesting that the 7-mer peptide as the smallest but efficient anti-HCV peptide from the second RNA recognition motif of the human La protein. Further, combinations of the LaR2C-N7 and NS3proC-C15 peptide showed better inhibitory activity. Both the peptides were found to be interacting at similar regions of SLIV around the initiator AUG. The two approaches have the potential to block the HCV RNA-directed translation by targeting the host factor and a viral protein, and thus can be tried in combination as a multi drug approach to combat HCV infection. Taken together, the study reveals important insights about the complex regulation of the HCV RNA translation and replication by the host protein La and viral NS3 protein. The interaction of the NS3 protein with the SLIV of HCV IRES leads to dislodging of the human La protein to inhibit the translation in favour of the RNA replication. These two proteins thus act as the regulators of the translation and the replication of viral RNA. The peptides derived from these regulators in turn regulate the functions of these proteins and inhibit the HCV RNA functions.
358

Modeling The Population Dynamics Of Erythrocytes To Identify Optimal Drug Dosages For The Treatment Of Hepatitis C Virus Infection

Krishnan, Sheeja M 07 1900 (has links) (PDF)
The current treatment for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ~50% of the patients treated. Greater cumulative exposure to ribavirin increases response to interferon-ribavirin combination therapy. A key limitation, however, is the toxic sideeffect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan in patients and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones. A small fraction of the population (~30%) with polymorphisms in the ITPA gene shows protection from ribavirin-induced anemia. The optimum dosage of ribavirin that can be tolerated is then dependent on the ITPA polymorphisms. Coupled with a previous population pharmacokinetic study, our model yields a facile formula for estimating the optimum dosage given a patient’s weight, creatinine clearance, pretreatment hemoglobin levels, and ITPA polymorphism. The reduced lifespan we predict is in agreement with independent measurements from breath tests as well as estimates derived from in vitro studies of ATP depletion. The latter estimates also agree with the extent of ATP depletion due to ribavirin that we predict from a detailed analysis of the nucleoside metabolism in erythrocytes. Our model thus facilitates in conjunction with models of viral kinetics the rational identification of treatment protocols. Our formula for optimum dose presents an avenue for personalizing ribavirin dosage. By keeping anemia tolerable, the predicted optimal dosage may improve adherence, reduce the need for drug monitoring, and increase response rates.
359

Interactions entre le métabolisme hépatique des sels biliaires et des lipoprotéines et les infections par les virus des hépatites B et C / Interactions between hepatic metabolism of bile acids and lipoproteins and Hepatitis B and C infections

Ramière, Christophe 23 February 2012 (has links)
Les virus des hépatites B et C (VHB et VHC) entretiennent des liens étroits avec le métabolisme lipidique des hépatocytes. Ainsi, la réplication du VHB est dépendante de certains récepteurs nucléaires hépatiques, tels que HNF4α et PPARα, impliqués dans ce métabolisme. L’assemblage des particules virales du VHC dépend lui de la voie de synthèse des lipoprotéines de très faible densité (VLDL) et le virus circule dans le sang sous forme de lipo-viro-particules associé notamment à l’apolipoprotéine B, un composant essentiel des VLDL. Dans ce travail, nous avons d’abord étudié le rôle de FXRα, le récepteur nucléaire des sels biliaires, sur la réplication du VHB. Nous avons montré, in vitro, que les sels biliaires, via FXRα, activaient le promoteur de Core du VHB qui contrôle le niveau de réplication virale. Puis dans l’étude des liens entre les lipoprotéines et le VHC, nous avons montré que l’apoB présente sur certaines particules virales jouaient un rôle important dans l’infectiosité du virus in vitro, et que la protéine Cideb, présente en surface des gouttelettes lipidiques et impliquée dans l’assemblage des VLDL, était impliquée dans l’association du VHC avec l’apoB et influençait l’infectiosité des virions sécrétés. De plus nous avons mis en évidence l’existence de particules sub-virales chez les patients infectés, de nature lipoprotéique mais ne portant que les protéines d’enveloppes du VHC. Tous ces résultats renforcent l’idée d’une adaptation du VHB et du VHC au métabolisme lipidique hépatique. Les bénéfices éventuels qu’en retirent ces deux virus, ainsi que l’existence de possibles thérapeutiques anti-virales ciblant le métabolisme lipidique, restent à explorer / Hepatitis B and C viruses (HBV and HCV) infections are tightly linked with hepatic lipid metabolism. HBV replication depends on specific nuclear receptors, such as HNF4α and PPARα, both implicated in this metabolism. HCV assembly depends on the synthesis of Very-Low-Density Lipoproteins (VLDL), and the virus circulates in the blood as lipo-viral-particles associated in particular with apoB, an essential component of VLDL. In this study, we first studied the influence of FXRα, the nuclear receptor for bile acids, on HBV replication. We showed that, in vitro, bile acids, via FXRα, were able to activate the HBV Core promoter which controls the level of viral replication. Then, in the study of the interactions between HCV and lipoproteins, we demonstrated that apoB, which is associated with a proportion of viral particles, played an important role in HCV infectivity in vitro, and that Cideb, a protein involved in VLDL assembly, was implicated in the association between HCV and apoB and influenced the infectivity of secreted viral particles. Finally, we showed that, besides HCV infectious particles, sub-particles bearing only viral envelope glycoproteins circulated in the blood of infected patients. Interactions of HBV with the metabolism of bile acids, and of HCV with the metabolism of lipoproteins, are two examples of adaptation of a parasite to its host. The potential benefits from these interactions are still to be determined, as well as the possibility to develop anti-viral strategies targeting lipid metabolism
360

Virus de l'hépatite C, Nétrine-1 et réponse aux protéines mal repliées en contexte hépatique / Hepatitis C virus, Netrin-1 and the unfolded protein response in a hepatic context

Lahlali, Thomas 16 December 2014 (has links)
Les connaissances actuelles en pathologie hépatique suggèrent que HCV n'est pas directement oncogénique mais expose les patients au risque de cancer du foie dans un contexte inflammatoire associé à une réponse UPR (Unfolded Protein Response) et une régénération hépatique. La nétrine-1, le ligand canonique de la famille des DRs (Récepteurs à dépendance), est une protéine anti-apoptotique impliquée dans le développement, l'inflammation et la tumorigenèse. Les DRs induisent l'apoptose en absence de leurs ligands. A ce jour, il n'existe aucune donnée reliant le concept de DR et les virus oncogènes. Au cours de ma thèse, j'ai contribué à démontrer que la fonctionnalité des DRs était altérée au cours de l'infection par HCV in vitro et in vivo. Nous avons montré que la surexpression de la nétrine-1 augmente l'infectivité des virions et promeut leur entrée via l'activation et la diminution du recyclage de l'EGFR. De son coté, HCV augmente l'expression de la nétrine-1 suite à l'activation de l'épissage de son ARN pré-messager. Nous avons aussi montré que l'expression du récepteur à la nétrine-1, UNC5A, était diminuée au cours de l'infection suite à des diminutions transcriptionnelle et traductionnelle. Dans ce cadre, la nétrine-1 joue le rôle de facteur proviral en inhibant une potentielle voie de signalisation antivirale induite par le récepteur UNC5A non lié. Nous avons ensuite voulu savoir quelles conséquences cette surexpression de nétrine-1 pourrait avoir en physiopathologie hépatique en contexte non infectieux. Un stress du RE (Réticulum Endoplasmique) est observé au cours de l'infection par HCV. Le stress du RE entraîne l'activation de la réponse UPR qui induit l'apoptose médiée par la DAPK1 en cas de stress prolongé. Le fait que le récepteur UNC5B active aussi l'apoptose via l'activation de la DAPK1 nous a conduit à étudier l'implication de la nétrine-1 dans la survie cellulaire au cours de la réponse UPR en contexte hépatique. Nous avons démontré à la fois in vitro et in vivo que l'expression de la nétrine-1 pourrait protéger les cellules contre l'apoptose induite par la réponse UPR suite à sa liaison aux récepteurs UNC5A et C qui entraîne l'inhibition de la DAPK1. De nombreuses études ont également reporté des rôles de la nétrine-1 dans l'inflammation et la néoangiogenèse. Nous avons montré que la nétrine-1 inhibe la migration transendothéliale hépatique des PBMCs (Peripheral Blood Mononucleated Cells) et accélère la tubulogenèse des cellules endothéliales intrasinusoïdales hépatiques. Dans leur ensemble, mes travaux de thèse suggèrent que la nétrine-1 via ses récepteurs UNC5s joue des rôles délétères en pathophysiologie hépatique favorables à la persistance virale et à la résistance à la mort cellulaire / Current knowledge in hepatic pathology suggests that HCV is not directly oncogenic but puts patients at risk for liver cancer in a context associated with a chronic inflammation, UPR (Unfolded Protein Response) and liver regeneration. Netrin-1, the canonical ligand of the DR (Dependence Receptor) family, is an antiapoptotic secreted factor implicated in development, cancer and cancer-associated inflammatory diseases. DRs induce cell death when unbound. No data linking the DR system to oncogenic viruses are available to date. During the first part of my PhD, I contributed to demonstrate that HCV infection alters DR functionality both in vitro and in vivo. We found that Netrin-1 conditions HCV virion infectivity and promotes virion entry by increasing the activation and decreasing the recycling of the EGFR. In turn, HCV increases Netrin-1 expression through enhanced Netrin-1 pre-mRNA splicing. The Netrin-1 UNC5A receptor expression was decreased upon HCV infection through diminished transcription and translation. In this setting, Netrin-1 acts as a proviral factor by inhibiting a putative antiviral signaling pathway conveyed by the unbound UNC5A receptor. In this context, we wanted to determine what consequences such Netrin-1 up-regulation could induce in non-infectious hepatic pathophysiology. Chronic ER (endoplasmic reticulum) stress is observed during HCV infection. ER stress leads to UPR activation which triggers apoptosis via DAPK1 activation upon prolonged stress. The fact that the UNC5B receptor induces apoptosis through DAPK1 activation led us to investigate Netrin-1 implication in cell survival upon UPR in the liver. During the second part of my PhD, I have demonstrated both in vitro and in vivo in mice that Netrin-1 translation during UPR could protect cells against UPR-related cell death after binding to UNC5A and C, in a DAPK1-mediated fashion. Several studies have also identified Netrin-1 roles in inflammation and neo-angiogenesis. We found that Netrin-1 inhibits hepatic transendothelial migration of PBMCs (Peripheral Blood Mononucleated Cells) and accelerates tubulogenesis of liver sinusoidal endothelial cells. Netrin-1’s role in a hepatic inflammation and neoangiogenesis, both events being tightly associated with viral hepatitis, remains to be thoroughly elucidated. Altogether, our results suggest that Netrin-1 plays UNC5-dependent deleterious roles in hepatic pathophysiology, leading to viral persistence as well as resistance to cell death

Page generated in 0.0602 seconds