• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 34
  • 17
  • 17
  • 13
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 55
  • 47
  • 43
  • 41
  • 36
  • 31
  • 31
  • 30
  • 22
  • 22
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Analysis of Spatio-Temporal Phenomena in High-Brightness Diode Lasers using Numerical Simulations

Zeghuzi, Anissa 21 October 2020 (has links)
Breitstreifenlaser haben eine breite Emissionsapertur, die es ermöglicht eine hohe Ausgangsleistung zu erreichen. Gleichzeitig führt sie jedoch zu einer Verringerung der lateralen Strahlqualität und zu ihrem nicht-stationären Verhalten. Forschung in diesem Gebiet ist anwendungsgetrieben und somit ist das Hauptziel eine Erhöhung der Brillanz, die sowohl die Ausgangsleistung als auch die laterale Strahlqualität beinhaltet. Um die zugrunde liegenden raumzeitlichen Phänomene zu verstehen und dieses Wissen zu nutzen, um die Kosten der Brillanz-Optimierung zu minimieren, ist ein selbst-konsistentes Simulationstool notwendig, welches die wichtigsten Prozesse beinhaltet. Zunächst wird in dieser Arbeit ein quasi-dreidimensionales elektro-optisch-thermisches Model präsentiert, welches wesentliche qualitative Eigenschaften von realen Bauteilen gut beschreibt. Zeitabhängige Wanderwellen-Gleichungen werden genutzt, um die inhärent nicht-stationären optischen Felder zu beschreiben, welche an eine Ratengleichung für die Überschussladungsträger in der aktiven Zone gekoppelt sind. Das Model wird in dieser Arbeit um eine Injektionsstromdichte erweitert, die laterale Stromspreizung und räumliches Lochbrennen korrekt beschreibt. Des Weiteren wird ein Temperaturmodel präsentiert, das kurzzeitige lokale Aufheizungen in der Nähe der aktiven Zone und die Formierung einer stationären Temperaturverteilung beinhalten. Im zweiten Teil wird das beschriebene Modell genutzt, um die Gründe von Brillanz-Degradierung, das heißt sowohl die Ursprünge der Leistungssättigung als auch des nicht diffraktionslimitierten Fernfeldes zu untersuchen. Abschließend werden im letzten Teil Laserentwürfe besprochen, welche die laterale Brillanz verbessern. Hierzu gehört ein neuartiges “Schachbrettlaser” Design, bei dem longitudinal-laterale Gewinn-Verlust-Modulation mit zusätzlicher Phasenanpassung ausgenutzt wird, um eine sehr geringe Fernfeld-Divergenz zu erhalten. / Broad-area lasers are edge-emitting semiconductor lasers with a wide lateral emission aperture that enables high output powers, but also diminishes the lateral beam quality and results in their inherently non-stationary behavior. Research in the area is driven by application and the main objective is to increase the brightness which includes both the output power and lateral beam quality. To understand the underlying spatio-temporal phenomena and to apply this knowledge in order to reduce costs for brightness optimization, a self-consistent simulation tool taking into account all essential processes is vital. Firstly, in this work a quasi-three-dimensional opto-electronic and thermal model is presented, that describes well essential qualitative characteristics of real devices. Time-dependent traveling-wave equations are utilized to describe the inherently non-stationary optical fields, which are coupled to dynamic rate equations for the excess carriers in the active region. This model is extended by an injection current density model to accurately include lateral current spreading and spatial hole burning. Furthermore a temperature model is presented that includes short-time local heating near the active region as well as the formation of a stationary temperature profile. Secondly, the reasons of brightness degradation, i.e. the origins of power saturation and the spatially modulated field profile are investigated and lastly, designs that mitigate those effects that limit the lateral brightness under pulsed and continuous-wave operation are discussed. Amongst those designs a novel “chessboard laser” is presented that utilizes longitudinal-lateral gain-loss modulation and an additional phase tailoring to obtain a very low far-field divergence.
282

Design of a Switched Reluctance Motor for a Light Sport Aircraft Application

Abdollahi, Mohammad Ehsan January 2022 (has links)
With the rapid growth of air travel, concerns about the emissions of greenhouse gas emissions resulting from the air transportation sector are growing. Although the current battery technologies might not be adequate for all-electric regional aircraft, the energy density of the current battery technologies could be adequate to electrify light-sport aircraft used for training and recreation. Due to the nature of the propeller load and noise isolation of the cabin, switched reluctance motors can be an excellent candidate for the propulsion system of electrified light-sport aircraft. The proposed SRM is designed to replace a 70 kW permanent magnet synchronous motor used in the aerospace industry with similar volume constraints and operational requirements. In order to meet the high-power density requirements of this application, a design framework is proposed which includes several layers of the design process. The design objectifies are the average torque, torque ripple, and radial forces by integrating the control and geometry design into the proposed framework. A comprehensive design process is carried out with the proposed framework, and a detailed coil design process is performed. The rotor cut-outs are designed to reduce the weight of the motor. The thermal performance of the motor has been analyzed for the calculated motor losses and the cooling system constraints. / Thesis / Master of Applied Science (MASc)
283

Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithium

Griffith, Kent Joseph January 2018 (has links)
Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials. The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb2O5. Three polymorphs, T-Nb2O5, B-Nb2O5, and H-Nb2O5, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO3. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO2–Nb2O5 and Nb2O5–WO3 phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, operando high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.
284

Capacitorless Power Electronics Converters Using Integrated Planar Electro-Magnetics

Haitham M Kanakri (18928150) 03 September 2024 (has links)
<p dir="ltr">The short lifespan of capacitors in power electronics converters is a significant challenge. These capacitors, often electrolytic, are vital for voltage smoothing and frequency filtering. However, their susceptibility to heat, ripple current, and aging can lead to premature faults. This can cause issues like output voltage instability and short circuits, ultimately resulting in catastrophic failure and system shutdown. Capacitors are responsible for 30% of power electronics failures.</p><p dir="ltr">To tackle this challenge, scientists, researchers, and engineers are exploring various approaches detailed in technical literature. These include exploring alternative capacitor technologies, implementing active and passive cooling solutions, and developing advanced monitoring techniques to predict and prevent failures. However, these solutions often come with drawbacks such as increased complexity, reduced efficiency, or higher upfront costs. Additionally, research in material science is ongoing to develop corrosion-resistant capacitors, but such devices are not readily available.</p><p dir="ltr">This dissertation presents a capacitorless solution for dc-dc and dc-ac converters. The proposed solution involves harnessing parasitic elements and integrating them as intrinsic components in power converter technology. This approach holds the promise of enhancing power electronics reliability ratings, thereby facilitating breakthroughs in electric vehicles, compact power processing units, and renewable energy systems. The central scientific premise of this proposal is that the capacitance requirement in a power converter can be met by deliberately augmenting parasitic components.</p><p dir="ltr">Our research hypothesis that incorporating high dielectric material-based thin-films, fabricated using nanotechnology, into planar magnetics will enable the development of a family of capacitorless electronic converters that do not rely on discrete capacitors. This innovative approach represents a departure from the traditional power converter schemes employed in industry.</p><p dir="ltr">The first family of converters introduces a novel capacitorless solid-state power filter (SSPF) for single-phase dc-ac converters. The proposed configuration, comprising a planar transformer and an H-bridge converter operating at high frequency, generates sinusoidal ac voltage without relying on capacitors. Another innovative dc-ac inverter design is the twelve step six-level inverter, which does not incorporate capacitors in its structure.</p><p dir="ltr">The second family of capacitorless topologies consists of non-isolated dc-dc converters, namely the buck converter and the buck-boost converter. These converters utilize alternative materials with high dielectric constants, such as calcium copper titanate (CCTO), to intentionally enhance specific parasitic components, notably inter capacitance. This innovative approach reduces reliance on external discrete capacitors and facilitates the development of highly reliable converters.</p><p dir="ltr">The study also includes detailed discussions on the necessary design specifications for these parasitic capacitors. Furthermore, comprehensive finite element analysis solutions and detailed circuit models are provided. A design example is presented to demonstrate the practical application of the proposed concept in electric vehicle (EV) low voltage side dc-dc power converters used to supply EVs low voltage loads.</p>

Page generated in 0.0304 seconds