• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 72
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 238
  • 238
  • 238
  • 108
  • 94
  • 71
  • 38
  • 33
  • 33
  • 28
  • 27
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Importance of Carbohydrate Timing during High-intensity Training while Consuming a Low Carbohydrate Diet

Krings, Benjamin Michael 04 May 2018 (has links)
The effects of low carbohydrate (CHO), high fat (LCHF) diets on adaptations to high-intensity exercise have recently gained interest. Consuming a LCHF may potentially decrease the ability to use CHO during exercise and impair high-intensity exercise adaptations. Therefore, the purpose of this investigation was to examine the importance of CHO timing while consuming a LCHF diet and completing a high-intensity exercise program. Eighteen resistance trained males were randomized into two treatment groups. Both groups completed 6 weeks of a high-intensity exercise training program with the first 2 weeks serving as familiarization to resistance training (RT) 3 days per week and completing one high-intensity interval training (HIIT) session. During the final 4 weeks, participants trained 5 days per weeks, three days of RT and two days of HIIT (repeated 30 s all out sprints). All participants consumed a LCHF diet (~25%, ~25%, and ~50% of daily kilocalorie intake coming from CHO, protein, and fat). The supplemented (SUPP) group (n=9) consumed 30 g of CHO during exercise and 40 g of CHO immediately after each exercise session. The remainder of the SUPP groups daily CHO intake came outside of training. The non-supplemented (NONSUPP) group (n=9) consumed an artificially flavored placebo during exercise. The NONSUPP group had the same daily CHO intake as the SUPP group, with the only difference being CHO timing. Dependent variables measured pre-and post-training included back squat and bench press one-repetition maximums, peak oxygen consumption (V̇O2 peak), power output (Wingate test), body composition, fasted glucose, insulin, and testosterone, and gastrointestinal distress (GID) during exercise. Both groups significantly improved back squat and bench press strength, biceps thickness, absolute and relative V̇O2 peak, and power output. Respiratory exchange ratio was significantly lower and time to exhaustion significantly increased during the post V̇O2 peak test. However, there were no changes in resting glucose, insulin, and testosterone or body fat. RT and HIIT caused significant increases in GID, independent of beverage content, with no differences between training. Our results suggest that CHO timing has no impact on adaptations to exercise training, but favorable training adaptations can be made while consuming a LCHF diet.
22

High Fat Diet Effects on Erythrophagocytosis and MCP-1 Levels in Mice

Coyle, Danielle R. January 2012 (has links)
No description available.
23

The Effect of Postprandial Lipidemia on Endothelial Function Following Moderate Intensity Exercise in Endurance Athletes vs. Non-endurance Athletes

Birkemeier, Kristy L. 06 May 2013 (has links)
No description available.
24

Noninvasive evaluation of GIP effects on β-cell mass under high-fat diet / 高脂肪食下におけるGIPの膵β細胞保護効果の非侵襲的評価

Kiyobayashi, Sakura 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24200号 / 医博第4894号 / 新制||医||1061(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 中本 裕士, 教授 江木 盛時 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
25

The Effect of a Probiotic Supplement on Insulin Sensitivity and Skeletal Muscle Substrate Oxidation during High Fat Feeding

Osterberg, Kristin 28 August 2014 (has links)
Background: Modifying the gut microbiota through the administration of probiotics during high fat feeding has been shown to attenuate weight gain and body fat accretion while improving insulin sensitivity in animal models. Objective: Our objective was to determine the effects of the probiotic VSL#3 on body weightand composition, skeletal muscle substrate oxidation, and insulin sensitivity and during 4 weeks of high-fat, hypercaloric feeding. We hypothesized that the probiotic would attenuate the body weight and fat gain and adverse changes in insulin sensitivity and substrate oxidation following high fat, hypercaloric feeding in young, non-obese males. Methods: Twenty non-obese males (18-30 y) volunteered to participate in the present study. Following a 2-week eucaloric control diet, subjects underwent a dual x-ray absorptiometry (DXA) to determine body composition, an intravenous glucose tolerance test (IVGTT) to determine insulin sensitivity, a skeletal muscle biopsy for measurement of substrate oxidation. Serum endotoxin was also measured. Subsequently, subjects were randomized to receive either VSL#3 (2 satchets) or placebo during 4 weeks of consuming a high fat (55% fat), hypercaloric diet (+1,000 kcal/day). Macronutrient composition of the high fat diet was 55% fat, 30% carbohydrate, and 15% protein. Results: There were no differences between the groups in subject characteristics or in the dependent variables at baseline. Body weight and fat mass increased less (P<0.045) following the high fat diet with VSL#3 compared to placebo. Insulin sensitivity (and other IVGTT variables) and both glucose and fat oxidation did not change significantly with time or VSL#3 treatment. Serum endotoxin concentration was not different between groups following the high-fat diet. Conclusions: VSL#3, a multi-strain probiotic, attenuated body weight and fat gain following a 4-week high fat, hypercaloric diet compared with a placebo. There were no differences between the VSL and control in circulating endotoxin, insulin sensitivity (and other IVGTT variables) or in skeletal muscle substrate oxidation. / Ph. D.
26

Do Probiotics Protect Against the Deleterious Effects of a High-Fat Diet?

Fundaro, Gabrielle F. 27 June 2014 (has links)
High-fat diets and obesity have been linked to unfavorable changes in gut bacteria and increased leakage of bacterially-derived lipopolysaccharide (endotoxin) from the intestinal tract into circulation, which is associated with low-grade inflammation, metabolic dysregulation and degradation of tight-junction proteins between intestinal cells. Probiotic supplementation is the practice of ingesting live strains of bacteria that are proposed to have a beneficial effect on the host by enriching the intestine with healthy bacteria. The purpose of this project was to determine if probiotic supplementation would prevent increased inflammatory tone, decreased oxidative capacity, and decreased tight-junction protein expression associated with high-fat feeding and elevated endogenous endotoxin. Male C57BL/6J mice were fed either a control (CD, 10% fat) or high-fat (HFD, 60% fat) diet for 4 weeks while receiving a daily oral gavage of water (C-VSL#3, HF-VSL#3) or probiotics (C+VSL#3, HF+VSL#3) equivalent to 1.2 billion live cultures. Changes in body weight, body composition, respiratory exchange ratio, energy expenditure, and glucose and insulin tolerance were measured in live mice. Markers of metabolic function were measured in whole muscle homgenates and mitochondria isolated from red and white skeletal muscle. Plasma endotoxin was measured in blood collected from fasted mice at the time of euthanization. The large and small intestines were collected and mRNA levels of tight-junction proteins and markers of nutrient sensing were measured. To determine a possible protective effect against endogenous LPS, a second cohort of mice were given an intraperitoneal injection of 0.1µg/kg LPS or saline to induce endotoxemia after four weeks of the aforementioned feeding protocol. Markers of metabolic function and inflammation were measured in mitochondria, skeletal muscle and liver. VSL#3 supplementation improved glucose homeostasis and markers of inflammation while enhancing nutrient sensing in the gut. / Ph. D.
27

Skeletal Muscle Substrate Metabolism following a High Fat Diet in Sedentary and Endurance Trained Males

Baugh, Mary Elizabeth 18 October 2018 (has links)
Insulin resistance (IR), T2DM, and obesity together form a cluster of interrelated metabolic challenges that may be linked by metabolic inflexibility. Metabolic inflexibility is characterized by the resistance to switching substrate oxidation preference based on substrate availability and can be measured in either fasted or insulin-stimulated conditions. As the largest site for glucose disposal and a primary tissue influencing regulation of blood glucose concentrations, skeletal muscle likely plays a central role in regulating substrate oxidation preference based on substrate availability. Skeletal muscle lipotoxicity caused by an impaired regulation of fat uptake and oxidation is postulated to disrupt insulin signaling and lead to skeletal muscle IR. High dietary saturated fat intake results in reduced basal fat oxidation and a resistance to switching to carbohydrate oxidation during insulin-stimulated conditions in susceptible individuals. This metabolic inflexibility may lead to an accumulation of intramyocellular species that impair insulin signaling. Endurance exercise training improves the capacity for fat oxidation in metabolically inflexible individuals. However, relatively little is known about how endurance exercise training influences substrate oxidation preference when paired with a high fat diet (HFD). Therefore, the purpose of this study was to determine the effects of a HFD on substrate metabolism in skeletal muscle of sedentary and endurance trained (ET) males. Healthy, sedentary (n=17) and ET (n=7) males first consumed a 10-day moderate carbohydrate diet (55% carbohydrate, 30% total fat, <10% saturated fat) isocaloric to their individual energy requirements and then underwent a 4- hour high fat challenge testing session. During the session, they consumed a high fat meal (820 kcals; 25% carbohydrate, 63% total fat [26% saturated fat]), and skeletal muscle biopsies were taken in the fasted and 4-hour postprandial conditions. Participants then consumed a 5-day HFD (30% carbohydrate, 55% total fat, 25% saturated fat) and repeated the high fat challenge testing session. Substrate oxidation measures were performed on the collected skeletal muscle tissue, and the meal effect, defined as the percent change from the fasting to 4- hour postprandial condition, for each measure was calculated. There was a HFD by physical activity group interaction on meal effect for metabolic flexibility (P<0.05) and a HFD effect on meal effect for glucose oxidation (P<0.05). Meal effects for metabolic flexibility and glucose oxidation were maintained in the ET (20 ± 4% to 41 ± 21% and 128 ± 92% and 41 ± 15%, respectively; both P>0.05) but decreased in the sedentary (34 ± 7% to 4 ± 5% and 78 ± 26% to -21 ± 6%, respectively; both P<0.01) group. There were trends toward HFD effects on reductions in meal effects for total (P=0.062) and incomplete (P=0.075) fat oxidation, which were driven primarily by an increase in fasting total (12.1 ± 2.6 nmol/mg protein/h to 18.5 ± 2.3 nmol/mg protein/h; P<0.01) and incomplete (11.5 ± 2.5 nmol/mg protein/h to 17.6 ± 2.3 nmol/mg protein/h; P<0.01) fat oxidation in the ET group as a result of the HFD. Fasting total and incomplete fat oxidation did not change in the sedentary group (7.3 ± 0.8 nmol/mg protein/h to 7.8 ± 0.8 nmol/mg protein/h and 6.8 ± 0.7 nmol/mg protein/h to 7.2 ± 0.8 nmol/mg protein/h, respectively; both P>0.05). Overall, these findings suggest the ET state attenuates deleterious effects of a short-term HFD on reduced metabolic flexibility and insulin-stimulated glucose oxidation. In addition, a HFD-induced reduction in fat oxidation during the fasted-to-fed transition may be caused by differing mechanisms in sedentary and ET individuals. These findings provide a basis for future work targeting the elucidation of potential mechanistic differences in substrate oxidation preference between sedentary and ET individuals. / Ph. D. / Type 2 diabetes (T2DM) is a commonly occurring disease worldwide, and treatment of the disease is considerably burdensome for individuals and societies. T2DM is closely related to insulin resistance (IR) and obesity, and in each of these conditions, the characteristic of metabolic inflexibility has been observed. Metabolic inflexibility is a reduced ability to adjust fat or carbohydrate utilization for energy based on the availability of each of these macronutrients. Skeletal muscle may be an important tissue in the regulation of macronutrient utilization since it plays a key role in blood glucose regulation. High dietary saturated fat intake may lead to metabolic inflexibility in skeletal muscle in susceptible individuals. This metabolic inflexibility may result in increased storage of fat within skeletal muscle, which is hypothesized to disrupt insulin signaling. This disruption can lead to IR. Endurance exercise training improves metabolic flexibility. However, little is known about how endurance exercise training influences macronutrient utilization when paired with a high fat diet (HFD). Therefore, the purpose of this study was to determine the effects of a HFD on macronutrient utilization in skeletal muscle of sedentary and endurance trained (ET) males. Seventeen healthy, sedentary males and seven ET males first consumed a 10-day moderate-carbohydrate diet that was provided by the study investigators and designed to keep each participant weight stable. Participants then underwent a high fat challenge testing session in which they consumed a high fat meal and had skeletal muscle biopsies taken both before and after the meal. Participants then consumed a 5-day HFD, also designed to keep them weight stable, and repeated the high fat challenge testing session. Macronutrient utilization measures were performed on the collected skeletal muscle samples. Overall, metabolic flexibility was reduced in the sedentary group but was maintained in the ET group, which suggests that ET individuals may be protected against developing a HFD-induced metabolic inflexibility in skeletal muscle and its associated downstream negative effects on insulin signaling. In addition, fat utilization during the high fat challenge meal decreased in both sedentary and ET individuals as a result of the HFD. However, fat utilization in the fasted state was higher in ET individuals after the HFD compared with baseline, but fat utilization was the same in sedentary individuals before and after the HFD. This suggests there may be differences between sedentary and ET individuals in the mechanisms involved in the adjustment of fat utilization to dietary fat intake. Further research is needed to understand these differences, as they may play important roles in understanding how IR and T2DM develop.
28

Fat and Cholesterol Update

Misner, Scottie, Curtis, Carol, Whitmer, Evelyn 12 1900 (has links)
2 pp. / Of all the nutrients in the food supply, fat and cholesterol probably receive the most attention from health professionals and the public alike. The scientific evidence is clear that a high-fat diet relates to chronic health problems such as heart disease, some types of cancer, diabetes, and obesity. But both fat and cholesterol are natural components of the body that are vital to good health, and too little fat in your diet is just as unhealthy as too much. This article reviews dietary fats and provides guidelines for choosing foods to balance the type and amount of fat in your diet.
29

Rôle du récepteur aux cannabinoïdes de type 1 (CB1) hypothalamique dans la régulation de la balance énergétique et de l’homéostasie du glucose / Role of hypothalamic cannabinoid type 1 receptors (CB1) in energy balance regulation and glucose homeostasis

Cardinal, Pierre 04 March 2013 (has links)
Le système endocannabinoïde est un acteur majeur de la régulation de la balance énergétique. Cependant, son rôle au niveau de l’hypothalamus, une région critique dans la régulation de la balance énergétique, reste méconnu. L’objectif général de ce travail de thèse a été de disséquer le rôle du récepteur aux cannabinoïdes de type 1 (CB1) exprimé par des populations neuronales hypothalamiques spécifiques dans la régulation de la balance énergétique et l’homéostasie du glucose en caractérisant trois nouvelles lignées de souris possédant une mutation conditionnelle de CB1. En régime standard, la délétion de CB1 dans l’hypothalamus induit une augmentation de la dépense énergétique et une baisse de prise de poids corporel sans modifier la prise alimentaire alors que la délétion de CB1 dans le noyau ventromédian de l’hypothalamus (VMN-CB1-KO) entraîne une baisse significative de masse grasse, une augmentation de l’oxydation des acides gras in vivo, une augmentation de l’activité du système nerveux sympathique (SNS) et un métabolisme du glucose périphérique amélioré. Enfin, la délétion de CB1 dans le noyau paraventriculaire de l’hypothalamus (PVN-CB1-KO) induit une baisse de poids sans modifier la prise alimentaire ni la composition corporelle. Lors de l’exposition à un régime riche en graisses, les souris VMN-CB1-KO prennent plus de poids et de masse grasse que les WT, tandis que les souris PVN-CB1-KO sont partiellement protégées de l’obésité alimentaire grâce à une dépense énergétique accrue.Ces résultats suggèrent que CB1 exprimé par différentes populations hypothalamiques joue un rôle différent dans la régulation de la balance énergétique, qui dépend aussi du régime alimentaire. / The endocannabinoid system is a major player in energy balance regulation. However, a complete understanding of its role within the hypothalamus, a region critically involved in energy balance regulation, is still missing. The general aim of this PhD work was to dissect the specific role of the cannabinoid type 1 receptor (CB1) expressed on different hypothalamic neuronal populations in energy balance regulation and glucose homeostasis by characterizing three new mouse mutant lines with a conditional deletion of CB1. On standard diet, CB1 deletion within the hypothalamus induced an increase in energy expenditure and a decrease in body weight gain without modifying food intake, while CB1 deletion within the ventromedial nucleus of the hypothalamus (VMN-CB1-KO) decreased fat mass, increased fatty acid oxidation in vivo and sympathetic nervous system (SNS) activity, and improved peripheral glucose metabolism. CB1 deletion within the paraventricular nucleus of the hypothalamus (PVN-CB1-KO) decreased body weight gain without affecting food intake or body composition. When exposed to a high-fat diet, VMN-CB1-KO mice gained significantly more weight and fat mass than their WT, while PVN-CB1-KO mice were partly protected from diet-induced obesity thanks to increased energy expenditure. These results overall suggest that CB1 expressed on different hypothalamic neuronal populations have distinct roles in energy balance regulation, which in turn also depend on the diet consumed.
30

Über den Einfluss einer verringerten BRAP-Expression auf die Entwicklung der Atherosklerose im ApoE-defizienten Mausmodell / Effects of a reduced expression of BRAP on the developement of atherosclerosis in ApoE-deficient mice

Sabrow, Moritz Martin 27 February 2019 (has links)
No description available.

Page generated in 0.064 seconds