• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 41
  • 40
  • 27
  • 23
  • 16
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 385
  • 385
  • 122
  • 109
  • 102
  • 73
  • 68
  • 47
  • 45
  • 43
  • 42
  • 38
  • 37
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

On the stability of current collectors in high-voltage lithium-ion batteries containing LiFSI electrolytes

Carlö, Kevin January 2023 (has links)
The increasing energy demand requires a transition from fossil fuels to renewable resources. Lithium-ion batteries (LIBs) offer a promising solution as efficient energy storage devices. However, the aluminum current collector (CC) in LIBs is susceptible to anodic dissolution above 3 V vs. Li+/Li in commercial carbonate liquid electrolytes, compromising the battery performance. In this study, various approaches were explored to mitigate anodic dissolution in LiFSI EC:DEC at high voltages of the aluminum CC in LIBs, employing cyclic voltammetry (CV) and scanning electron microscopy (SEM). It was found that boiling the Al foil in water in an air atmosphere to increase the thickness of the surface Al2O3 layer improved the anodic stability and offered enhanced protection against proton attack (due to the oxidation of the carbonate solvent at high voltage). However, increasing the LiFSI electrolyte concentration to 2 M did not increase the anodic stability due to the absence of a passivating AlF3 layer. Notably, in 4 M LiFSI, impurity-induced high F- concentration facilitated the formation of a passivating AlF3 layer, resulting in improved anodic stability. Moreover, specific volume ratios of LiFSI EC:DEC and 1 M LiPF6 EC:DEC (1:1) (LP40) yielded the F- concentration necessary for forming a passivating AlF3 layer and significantly enhanced the anodic stability. On the other hand, carbon-coating the Al foil did not show significant improvements regarding the anodic stability. It was found that the corrosion was time-dependent at a low scan rate, a drastic anodic dissolution of the aluminum was seen at higher temperatures, and the corrosion also became more pronounced. At room temperature, carbon-coated Al foils exhibited increased stability.
142

Investigating Chemical and Structural Heterogeneities of High-Voltage Spinel Cathode Material for Li-ion Batteries

Spence, Stephanie Leigh 20 March 2023 (has links)
Li-ion battery technologies have transformed the consumer electronics and electric vehicles landscape over the last few decades. Single-crystal cathode materials with controllable physical properties including size, morphology, and crystal facets can aid researchers in developing relationships between physical characteristics, chemical properties, and electrochemical performance. High-voltage LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) materials are desirable as cathodes due to their low cost, low toxicity, and high capacity and energy density making them promising to meet increasing consumer demands for battery materials. However, transition metal dissolution, interfacial instability, and capacity fading plague these materials when paired with graphite, limiting their commercial capability. Furthermore, variation in Ni/Mn ordering can lead to complex multiphase co-existence and changes in Mn oxidation state and electrochemical performance. These properties can be adjusted during synthesis using a facile and tunable molten salt synthesis method. This dissertation focuses on the investigation of chemical and structural heterogeneities of LNMO prepared under different synthetic conditions at different length scales. In Chapter 2, the influences of molten salt synthesis parameters on LNMO particle size, morphology, bulk uniformity, and performance are evaluated revealing the difficulty of reproducible cathode synthesis. We utilize the X-ray nanodiffraction technique throughout this work, which provides high-resolution structural information. We develop a method to measure and relate lattice strain to phase distribution at the tens of nanometers scale. In Chapter 3, mapping lattice distortions of LNMO particles with varying global Mn oxidation states reveals inherent structural defects and distortion heterogeneities. In Chapter 4, we examine lattice distortion evolution upon chemical delithiation, Mn dissolution behaviors, and evaluate the chemical delithiation method as a means to replicate electrochemical cycling conditions. We further investigate lattice distortion spatially via in situ nanodiffraction during battery cycling in Chapter 5, illustrating the capabilities of the measurement to provide practical understanding of cathode transformations. From intra-particle to electrode materials level, heterogeneities that arise in cathode materials can dictate performance properties and degradation mechanisms and are necessary for researchers to understand for the improvement of Li-ion battery systems. The development of the nanodiffraction measurements aids in our understanding of inherent and dynamic materials chemical and structural heterogeneities. / Doctor of Philosophy / The invention of rechargeable Li-ion batteries in the 1990s has undeniably revolutionized modern civilization. Cell phones, laptops, grid energy storage, and electric vehicles have become fundamental fixtures of the 21st century. As technologies improve and requirements for advanced renewable energy storage have increased, researchers have sought to design longer lasting, faster charging, and more lightweight batteries. Modifying and finding new positive electrode materials is one way to improve the capabilities of modern batteries as their properties are governed by fundamental chemistry. High-voltage LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is one such material that can allow for fast charging and high energy storage capacity, but its commercialization is hindered by complex physical and chemical properties, which can limit its lifetime in batteries. Large, particles with well-defined shapes are desirable to improve the stability of the materials; however, understanding their defects and structural heterogeneities is vital to continued optimization and requires advanced characterization techniques. In this dissertation, we characterize the physical phases and chemical properties of LNMO samples prepared under different conditions resulting in different particle shapes, sizes, and chemical distributions. An advanced X-ray nanodiffraction technique is used to measure phase distributions within individual particles while lab-based analytical techniques and electrochemical testing can determine bulk properties and battery performance of materials. Overall, the aim of this work is to develop techniques to measure structural and chemical heterogeneities of cathode materials at different length scales and to understand how they influence properties and performance in batteries. This work provides valuable insights into the inherent and dynamic properties of high-voltage electrode materials useful to advance our understanding of how these materials fail and to aid researchers in creating design principles to develop stable, high-performing future generations of rechargeable batteries.
143

Partial Discharges: Experimental Investigation, Model Development, and Data Analytics

Razavi Borghei, Seyyed Moein 11 February 2022 (has links)
Insulation system is an inseparable part of electrical equipment. In this study, one of the most important aging factors in insulation systems known as partial discharge (PD) is targeted. PD phenomenon has been studied for more than a century and yet new technologies still demand the investigation of PD impact. Nowadays, electrification is penetrating into various fossil-fuel-based industries such as transportation system that demands the reliability of electrical equipment under various harsh environmental conditions. Due to the lack of knowledge on the behavior of insulation systems, research in this area is intensively needed. The current study probes into the partial discharge phenomenon from two aspects and the groundwork for both aspects are provided by experimentation of multiple PD types. In the first goal, a finite-element analysis (FEA) approach is developed based on measurement data to estimate electric field distribution. The FEA model is coupled with a programming scheme to evaluate PD conditions, calculate PD metrics, and perform statistical analysis of the results. For the second target, it is aimed to use deep neural networks to identify and discriminate different sources of PD. The measurement data are used to generate thousands of phase-resolved PD (PRPD) images that will be used for training deep learning models. To meet the characteristics of the dataset, a deep residual neural network is designed and optimized to discriminate PD sources in an accurate, stable, and time-efficient way. The outcome of this research enhances the reliability of electrical apparatus through a better understanding of the PD behavior and lays a foundation for automatic monitoring of PD sources. / Doctor of Philosophy / Electrical equipment functions properly when its conductive elements are electrically insulated. The science of dealing with insulation systems has become more prominent in recent years due to the novel challenges and circumstances introduced by the rapid electrification trend. As an instance, the electrification trend in transportation systems can impose a multitude of environmental, thermal, and mechanical constraints which were not traditionally considered. These new challenges have led to an accelerated deterioration rate of insulation materials. To address this concern, this study targets the experimentation and modeling of the main aging mechanism in electrical equipment known as partial discharge (PD). A numerical model based on finite-element analysis (FEA) is developed that agrees with the test results and can accurately predict the aging of insulating materials due to the PD phenomenon. Moreover, the growing interest toward electrification of the aviation industry (as a response to the climate change crisis) requires the study of insulating materials under low-pressure (high-altitude) conditions. Theoretical and experimental data confirm the more frequent occurrence of PDs and their higher intensity under low-pressure conditions. Safety of operation is the highest priority in airborne transportation, yet no study has addressed the condition monitoring system as a necessary asset of the electric aircraft. To address this research gap, this work develops a dielectric online condition monitoring system (DOCMS) that actively monitors the deterioration level of insulation using deep learning methods. Based on standardized measurements under low-pressure conditions, the data are preprocessed to train the deep neural network with the pattern of PD activities. The proposed scheme can achieve >82% with short-term signals emitted measured from the system.
144

Test Method for Volume-resistivity Measurements on High Voltage Cables

Althini, Ruben, Larsson, Emil January 2024 (has links)
Introduction. A part of the standard testing procedure on high voltage cables is the measuring of the volume resistivity in the different semi-conductive layers. A need for improvement has been realized because of the increased frequency of testing, which is a result of the recent expansion of cable production of NKT in Karlskrona. Objective. The objectives of the thesis are to firstly discover what the needs are for improvements within the method of conducting volume resistivity measurements on high voltage cables. Secondly, following these discoveries, solving the problems by developing new products. Method. The method for the thesis work is divided into two parts, performing a case study on the current measurement method, and product development for the new solutions. The case study was conducted mainly by gathering empirical data through interviews and observations. The product development process started with ideation for solutions, followed by prototyping, and lastly, a validation process to test the new solutions through experiments and lead used testing. The entirety of the work was conducted through a design thinking approach. Result. From the case study it was discovered that two main issues needed to be addressed, being a new solution for a measurement rig, and a way to streamline the painting and taping process. A new design for a measurement rig was invented. The new solution contains two rigs, which allows for more samples to be heated simultaneously, halving the preheating time when testing four samples from the current measurement method. A preparation station was also created to aid the operators with the taping and painting, which resulted in a 40% reduced time for these tasks. Conclusion. By implementing new products, the measurement method for conducting volume resistivity has been improved by time effectiveness, robustness, and reliability.
145

Planejamento de sistemas de transmissão em área com fonte de geração intermitente, apoiado no uso de tecnologias avançadas. / Planning of transmission systems in an area with an intermittent generation source, based on the use of advanced technologies.

Silveira, Patrícia Oliveira da 02 May 2017 (has links)
O Brasil é um país de dimensões continentais, onde existe uma considerável distância entre a geração e os principais centros de consumo. Dessa forma, o estudo e desenvolvimento de novas tecnologias de transmissão a longas distâncias é de fundamental importância para o desenvolvimento do país. A solução mais utilizada atualmente é a transmissão em corrente alternada. Entretanto a transmissão em corrente continua também é uma solução viável para longas distâncias. O sistema brasileiro é composto principalmente por linhas 500 kV em corrente alternada (também há 230; 345; 440 e 750 kV), bem como em corrente continua (em ±600 e ±800 kV). O presente estudo apresenta uma solução de transmissão em corrente alternada por linhas de 1000 kV, que se mostrou mais econômico na transmissão de potências superiores a 3.500 MW e distâncias de 1400km. Nos próximos anos, a geração de energia elétrica no Brasil será expandida de forma significativa, ocorrerá um aumento principalmente na geração de energia eólica e solar, localizadas em sua maioria na região Nordeste do país. Esse aumento na geração exigirá a transmissão de grandes blocos de energia elétrica por distâncias significativas, devido à falta de proximidade entre a geração e os principais centros consumidores, que estão localizados no Sudeste. Neste estudo, serão mostradas as etapas de definição de condutor economicamente mais adequado e projeto da geometria da torre. Com base nos dados obtidos, será feita a avaliação do desempenho da linha 1000 kV, durante a operação normal de fluxo de carga, curtos-circuitos e estabilidade. / Brazil, a country of continental proportions, have significant distance between the power generation centers and the main consumer centers. In such way, the study and development of new transmission technologies over long distances is of fundamental importance for the development of the country. Nowadays, the most commonly used solution is alternating current transmission. However, direct current transmission is also a viable solution for long distances. The Brazilian system mainly consists of 500 kV alternating current lines (along with 230, 345, 440 and 750 kV) and direct current lines (± 600 and ± 800 kV). This study provides a solution for transmission in alternating current by lines of 1000 kV, which proved to be more economical in power transmission over 3,500 MW and distances beyond 1400km. In the coming years, the electric power generation in Brazil will expand significantly; a boost will take place mainly in wind and solar power generation, located mostly in the Northeast of the country. This generation expansion will require transmission of large blocks of electric power over considerable distances, due to the lack of proximity between generation sites and main consumer centers located in the Southeast. This study will show the setting stages of the most economically applicable conductor and tower geometry design. Based on the data obtained, the performance of the 1000 kV line will be evaluated during the regular load flow operation, short circuits and stability.
146

Planejamento de sistemas de transmissão em área com fonte de geração intermitente, apoiado no uso de tecnologias avançadas. / Planning of transmission systems in an area with an intermittent generation source, based on the use of advanced technologies.

Patrícia Oliveira da Silveira 02 May 2017 (has links)
O Brasil é um país de dimensões continentais, onde existe uma considerável distância entre a geração e os principais centros de consumo. Dessa forma, o estudo e desenvolvimento de novas tecnologias de transmissão a longas distâncias é de fundamental importância para o desenvolvimento do país. A solução mais utilizada atualmente é a transmissão em corrente alternada. Entretanto a transmissão em corrente continua também é uma solução viável para longas distâncias. O sistema brasileiro é composto principalmente por linhas 500 kV em corrente alternada (também há 230; 345; 440 e 750 kV), bem como em corrente continua (em ±600 e ±800 kV). O presente estudo apresenta uma solução de transmissão em corrente alternada por linhas de 1000 kV, que se mostrou mais econômico na transmissão de potências superiores a 3.500 MW e distâncias de 1400km. Nos próximos anos, a geração de energia elétrica no Brasil será expandida de forma significativa, ocorrerá um aumento principalmente na geração de energia eólica e solar, localizadas em sua maioria na região Nordeste do país. Esse aumento na geração exigirá a transmissão de grandes blocos de energia elétrica por distâncias significativas, devido à falta de proximidade entre a geração e os principais centros consumidores, que estão localizados no Sudeste. Neste estudo, serão mostradas as etapas de definição de condutor economicamente mais adequado e projeto da geometria da torre. Com base nos dados obtidos, será feita a avaliação do desempenho da linha 1000 kV, durante a operação normal de fluxo de carga, curtos-circuitos e estabilidade. / Brazil, a country of continental proportions, have significant distance between the power generation centers and the main consumer centers. In such way, the study and development of new transmission technologies over long distances is of fundamental importance for the development of the country. Nowadays, the most commonly used solution is alternating current transmission. However, direct current transmission is also a viable solution for long distances. The Brazilian system mainly consists of 500 kV alternating current lines (along with 230, 345, 440 and 750 kV) and direct current lines (± 600 and ± 800 kV). This study provides a solution for transmission in alternating current by lines of 1000 kV, which proved to be more economical in power transmission over 3,500 MW and distances beyond 1400km. In the coming years, the electric power generation in Brazil will expand significantly; a boost will take place mainly in wind and solar power generation, located mostly in the Northeast of the country. This generation expansion will require transmission of large blocks of electric power over considerable distances, due to the lack of proximity between generation sites and main consumer centers located in the Southeast. This study will show the setting stages of the most economically applicable conductor and tower geometry design. Based on the data obtained, the performance of the 1000 kV line will be evaluated during the regular load flow operation, short circuits and stability.
147

Thermal and Electrical Degradation of Resin Impregnated Paper Insulation for High Voltage Transformer Bushings

Jyothi, N S January 2014 (has links) (PDF)
The overall reliability of a power transformer depends to a great extent on the sound operation of the bushings thereof. In view of its overwhelming advantages, resin impregnated paper (RIP) is acquiring prominence over conventional oil impregnated paper (OIP) in transformer bushings. The main advantages of RIP bushings are low dielectric loss and capability of positioning them at any desired angle over the transformer. The RIP structure, being an all-solid system, is completely free from oil phase. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. The degradation of dry-type insulation such as RIP is often due to thermal and electrical stresses. The long time performance thereof, depends strongly, on the maximum operating temperature. In order to be able to predict the regional temperature, it is necessary to consider the thermal and electrical parameters of insulation in question; and to identify and solve the governing equations under the relevant boundary conditions. Electrical failure of insulation is known to be an extremal random process wherein nominally identical specimens of equipment insulation, at constant stress fails at inordinately different times. In order to be able to estimate the life of power equipment like transformer bushing, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. The present work is an attempt to provide reliability and life estimation of High Voltage RIP bushing insulation. The literature survey carried out in this view indicate that investigation on thermal and electric field distribution and the models for failure under combined stress and analysis of the data so as to be able to estimate the possible life of RIP bushing is scanty. Having these aspects in focus, the scope of the present work is defined as: (i) Mapping of the temperature and electric field distribution in the body of 400kV RIP bushing (ii) Deduction of parameters of the probabilistic models for the failure under electrical and thermal ageing (iii) Estimation of life based on diagnostic testing using PD With this in view, the temperature distribution in the body of a 400kV RIP bushing is studied considering the heat generation both in central conductor and that in the insulation. Presence of multiple materials with non-confirming interfaces makes analytical solution rather difficult and hence numerical approach is adopted. In the present work, vertex-centered Finite Volume Method (FVM) is employed for both thermal and electrical analysis. The electric stress distribution is accurately evaluated considering both the non-zero conductivity of the RIP material and the presence of capacitive grading foils. These analysis has clearly shown that Stress grading foils uniforms the stress across the major portion of the bushing insulation Enhancement of the electric conductivity by the temperature is not found to be affective in changing the electric field distribution The temperature distribution is shown to have a maxima near the flange due to the influence of top oil temperature of the transformer Heat generated in the dielectric due to the prevailing electric stress is shown to be insignificant. This ruled out the possibility of thermal runaway and hence the dielectric temperature is within the safe working limits for the bushing considered. The deduction of physical models governing insulation failure depends on the nature of stress. In this work, the insulation failure at constant accelerated stress has been considered and the estimation of life is computed based on inverse power law coupled with Arrhenius law. A high degree of scatter is generic to the experimental data forming the ingredients to develop the models. In view of this, the concept of a random process is invoked. Probabilistic models for the failure of RIP bushing under synergy are adopted and an attempt is made to estimate the life. The well known Weibull distribution and probability plotting of life data is used in this endeavor. The maximum likelihood estimation is used to determine the scale and shape parameters of the Weibull distribution. In the diagnosis of the extent of degradation of insulation due to PD, under long duration electric stress, a non-conventional voltage application method called the classical stepped stress method is adopted. In this technique, the voltage is applied in pre-determined steps over predetermined duration of time. The magnitude of voltage steps is carefully computed based on Miners law and the end-of-life is computed using inverse power law. In summary, this thesis work has contributed to the thermal and electrical degradation of resin impregnated paper insulation for high voltage transformer bushing. The thermal and electrical field distributions computed in the body of bushing clearly shown that these stresses are well within the limit, thereby ruling out the possibility of a thermal runaway. Comparing the estimates of the most probable life of RIP, based on several methods appears to show that any of the method can be adopted. However, as matter of caution and safety, the lowest among them can be taken as a reasonable estimate.
148

Design Optimization and Realization of 4H-SiC Bipolar Junction Transistors

Elahipanah, Hossein January 2017 (has links)
4H-SiC-based bipolar junction transistors (BJTs) are attractive devices for high-voltage and high-temperature operations due to their high current capability, low specific on-resistance, and process simplicity. To extend the potential of SiC BJTs to power electronic industrial applications, it is essential to realize high-efficient devices with high-current and low-loss by a reliable and wafer-scale fabrication process. In this thesis, we focus on the improvement of the 4H-SiC BJT performance, including the device optimization and process development. To optimize the 4H-SiC BJT design, a comprehensive study in terms of cell geometries, device scaling, and device layout is performed. The hexagon-cell geometry shows 42% higher current density and 21% lower specific on-resistance at a given maximum current gain compared to the interdigitated finger design. Also, a layout design, called intertwined, is used for 100% usage of the conducting area. A higher current is achieved by saving the inactive portion of the conducting area. Different multi-step etched edge termination techniques with an efficiency of &gt;92% are realized. Regarding the process development, an improved surface passivation is used to reduce the surface recombination and improve the maximum current gain of 4H-SiC BJTs. Moreover, wafer-scale lift-off-free processes for the n- and p-Ohmic contact technologies to 4H-SiC are successfully developed. Both Ohmic metal technologies are based on a self-aligned Ni-silicide (Ni-SALICIDE) process. Regarding the device characterization, a maximum current gain of 40, a specific on-resistance of 20 mΩ·cm2, and a maximum breakdown voltage of 5.85 kV for the 4H-SiC BJTs are measured. By employing the enhanced surface passivation, a maximum current gain of 139 and a specific on-resistance of 579 mΩ·cm2 at the current density of 89 A/cm2 for the 15-kV class BJTs are obtained. Moreover, low-voltage 4H-SiC lateral BJTs and Darlington pair with output current of 1−15 A for high-temperature operations up to 500 °C were fabricated. This thesis focuses on the improvement of the 4H-SiC BJT performance in terms of the device optimization and process development for high-voltage and high-temperature applications. The epilayer design and the device structure and topology are optimized to realize high-efficient BJTs. Also, wafer-scale fabrication process steps are developed to enable realization of high-current devices for the real applications. / <p>QC 20170810</p>
149

DC To DC Converter Topologies For High Voltage Power Supplies Under Pulsed Loading

Vishwanathan, Neti 02 1900 (has links) (PDF)
No description available.
150

Návrh provedení plošné kabelizace venkovních vedení 22 kV určené uzlové oblasti / Technical design of extensive replacement of overhead lines by HV cables in given distribution area

Bracek, David January 2020 (has links)
This diploma thesis deals with the technical design of extensive replacement of overhead lines by high voltage cables in the given distribution area. In its first part the thesis is focused on the survey of the concerning legislation and technical standards, which must be followed during making technical design documentation. It also mentions the processes which precede the replacement itself. There are also the operational differences between the overhead lines and the high voltage cables in the first part, too. The second part is focused on the technical description of the given area, the technical design of the replacement by high voltage cables and the realization of calculation, which is important as a base for further realization of technical arrangements. The consideration of technical feasibility and economic efficiency are also contained in the second part.

Page generated in 0.2228 seconds