• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 431
  • 89
  • 76
  • 65
  • 65
  • 18
  • 15
  • 13
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 969
  • 969
  • 184
  • 67
  • 62
  • 61
  • 60
  • 60
  • 57
  • 57
  • 56
  • 56
  • 53
  • 51
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

A HIGH SPEED REAL TIME SPACE QUALIFIED TIME DIVISION MULTIPLEXED DATA FORMATTER

Schwartz, Paul D., Hersman, Christopher B. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / A system to generate a contiguous high speed time division multiplexed (TDM) spacecraft downlink data stream has been developed. The 25 MBPS downlink data stream contains high rate real time imager data, intermediate rate subsystem processor data, and low rate spacecraft housekeeping data. Imager data is transferred directly into the appropriate TDM downlink data window using control signals and clocks generated in the central data formatter and distributed to the data sources. Cable and electronics delays inherent in this process can amount to several clock periods, while the uncertainty and variations in those delays (e.g. temperature effects) can exceed the clock period. Unique (patent pending) electronic circuitry has been included in the data formatter to sense the total data gathering delay for each high speed data source and use the results to control series programmable delay elements to equalize the delays from all sources and permit the formation of a contiguous output data stream.
202

USING THE AMD TAXI CHIPS IN A PARALLEL TO FIBER INTERFACE

Broffel, Robert W. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / To meet the security constraints for mission control rooms; the rooms must interface to other systems via fiber optic cable. Analog data from DAC (Digital to Analog Converter) outputs were initially brought into the rooms on copper wire. This paper outlines the conversion to fiber optic cable using the AMD TAXI chips in our Optical Digital Interface (ODI).
203

PACKETIZED TELEMETRY INCREASES FEEDBACK SYSTEM RESPONSE TIME IN A HIGH ENERGY PHYSICS APPLICATION

Woolridge, Daniel “Shane” 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A digital feedback system used to monitor and control a high energy electron beam’s orbit and stability in a VUV and X-ray storage ring will realize a 10 fold increase in the feedback system response time using packetized (IRIG 107-98) telemetry. The improvement in feedback time will provide a significant improvement in the level of orbit stability. This paper discusses the advantages of using a packetizing standard and high speed data acquisition as a cost effective way to support the scientific community in their real time processing needs.
204

A DESIGN FOR A 10.4 GIGABIT/SECOND SOLID-STATE DATA RECORDER

Wise, Richard J. Jr 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A need has been identified in the Test and Evaluation (T&E) and tactical aircraft communities for a ruggedized high-speed instrumentation data recorder to complement the ever-increasing number of high frame-rate digital cameras and sensors. High-speed digital camera manufacturers are entering this market in order to provide adequate recording capability for their own cameras. This paper discusses a Solid-State Data Recorder (SSDR) for use in Imaging and High-Speed Sensor Data Aquisition applications. The SSDR is capable of a 10.4 Gb/sec sustained, 16Gb/sec burst, input data rate via a proprietary 32-channel-by-10-bit generic high-speed parallel interface, a massively-parallel 256-bit bus architecture, and unique memory packaging design. A 32-bit PCIbus control/archive and dedicated DCRsi™ interface are also employed, allowing data archiving to standard high-speed interfaces (SCSI, Fiber-Channel, USB, etc.) and DCRsi™-compatible tape recorders.
205

A TRANSLATER OF CLOCK MODE VHDL HARDWARE DESCRIPTION LANGUAGE

Wang, Xiao-Lin, 1955- January 1986 (has links)
No description available.
206

Testing and characterization of high-speed signals using incoherent undersampling driven signal reconstruction algorithms

Moon, Thomas 07 January 2016 (has links)
The objective of the proposed research is to develop a framework for the signal reconstruction algorithm with sub-Nyquist sampling rate and the low-cost hardware design in system level. A further objective of the proposed research is to monitor the device-under-test (DUT) and to adapt its behaviors. The key contribution of this research is that the high-speed signal acquisition is done by direct subsampling. As the signal is directly sampled without any front-end radio-frequency (RF) components such as mixers or filters, the cost of hardware is reduced. Furthermore, the distortion and the nonlinearity from the RF components can be avoided. The first proposed work is wideband signal reconstruction by dual-rate time-interleaved subsampling hardware and Multi-coset signal reconstruction. Using the combination of the dual-rate hardware and the multi-coset algorithm, the number of sampling channel is significantly reduced compared to the conventional multi-coset works. The second proposed work is jitter tracking by accurate period estimation with incoherent subsampling. In this work, the long-term jitter in PRBS is tracked without hardware synchronization and clock-data-recovery (CDR) circuits. The third proposed work is eye-monitoring and time-domain-reflectometry (TDR) by monobit receiver signal reconstruction. Using a monobit receiver based on incoherent subsampling and time-variant threshold signal, high resolution of reconstructed signal in both amplitude and time is achieved. Compared to a multibit-receiver, the scalability of the test-system is significantly increased.
207

The Implications for DAU Design in a Networked Data Acquisition System

Cranley, Nikki 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The higher bandwidth capacities available with the adoption of Ethernet technology for networked FTI data acquisition systems enable more data to be acquired by the Data Acquisition Unit (DAU) from high-speed data busses, with higher channel densities, faster sampling rates, and sample resolution. Ethernet offers increased flexibility, interoperability, and simplicity in terms of the FTI system topology. However, the adoption of Ethernet has numerous implications for the design and operation of the DAU in terms of supporting network protocols for synchronization, configuration, and the transmission of the acquired data. This paper explores these issues and discusses the merits of adopting Ethernet.
208

An investigation into the deformation behaviour of geosynthetic reinforced soil walls under seismic loading

Jackson, Perry Francis January 2010 (has links)
Reinforcement of soil enables a soil slope or wall to be retained at angles steeper than the soil material’s angle of repose. Geosynthetic Reinforced Soil (GRS) systems enable shortened construction time, lower cost, increased seismic performance and potentially improve aesthetic benefits over their conventional retaining wall counterparts such as gravity and cantilever type retaining walls. Experience in previous earthquakes such as Northridge (1994), Kobe (1995), and Ji-Ji (1999) indicate good performance of reinforced soil retaining walls under high seismic loads. However, this good performance is not necessarily due to advanced understanding of their behaviour, rather this highlights the inherent stability of reinforced soil against high seismic loads and conservatism in static design practices. This is an experimental study on a series of seven reduced-scale GRS model walls with FHR facing under seismic excitation conducted using a shake-table. The models were 900 mm high, reinforced by five layers of stiff Microgrid reinforcement, and were founded on a rigid foundation. The soil deposit backfill was constructed of dry dense Albany sand, compacted by vibration (average Dr = 90%). The influence of the L/H ratio and wall inclination on seismic performance was investigated by varying these important design parameters throughout the testing programme. The L/H ratio ranged from 0.6 – 0.9, and the walls were primarily vertical except for one test inclined at 70o to the horizontal. During testing, facing displacements and accelerations within the backfill were recorded at varying levels of shaking intensity. Mechanisms of deformation, in particular, were of interest in this study. Global and local deformations within the backfill were investigated using two methods. The first utilised coloured horizontal and vertical sand markers placed within the backfill. The second utilised high-speed camera imaging for subsequent analysis using Geotechnical Particle Image Velocimetry (GeoPIV) software. GeoPIV enabled shear strains to be identified within the soil at far smaller strain levels than that rendered visible by eye using the coloured sand markers. The complementary methods allowed the complete spatial and temporal development of deformation within the backfill to be visualised. Failure was predominantly by overturning, with some small sliding component. All models displayed a characteristic bi-linear displacement-acceleration curve, with the existence of a critical acceleration, below which deformations were minor, and above which ultimate failure occurs. During failure, the rate of sliding increased significantly. An increase in the L/H ratio from 0.6 to 0.9 caused the displacement-acceleration curve to be shallower, and hence the wall to deform less at low levels of acceleration. Accelerations at failure also increased, from 0.5g to 0.7g, respectively. A similar trend of increased seismic performance was observed for the wall inclined at 70o to the horizontal, when compared to the other vertical walls. Overturning was accompanied by the progressive development of multiple inclined shear surfaces from the wall crest to the back of the reinforced soil block. Failure of the models occurred when an inclined failure surface developed from the lowest layer of reinforcement to the wall crest. Deformations largely confirmed the two-wedge failure mechanism proposed by Horii et al. (2004). For all tests, the reinforced soil block was observed to demonstrate non-rigid behaviour, with simple shearing along horizontal planes as well as strain localisations at the reinforcement or within the back of the reinforced soil block. This observation is contrary to design, which assumes the reinforced soil block to behave rigidly.
209

Developments of 60 GHz Antenna and Wireless Interconnect inside Multi-Chip Module for Parallel Processor System

Yeh, Ho-Hsin January 2013 (has links)
In order to carry out the complicated computation inside the high performance computing (HPC) systems, tens to hundreds of parallel processor chips and physical wires are required to be integrated inside the multi-chip package module (MCM). The physical wires considered as the electrical interconnects between the processor chips, however, have the challenges on placements and routings because of the unequal progress between the semiconductor and I/O size reductions. The primary goal of the research is to overcome package design challenges - providing a hybrid computing architecture with implemented 60 GHz antennas as the high efficient wireless interconnect which could generate over 10 Gbps bandwidth on the data transmissions. The dissertation is divided into three major parts. In the first part, two different performance metrics, power loss required to be recovered (PRE) and wireless link budget, on evaluating the antenna's system performance within the chip to chip wireless interconnect are introduced to address the design challenges and define the design goals. The second part contains the design concept, fabrication procedure and measurements of implemented 60 GHz broadband antenna in the application of multi-chip data transmissions. The developed antenna utilizes the periodically-patched artificial magnetic conductor (AMC) structure associated with the ground-shielded conductor in order to enhance the antenna's impedance matching bandwidth. The validation presents that over 10 GHz -10 dB S11 bandwidth which indicates the antenna's operating bandwidth and the horizontal data transmission capability which is required by planar type chip to chip interconnect can be achieved with the design concept. In order to reduce both PRE and wireless link budget numbers, a 60 GHz two-element array in the multi-chip communication is developed in the third part. The third section includes the combined-field analysis, the design concepts on two-element array and feeding circuitry. The simulation results agree with the predicted field analysis and demonstrate the 5dBi gain enhancement in the horizontal direction over a single 60 GHz AMC antenna to further reduce both PRE and wireless link budget numbers.
210

Efficient Modelling Techniques for Vibration Analyses of Railway Bridges

Svedholm, Christoffer January 2017 (has links)
The world-wide development of new high-speed rail lines has led to more stringent design requirements for railway bridges, mainly because high-speed trains can cause resonance in the bridge superstructure. Dynamic simulations, often utilising time-consuming finite element analysis (FEA), have become essential for avoiding such problems. Therefore, guidelines and tools to assist structural engineers in the design process are needed. Considerable effort was spent at the beginning of the project, to develop simplified models based on two-dimensional (2D) Bernoulli-Euler beam theory. First, a closed-form solution for proportionally damped multi-span beam, subjected to moving loads was derived (Paper I). The model was later used to develop design charts (Paper II) and study bridges on existing railway lines (Paper III). The model was then extended to non-proportionally damped beams (Paper IV) in order to include the effects of soil-structure interactions. Finally, the importance of the interaction between the surrounding soil and the bridge was verified by calibrating a finite element (FE) model by means of forced vibration tests of an end-frame bridge (Paper V). Recommendations on how to use the models in practical applications are discussed throughout the work. These recommendations include the effects of shear deformation, shear lag, train-bridge and soil-structure interactions, for which illustrative examples are provided. The recommendations are based on the assumption that the modes are well separated, so that the response at resonance is governed by a single mode. The results of the work show that short span bridges, often referred to as `simple´ bridges, are the most problematic with respect to dynamic effects. These systems are typically, non-proportionally damped systems that require detailed analyses to capture the `true´ behaviour. Studying this class of dynamic system showed that they tend to contain non-classical modes that are important for the structure response. For example, the bending mode is found to attain maximum damping when its undamped natural frequency is similar to that of a non-classical mode. / <p>QC 20170213</p>

Page generated in 0.0396 seconds