Spelling suggestions: "subject:"highfrequency"" "subject:"highffrequency""
421 |
Design of HF Forward Transformer Including Harmonic Eddy Current LossesAmmanambakkam Nagarajan, Dhivya January 2010 (has links)
No description available.
|
422 |
Is the Utricular Striola Specialized to Encode High Frequency Stimuli?Sams, David A. 26 July 2011 (has links)
No description available.
|
423 |
A New High-Frequency Injection Method for Sensorless Control of Doubly-Fed Induction MachinesInoa, Ernesto 26 June 2012 (has links)
No description available.
|
424 |
Low-Profile Magnetic Integration for High-Frequency Point-of-Load ConverterLi, Qiang 24 August 2011 (has links)
Today, every microprocessor is powered with a Voltage Regulator (VR), which is also known as a high current Point-of-Load converter (POL). These circuits are mostly constructed using discrete components, and populated on the motherboard. With this solution, the passive components such as inductors and capacitors are bulky. They occupy a considerable footprint on the motherboard. The problem is exacerbated with the current trend of reducing the size of all forms of portable computing equipment from laptop to netbook, increasing functionalities of PDA and smart phones. In order to solve this problem, a high power density POL needs to be developed. An integration solution was recently proposed to incorporate passive components, especially magnetic components, with active components in order to realize the needed power density for the POL. Today's discrete VR only has around 100W/in3 power density. The 3D integration concept is widely used for low current integrated POL. With this solution, a very low profile planar inductor is built as a substrate for the active components of the POL. By doing so, the POL footprint can be dramatically saved, and the available space is also fully utilized. This 3D integrated POL can achieve 300-1000W/in3 power density, however, with considerably less current. This might address the needs of small hand-held equipment such as PDA and Smart phone type of applications. It does not, however, meet the needs for such applications as netbook, laptop, desk-top and server applications where tens and hundreds of amperes are needed. So, although the high density integrated POL has been demonstrated at low current level, magnetic integration is still one of the toughest barriers for integration, especially for high current POL.
In order to alleviate the intense thirst from the computing and telecom industry for high power density POL, the 3D integration concept needs be extended from low current applications to high current applications. The key technology for 3D integration is the low profile planar inductor design. Before this research, there was no general methodology to analyze and design a low profile planar inductor due to its non-uniform flux distribution, which is totally different as a conventional bulky inductor. A Low Temperature Co-fired Ceramic (LTCC) inductor is one of the most promising candidates for 3D integration for high current applications. For the LTCC inductor, besides the non-uniform flux, it also has non-linear permeability, which makes this problem even more complicated. This research focuses on penetrating modeling and design barriers for planar magnetic to develop high current 3D integrated POL with a power density dramatically higher than today's industry products in the same current level.
In the beginning, a general analysis method is proposed to classify different low profile inductor structures into two types according to their flux path pattern. One is a vertical flux type; another one is a lateral flux type. The vertical flux type means that the magnetic flux path plane is perpendicular with the substrate. The lateral flux type means that the magnetic flux path plane is parallel with the substrate. This analysis method allows us to compare different inductor structures in a more general way to reveal the essential difference between them. After a very thorough study, it shows that a lateral flux structure is superior to a vertical flux structure for low profile high current inductor design from an inductance density point of view, which contradicts conventional thinking. This conclusion is not only valid for the LTCC planar inductor, which has very non-linear permeability, but is also valid for the planar inductor with other core material, which has constant permeability.
Next, some inductance and loss models for a planar lateral flux inductor with a non-uniform flux are also developed. With the help of these models, different LTCC lateral flux inductor structures (single-turn structure and multi-turn structures) are compared systematically. In this comparison, the inductance density, winding loss and core loss are all considered. The proposed modeling methodology is a valuable extension of previous uniform flux inductor modeling, and can be used to solve other modeling problems, such as non-uniform flux transformer modeling.
After that, a design method is proposed for the LTCC lateral flux inductor with non-uniform flux distribution. In this design method, inductor volume, core thickness, winding loss, core loss are all considered, which has not been achieved in previous conventional inductor design methods. With the help of this design method, the LTCC lateral flux inductor can be optimized to achieve small volume, small loss and low profile at the same time. Several LTCC inductor substrates are also designed and fabricated for the 3D integrated POL. Comparing the vertical flux inductor substrate with the lateral flux inductor substrate, we can see a savings of 30% on the footprint, and a much simpler fabrication process. A 1.5MHz, 5V to 1.2V, 15A 3D integrated POL converter with LTCC lateral flux inductor substrate is demonstrated with 300W/in3 power density, which has a factor of 3 improvements when compared to today's industry products.
Furthermore, the LTCC lateral flux coupled inductor is proposed to further increase power density of the 3D integrated POL converter. Due to the DC flux cancelling effect, the size of LTCC planar coupled inductor can be dramatically reduced to only 50% of the LTCC planar non-coupled inductor. Compared to previous vertical flux coupled inductor prototypes, a lateral flux coupled inductor prototype is demonstrated to have a 50% core thickness reduction. A 1.5MHz, 5V to 1.2V, 40A 3D integrated POL converter with LTCC lateral flux coupled inductor substrate is demonstrated with 700W/in3 power density, which has a factor of 7 improvements when compared to today's industry POL products in the same current level.
In conclusion, this research not only overcame some major academia problems about analysis and design for planar magnetic components, but also made significant contributions to the industry by successfully scaling the integrated POL from today's 1W-5W case to a 40W case. This level of integration would significantly save the cost, and valuable motherboard real estate for other critical functions, which may enable the next technological innovation for the whole computing and telecom industry. / Ph. D.
|
425 |
PCB-Based Heterogeneous Integration of PFC/InverterWang, Shuo 05 April 2023 (has links)
State-of-the-art silicon-based power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in further improvements. Most products are custom designed with significant non-recurrent engineering and manufacturing processes that are labor intensive. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In certain cases, EMI filter design even requires a trial-and-error process.
With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. In a power factor correction (PFC) rectifier/inverter, the totem-pole configuration with critical conduction mode (CRM) operation to realize zero-voltage switching (ZVS) is deemed most desirable for a switching frequency 10 times higher than current practice. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible.
However, a PCB winding-based inductor has a fundamental limitation in terms of its power handling capability. The winding loss is proportional to the magnetomotive force (MMF), which is Ni. That is to say, with the number of layers (turns) and currents increased, winding loss is increased nonlinearly. Furthermore, for a large-size planar inductor, flux distribution is usually non-uniform, resulting in dramatically increased hysteresis loss and eddy loss. Thus, current designs are challenged by the capability to increase their power range. To address those issues, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes were observed in the plates. The proposed approach has a similar loss to a conventional litz wire-based design but features a higher power density and can be easily assembled in automation. A 3 kW high frequency PFC converter with 99% efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided.
Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises associated with the high dv/dt of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer design. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to a point where the parasitic ringing between the inductor and its winding capacitor is observed. This dissertation presents an improved balance technique in a PCB-based coupled inductor design that compensates for the detrimental effect of the interwinding capacitors. A CM noise model is established to simplify the convoluted couplings into a decoupled representation so as to illustrate the necessary conditions for realizing a balanced network. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz. The parasitic oscillation of inductors, known to be detrimental for CM noise reduction, is circumvented with the improved magnetic structure.
By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. This dissertation further offers an in-depth study on reducing the unwanted near-field couplings between the CM/DM inductors and DM filter capacitors, as well as unwanted self-parasitics such as the ESL of the DM capacitors. An exhaustive finite element analysis (FEA) and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects by means of physical placement of these filter components. Thus, for the first time, a single-stage EMI filter is demonstrated to meet the EMI standard in an off-line 1 kW, 12 V server power supply.
With the academic contributions in this dissertation, a PCB winding-based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies. / Doctor of Philosophy / State-of-the-art silicon device-based switching power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in performance improvements. Most products are custom designed, requiring significant non-recurrent engineering and labor-intensive manufacturing processes. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In consequence, a large multi-stage EMI filter is usually adopted between the power converter and the grid to reduce the EMI noise. It generally occupies 1/4-1/3 of the total converter volume. In certain cases, EMI filter design even requires a trial-and-error process. Suffice it to say, EMI is still regarded as both science and art.
With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. With GaN devices, the switching frequency of a PFC converter is able to be increased by 10 times compared to the state-of-the-art design without compromising efficiency. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible.
However, the state-of-the-art PCB winding-based inductor has a fundamental limitation in power range. Its winding loss and core loss increase dramatically in high powers. To address this issue, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes have been observed in the magnetic core plates. A 3 kW high-frequency PFC converter with a 99% peak efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided.
Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises caused by the high switching speed of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to several MHz. However, the CM noise reduction is not effective beyond that. This dissertation presents an improved balance technique in a PCB-based coupled inductor to circumvent the limits. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz.
By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. It features a smaller volume compared to a conventional multi-stage filter. To further enhance the filter's performance at high frequencies, an exhaustive finite element analysis and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects through physical placement of these filter components. Several approaches for improving the filter performance at high frequency are conducted. With these approaches applied, a single-stage filter is demonstrated in an off-line 1 kW, 12 V server power supply. Thus, for the first time, a single-stage EMI filter can be contemplated to meet the EMI standard in server power supplies.
With the academic contributions in this dissertation, a PCB-winding based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach in this work enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies.
|
426 |
Control, Analysis, and Design of SiC-Based High-Frequency Soft-Switching Three-Phase Inverter/RectifierSon, Gibong 01 November 2022 (has links)
This dissertation presents control, analysis, and design of silicon carbide (SiC)-based critical conduction mode (CRM) high-frequency soft-switching three-phase ac-dc converters (inverter and rectifier). The soft-switching technique with SiC devices grounded in CRM makes the operation of the ac-dc converter at hundreds of kHz possible while maintaining high efficiency with high power density. This is beneficial for rapidly growing fields such as electric vehicle charging, photovoltaic (PV) systems, and uninterruptable power supplies, etc. However, for the soft-switching technique to be practically adopted to real products in the markets, there are a lot of challenges to overcome. In this dissertation, four types of the challenges are carefully studied and discussed to address them.
First, the grid-tied inverters used for distributed energy resources, such as PV systems, must continue operating to deliver power to the grid, when it faces flawed grid conditions such as voltage drop and voltage rise. During abnormal grid conditions, delivering constant active power from the inverter to the grid is essential to avoid large voltage ripples on the dc side because it could trigger over-voltage protection or harm the circuitries, eventually shutting down the inverter. Hence, in such cases, unbalanced ac currents need to be injected into the grid. When the grid voltages and the ac currents are not balanced, there is a chance for the CRM soft-switching inverter to lose its soft-switching capability. Continuous conduction mode operation emerges, causing hard-switching where discontinuous conduction mode (DCM) operation is expected. This leads to huge turn-on loss and high dv/dt noise at the active switch's turn-on moment. To eradicate the hard-switching problem, two improved modulation schemes are developed; one with off-time extension in the CRM phase, the other by skipping switching pulses in the DCM phase. The DCM pulse skipping is applied for a variety of grid imbalance cases, and it is proven that it can be a generalized solution for any kinds of unbalanced grid conditions.
Second, the CRM soft-switching scheme with 2-channel interleaving achieves high efficiency at heavy load. Nevertheless, the efficiency plunges as the output load is reduced. This is not suitable for PV inverters, which take account of light load efficiency in terms of "weighted efficiency". Small inductor currents at light load cause the switching frequency to soar because of its CRM-based operation characteristic, causing large switching loss. To increase the inductor current dealt with by the first channel, a phase shedding control is proposed. Gate signals for the second channel are not excited, increasing the first channel's inductor current, thus cutting down the first channel's switching frequency. To prevent the unwanted circulating current formed by shared zero-sequence voltage in the paralleled structure, only two phases in the second channel working in high frequency are shed. The proposed phase shedding control achieves a 0.5 to 3.9 % efficiency improvement with light loads.
Third, due to the usage of SiC devices, high dv/dt generated at switching nodes over the system parasitic capacitance causes substantial common mode (CM) noise compared to that with Si devices. In this case, a balance technique with PCB winding inductors can effectively reduce the CM noise. First, winding interleaving structure is selected to minimize the eddy current loss in the windings. But the interwinding capacitance caused by the winding interleaving structure aggravates the CM noise. Impact of the interwinding capacitance on the CM noise is analyzed with a new inductor model containing the interwinding capacitance. Then, finally, a novel inductor structure is proposed to remove the interwinding capacitance and to improve the CM noise reduction performance. The soft-switching ac-dc converter built with the final PCB magnetics features almost similar efficiency compared to that with litz-wire inductor and 14 to 18 dB CM noise reduction up to 15 MHz.
Lastly, the soft-switching technique is extended to inverters in standalone mode. To meet tight ac voltage total harmonic distortion requirements, a current control in dq-frame is introduced. As for the ac voltage regulation at no-load, on top of the improved phase shedding control, a frequency limiting with fixed frequency DCM method is applied to prevent excessive increase in the switching frequency. Then, how to deal with short-circuit at the output load is investigated. Since the soft-switching modulation violates inductor voltage-second balance during the short-circuit, the modulation method is switched to a conventional sinusoidal PWM at fixed frequency. It is concluded that all the additional requirements for the standalone inverters can be satisfied by the introduced control strategies. / Doctor of Philosophy / The world is facing an unprecedented weather crisis. Global warming is getting more severe because of excessive amount of carbon emission. In an effort to overcome this crisis, paradigm of energy and lifestyle of people have changed. Penetration of distributed energy resources (DERs) such as wind turbines, and photovoltaic systems has been dramatically increased. Instead of internal combustion engine vehicles (EVs), electric vehicles hit the mainstream. In these changes, power electronics plays a critical role as the key element of the systems. Especially, three-phase inverter/rectifiers are essential parts in such applications.
Most important aspects of the three-phase inverter/rectifier are efficiency and power density. In the past decades, Silicon (Si) power devices were mostly used for the systems and the technology based on Si has almost reached to its physical limits. The switching frequency of Si-based inverter/rectifier is limited below 20 – 30 kHz to reduce switching loss. This impedes high power density due to bulky passive components such as inductors and capacitors.
Nowadays, the advent of wideband gap such as Silicon Carbide (SiC) and Gallium Nitride (GaN) power devices gives us a great opportunity to improve the efficiency and the power density with its high switching speed capability, low switching energy and low on-resistance. The SiC power devices are more suitable for DERs and EVs due to higher voltage rating. Using SiC power devices allows to increase inverter/rectifier' switching frequency about five times to have similar efficiency with those based on Si power devices, making the power density high. However, there is still room to push the switching frequency even higher to hundreds of kHz with soft-switching.
In this sense, studies on soft-switching techniques for three-phase inverter/rectifier have been intensively conducted. Particularly, soft-switching techniques based on critical conduction mode (CRM) are regarded as the most promising solutions because it does not have any additional circuits to achieve the soft-switching, keeping the system as straightforward as possible. However, most of the studies for the CRM-based soft-switching three-phase inverter/rectifier mainly focus on limited occasions such as ideal operation conditions. For this technique to be widely used and adopted in industry, more practical cases for the systems need to be studied.
In this dissertation, the soft-switching three-phase inverter/rectifier under diverse situations are investigated in depth. First, behavior of the soft-switching inverter/rectifier under unbalanced grid conditions are analyzed and control methods are developed to maintain its soft-switching capability. Second, how to improve light load efficiency is explored. Circulating current issue for the light load efficiency improvement is analyzed and a control method is proposed to eliminate the circulating current. Third, a design methodology and considerations of inductors based on PCB magnetics are discussed to reduce electromagnetic noise and improve system efficiency. Lastly, the soft-switching technique is extended to standalone mode applications dealing with strict voltage regulation, no-load operation, and output short-circuit.
|
427 |
PCB-Based Heterogeneous Integration of LLC ConvertersGadelrab, Rimon Guirguis Said 22 February 2023 (has links)
Rapid expansion of the information technology (IT) sector, market size and consumer interest for off-line power supply continue to rise, particularly for computers, flat-panel TVs, servers, telecom, and datacenter applications. Normal components of an off-line power supply include an electromagnetic interference (EMI) filter, a power factor correction (PFC) circuit, and an isolated DC-DC converter. For off-line power supply, an isolated DC-DC converter offers isolation and output voltage adjustment. For an off-line power supply, it takes up significantly more room than the rest; thus, an isolated DC-DC converter is essential for enhancing the overall performance and lowering the total cost of an off-line power supply. In contrast, data center server power supplies are the most performance-driven, energy-efficient, and cost-aware of any industrial application power supply. The full extent of data centers' energy consumption is coming into focus. By 2030, it is anticipated that data centers will require around 30,000 TWh, or 7.6% of world power usage. In addition, with the rise of cloud computing and big data, the energy consumption of data centers is anticipated to continue rising rapidly in the near future. In data centers, isolated DC-DC converters are expected to supply even higher power levels without expanding their size and with much greater efficiency than the present standard, which makes their design even more challenging.
LLC resonant converters are frequently utilized as DC-DC converters in off-line power supply and data centers because of their high efficiency and hold-up capabilities. LLC converters may reduce electromagnetic interference because the primary switches and secondary synchronous rectifiers (SRs) both feature zero-voltage-switching (ZVS) and zero-current-switching (ZCS) for the SRs. Almost every state-of-the-art off-line power supply uses LLC converters in their DC-DC transformations.
However, LLC converters face three important challenges. First, the excessive core loss caused by the uneven flux distribution in planar magnetics, owing to the huge size and high-frequency operation of the core. These factors led to the observation of dimensional resonance within the core and an excessive amount of eddy current circulating within the core, which resulted in the generation of high eddy loss within the ferrite material. This was normally assumed to be negligible for small core sizes and lower frequencies. This dissertation proposes methods to help redistribute the flux in the core, particularly in the plates where the majority of core losses are concentrated, and to provide more paths for the flux to flow so that the plates' thickness can effectively be reduced by half and core losses, particularly eddy loss, are reduced significantly.
Second, the majority of power supplies in the IT sector are needed to deliver high-current output, but the transformer is cumbersome and difficult to build because of its high conduction losses. In addition, establishing a modular solution that can be scaled up to greater power levels while attaining a superior performance relative to best practices is quite difficult. By increasing the switching frequency to several hundred kilohertz using wide-band-gap (WBG) transistors, printed circuit board (PCB) windings may include magnetics. This dissertation offers a modular and scalable matrix transformer structure and its design technique, allowing any number of elemental transformers to be integrated into a single magnetic core with significantly reduced winding loss and core loss. It has been shown that the ideal power limitations per transformer for PCB-based magnetics beat the typical litz wire design in all design areas, in addition to the unique advantages of PCB-magnetics, such as their low profile, high density, simplicity, and automated construction. Alternatively, shielding layers may be automatically put into the PCB windings between the main and secondary windings during the production process to reduce CM noise. A method of shielding is presented to reduce CM noise. The suggested transformer design and shielding method are used in the construction of a 3 kW 400V/48 V LLC converter, with a maximum efficiency of 99.06% and power density of 530W/in3.
Thirdly, LLC converters with a matrix transformer encounter a hurdle for extending greater power, including the number of transformers needed and the magnetic size. In addition to the necessity of resonant inductors, which increase the complexity and size of the magnetic structure, there is a need for a resonant inductor. By interconnecting the three-phases in a certain manner, three-phase interleaved LLC converters may lower the circulating energy, but they have large and numerous magnetic components. In this dissertation, a new topology for three-phase LLC resonant converters is proposed. Three-phase systems have the advantage of flux cancellation, which may be used to further simplify the magnetic structure and decrease core loss.
In addition, a study of the various three-phase topologies is offered, and a criterion for selecting the best suitable topology is shown. Compared to the single-phase LLC, the suggested topology has less winding loss and core loss. In addition, three-phase transformers have a lower volt-second rating, and smaller core sizes may be used to mitigate the impact of eddy loss in the ferrite material. In contrast, three-phase systems offer superior EMI performance, which is shown in the loss and size of the EMI filter, and much less output voltage ripple, which is reflected in the size of the output filter. Finally, several methods of integrating resonant inductors into transformer magnetics are presented in order to accomplish a simple, compact, and cost-effective magnetic architecture.
By increasing the switching frequency to 500 kHz, all six transformers and six inductors may be achieved using four-layer PCB winding. To decrease CM noise, additional 2-layer shielding may be implemented. A 500 kHz, 6-8 kW, 400V/48V, three-phase LLC converter with the suggested magnetic structure achieves 99.1% maximum efficiency and a power density of 1000 W/in3.
This dissertation addresses the issues of analysis, magnetic design, expansion to higher power levels, and electromagnetic interference (EMI) in high-frequency DC/DC converters used in off-line power supply and data centers. WBG devices may be effectively used to enable high-frequency DC/DC converters with a hundred kilohertz switching frequency to achieve high efficiency, high power density, simple yet high-performance, and automated manufacture. Costs will be minimized, and performance will be considerably enhanced. / Doctor of Philosophy / The IT industry, market size, and customer interest in off-line power supply continue to grow quickly, especially for computers, flat-panel TVs, servers, telecom, and datacenter applications. Off-line power supplies usually have a DC-DC converter, an EMI filter, and a PFC circuit. A DC-DC converter is needed for an off-line power supply. An isolated DC-DC converter makes an off-line power supply work better and cost less, even though it takes up more space than the rest. But power supplies for data center servers are the most performance-driven, energy-efficient, and cost-conscious industrial applications. It's becoming clear how much energy data centers use. By 2030, data centers will use 7.6% of the world's power, or 30,000 TWh. With the rise of cloud computing and big data, energy use in data centers is likely to go up by a lot. In data centers, isolated DC-DC converters are expected to have much more power without getting bigger and to be much more efficient than the current standard. This makes their design even harder.
LLC resonant converters are often used as DC-DC converters in data centers and off-line power supplies because they are very efficient and easy to control. LLC converters may have less electromagnetic interference because both the primary switches and the secondary synchronous rectifiers (SRs) have zero-voltage-switching (ZVS) and zero-current-switching (ZCS). Almost every modern off-line power supply uses LLC converters for DC-DC stage.
LLC converters have to deal with three big problems. Due to the large size of the core and the high frequency of operation, the uneven distribution of flux in planar magnetics causes too much core loss. This dissertation suggests ways to redistribute flux in the core, especially in the plates where most core losses are concentrated and provide more flux paths to reduce plate thickness by half and core losses, especially eddy loss.
Second, most IT power supplies need to put out a lot of current, but transformers are bulky and hard to build because they lose a lot of current. It is hard to make a modular solution that can scale up to higher levels of power and perform better than best practices. With wide-band-gap (WBG) transistors, the switching frequency can be raised to several hundred kilohertz so that magnetics can be added to PCB windings. This dissertation describes a modular and scalable matrix transformer structure and design method that lets any number of elemental transformers be put into a single magnetic core with much less winding loss and core loss. PCB-based magnetics have a low profile, a high density, are easy to build, and can be built automatically. Their ideal power limits per transformer beat the typical litz wire design in every way. Shielding layers can be added automatically between the main and secondary PCB windings to cut down on CM noise. CM noise is lessened by shielding. The suggested transformer design and shielding method are used to build a 3 kW 400V/48 V LLC converter with a maximum efficiency of 99.06% and a power density of 530W/in3.
Third, LLC converters with matrix transformers can't get more power without more transformers and a bigger magnetic size. Resonant inductors, which add to the size and complexity of a magnetic structure, are also needed. By connecting the three phases, three-phase interleaved LLC converters use less energy, but they have a lot of magnetic parts. In this paper, a three-phase LLC resonant converter topology is proposed. In three-phase systems, flux cancellation makes magnetic structures easier to understand and reduces core loss.
There is also a study of three-phase topologies and a set of criteria for choosing one. Compared to the single-phase LLC, the topology cuts down on winding and core loss. Three-phase transformers have a lower volt-second rating, and ferrite material eddy loss can be reduced by making the core smaller. The size and loss of the EMI filter show that three-phase systems have less output voltage ripple and better EMI performance. Finally, several ways of putting resonant inductors into the magnetics of a transformer are shown to make a magnetic architecture that is simple, small, and cheap.
At 500 kHz, all six transformers and all six inductors can be wound on a four-layer PCB. CM noise can be cut down with 2-layer shielding. With the suggested magnetic structure, a 500 kHz, 6-8 kW, 400V/48V, three-phase LLC converter can reach 99.1% maximum efficiency and 1000 W/in3.
This dissertation presents analysis, magnetic design, expanding to higher power levels, and electromagnetic interference (EMI) in high-frequency DC/DC converters used in off-line power supplies and data centers. WBG devices can be used to make high-frequency DC/DC converters with a switching frequency of a few hundred kilohertz that are powerful, easy to use, and can be automated. Both cost and performance will get better.
|
428 |
A High-Efficiency Hybrid Resonant Microconverter for Photovoltaic Generation SystemsLaBella, Thomas Matthew 18 September 2014 (has links)
The demand for increased renewable energy production has led to increased photovoltaic (PV) installations worldwide. As this demand continues to grow, it is important that the costs of PV installations decrease while the power output capability increases. One of the components in PV installations that has lots of room for improvement is the power conditioning system. The power conditioning system is responsible for converting the power output of PV modules into power useable by the utility grid while insuring the PV array is outputting the maximum available power. Modular power conditioning systems, where each PV module has its own power converter, have been proven to yield higher output power due to their superior maximum power point tracking capabilities. However, this comes with the disadvantages of higher costs and lower power conversion efficiencies due to the increased number of power electronics converters. The primary objective of this dissertation is to develop a high-efficiency, low cost microconverter in an effort to increase the output power capability and decrease the cost of modular power conditioning systems.
First, existing isolated dc-dc converter topologies are explored and a new topology is proposed based on the highly-efficient series resonant converter operating near the series resonant frequency. Two different hybrid modes of operation are introduced in order to add wide input-voltage regulation capability to the series resonant converter while achieving high efficiency through low circulating currents, zero-current switching (ZCS) of the output diodes, zero-voltage switching (ZVS) and/or ZCS of the primary side active switches, and direct power transfer from the source to the load for the majority of the switching cycle. Each operating mode is analyzed in detail using state-plane trajectory plots. A systematic design approach that is unique to the newly proposed converter is presented along with a detailed loss analysis and loss model. A 300-W microconverter prototype is designed to experimentally validate the analysis and loss model. The converter featured a 97.7% weighted California Energy Commission (CEC) efficiency with a nominal input voltage of 30 V. This is higher than any other reported CEC efficiency for PV microconverters in literature to date.
Each operating mode of the proposed converter can be controlled using simple fixed-frequency pulse-width modulation (PWM) based techniques, which makes implementation of control straightforward. Simplified models of each operating mode are derived as well as control-to-input voltage transfer functions. A smooth transition method is then introduced using a two-carrier PWM modulator, which allows the converter to transition between operating modes quickly and smoothly. The performance of the voltage controllers and transition method were verified experimentally.
To ensure the proposed converter is compatible with different types of modular power conditioning system architectures, system-level interaction issues associated with different modular applications are explored. The first issue is soft start, which is necessary when the converter is beginning operation with a large capacitive load. A novel soft start method is introduced that allows the converter to start up safely and quickly, even with a short-circuited output. Maximum power point tracking and double line frequency ripple rejection are also explored, both of which are very important to ensuring the PV module is outputting the maximum amount of available power.
Lastly, this work deals with efficiency optimization of the proposed converter. It is possible to use magnetic integration so that the resonant inductor can be incorporated into the isolation transformer by way of the transformer leakage inductance in order to reduce parts count and associated costs. This chapter, however, analyzes the disadvantages to this technique, which are increased proximity effect losses resulting in higher conduction losses. A new prototype is designed and tested that utilizes an external resonant inductor and the CEC efficiency was increased from 97.7% to 98.0% with a marginal 1.8% total cost increase. Additionally, a variable frequency efficiency optimization algorithm is proposed which increases the system efficiency under the high-line and low-line input voltage conditions. This algorithm is used for efficiency optimization only and not control, so the previously presented simple fixed-frequency modeling and control techniques can still be utilized. / Ph. D.
|
429 |
Digital Control of a High Frequency Parallel Resonant DC-DC ConverterVulovic, Marko 15 January 2011 (has links)
A brief analysis of the nonresonant-coupled parallel resonant converter is performed. The converter is modeled and a reference classical analog controller is designed and simulated. Infrastructure required for digital control of the converter (including anti-aliasing filters and a modulator) is designed and a classical digital controller is designed and simulated, yielding a ~30% degradation in control bandwidth at the worst-case operating point as compared with the analog controller. Based on the strong relationship observed between low-frequency converter gain and operating point, a gain-scheduled digital controller is proposed, designed, and simulated, showing 4:1 improved worst-case control bandwidth as compared with the analog controller. A complete prototype is designed and built which experimentally validates the results of the gain-scheduled controller simulation with good correlation. The three approaches that were investigated are compared and conclusions are drawn. Suggestions for further research are presented. / Master of Science
|
430 |
Very High Frequency Integrated POL for CPUsHou, Dongbin 10 May 2017 (has links)
Point-of-load (POL) converters are used extensively in IT products. Every piece of the integrated circuit (IC) is powered by a point-of-load (POL) converter, where the proximity of the power supply to the load is very critical in terms of transient performance and efficiency. A compact POL converter with high power density is desired because of current trends toward reducing the size and increasing functionalities of all forms of IT products and portable electronics. To improve the power density, a 3D integrated POL module has been successfully demonstrated at the Center for Power Electronic Systems (CPES) at Virginia Tech. While some challenges still need to be addressed, this research begins by improving the 3D integrated POL module with a reduced DCR for higher efficiency, the vertical module design for a smaller footprint occupation, and the hybrid core structure for non-linear inductance control.
Moreover, as an important category of the POL converter, the voltage regulator (VR) serves an important role in powering processors in today's electronics. The multi-core processors are widely used in almost all kinds of CPUs, ranging from the big servers in data centers to the small smartphones in almost everyone's pocket. When powering multiple processor cores, the energy consumption can be reduced dramatically if the supply voltage can be modulated rapidly based on the power demand of each core by dynamic voltage and frequency scaling (DVFS). However, traditional discrete voltage regulators (VRs) are not able to realize the full potential of DVFS since they are not able to modulate the supply voltage fast enough due to their relatively low switching frequency and the high parasitic interconnect impedance between the VRs and the processors. With these discrete VRs, DVFS has only been applied at a coarse timescale, which can scale voltage levels only in tens of microseconds (which is normally called a coarse-grained DVFS). In order to get the full benefit of DVFS, a concept of an integrated voltage regulator (IVR) is proposed to allow fine-grained DVFS to scale voltage levels in less than a microsecond. Significant interest from both academia and industry has been drawn to IVR research.
Recently, Intel has implemented two generations of very high frequency IVR. The first generation is implemented in Haswell processors, where air core inductors are integrated in the processor's packaging substrate and placed very closely to the processor die. The air core inductors have very limited ability in confining the high frequency magnetic flux noise generated by the very high switching frequency of 140MHz. In the second generation IVR in Broadwell processors, the inductors are moved away from the processor substrate to the 3DL PCB modules in the motherboard level under the die.
Besides computers, small portable electronics such as smartphones are another application that can be greatly helped by IVRs. The smartphone market size is now larger than 400 billion US dollars, and its power consumption is becoming higher and higher as the functionality of smartphones continuously advances. Today's multi-phase VR for smartphone processors is built with a power management integrated circuit (PMIC) with discrete inductors. Today's smartphone VRs operate at 2-8MHz, but the discrete inductor is still bulky, and the VR is not close enough to the processor to support fine-grained DVFS. If the IVR solution can be extended to the smartphone platform, not only can the battery life be greatly improved, but the total power consumption of the smartphone (and associated charging time and charging safety issues) can also be significantly reduced. Intel's IVR may be a viable solution for computing applications, but the air core inductor with un-confined high-frequency magnetic flux would cause very severe problems for smartphones, which have even less of a space budget. This work proposes a three-dimensional (3D) integrated voltage regulator (IVR) structure for smartphone platforms. The proposed 3D IVR will operate with a frequency of tens of MHz. Instead of using an air core, a high-frequency magnetic core without an air gap is applied to confine the very high frequency flux. The inductor is designed with an ultra-low profile and a small footprint to fit the stringent space requirement of smartphones.
A major challenge in the development of the very high frequency IVR inductor is to accurately characterize and compare magnetic materials in the tens of MHz frequency range. Despite the many existing works in this area, the reported measured properties of the magnetics are still very limited and indirect. In regards to permeability, although its value at different frequencies is often reported, its saturation property in real DC-biased working conditions still lacks investigation. In terms of loss property, the previous works usually show the equivalent resistance value only, which is usually measured with small-signal excitation from an impedance/network analyzer and is not able to represent the real magnetic core loss under large-signal excitation in working conditions. The lack of magnetic properties in real working conditions in previous works is due to the significant challenges in the magnetic characterization technique at very high frequencies, and it is a major obstacle to accurately designing and testing the IVR inductors. In this research, an advanced core loss measurement method is proposed for very high frequency (tens of MHz) magnetic characterization for the IVR inductor design. The issues of and solutions for the permeability and loss measurement are demonstrated. The LTCC and NEC flake materials are characterized and compared up to 40MHz for IVR application.
Based on the characterized material properties, both single-phase and multi-phase integrated inductor are designed, fabricated and experimentally tested in 20MHz buck converters, featuring a simple single-via winding structure, small size, ultra-low profile, ultra-low DCR, high current-handling ability, air-gap-free magnetics, multi-phase integration within one magnetic core, and lateral non-uniform flux distribution. It is found that the magnetic core operates at unusually high core loss density, while it is thermally manageable. The PCB copper can effectively dissipate inductor heat with 3D integration. In addition, new GaN device drivers and magnetic materials are evaluated and demonstrated with the ability to increase the IVR frequency to 30MHz and realize a higher density with a smaller loss.
In summary, this research starts with improving the 3D integrated POL module, and then explores the use of the 3D integration technique along with the very high frequency IVR concept to power the smartphone processor. The challenges in a very high frequency magnetic characterization are addressed with a novel core loss measurement method capable of 40MHz loss characterization. The very high frequency multi-phase inductor integrated within one magnetic component is designed and demonstrated for the first time. A 20MHz IVR platform is built and the feasibility of the concept is experimentally verified. Finally, new GaN device drivers and magnetic materials are evaluated and demonstrated with the ability to increase the IVR frequency to 30MHz and realize higher density with smaller loss. / Ph. D. / This research focuses on reducing the size, footprint, and power loss of the power supply for the CPUs in different applications, ranging from the big servers in data centers to the small smartphones in almost everyone’s pocket. To achieve this goal, novel characterization, design, and integration technique is developed, especially for the bulky magnetic components, with much faster (~10X) switching speed than the nowadays practice. This research opens the door to the development of the next generation of CPUs’ power supply with very high switching speed, simple structure, high integration level, and high current handling ability.
|
Page generated in 0.0688 seconds