Spelling suggestions: "subject:"hypercholestérolémie"" "subject:"hypercholesthérolémie""
11 |
Comparaison de la diète portfolio et d'une statine sur le phénotype de la taille des lipoprotéines de faible densité chez des sujets hypercholestérolémiquesGigleux, Iris 12 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2006-2007 / Les travaux présentés dans ce mémoire avaient pour but de comparer les effets de la diète Portfolio à ceux d'un traitement pharmacologique avec statine sur les caractéristiques électrophorétiques des particules LDL chez des sujets hypercholestérolémiques. Les analyses ont été effectuées chez 34 sujets hypercholestérolémiques qui ont suivi 3 traitements d'une durée d'un mois chacun, assignés de façon aléatoire :1) une diète témoin faible en gras saturés, 2) la même diète avec 20 mg de Iovastatine et 3) la diète Portfolio. Aucun des trois traitements n'a eu d'effet significatif sur la taille des particules LDL. Par ailleurs, la diète Portfolio et le traitement avec statine ont réduit significativement les concentrations de cholestérol dans les petites particules LDL, comparativement à la diète témoin. De plus, les niveaux de protéines C-réactive au départ ont été un déterminant significatif des changements de taille des LDL en réponse à la diète Portfolio, mais non aux autres traitements.
|
12 |
Déterminants de la dysbêtalipoprotéinémie de type III : au-delà de l'apolipoprotéine ELeblanc, Josianne January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
13 |
Comparaison du statut coronarien de sujets atteints d’hypercholestérolémie familiale sur une période de 25 ansLauzière, Alex 04 1900 (has links)
L’hypercholestérolémie familiale (HF) est un trait autosomique co-dominant associé à des concentrations élevées de cholestérol dans les lipoprotéines de basse densité (LDL-C) entraînant un risque élevé de maladie coronarienne athérosclérotique (MCAS) prématurée et sévère. Depuis vingt ans, des thérapies hypolipémiantes et des guides de pratique permettent une prise en charge clinique précoce et efficace, mais l’HF demeure sous-diagnostiquée et sous-traitée. L’impact de ces mesures sur le fardeau clinique et la sévérité coronarienne de l’HF n’est pas bien documenté.
En étudiant des patients atteints d’HF hospitalisés entre 2017-2021 (n=108) pour une MCAS confirmée angiographiquement dans une population fondatrice où l’HF est répandue et en la comparant à un échantillon de 1995-1998 (n=240), un portrait comparatif du fardeau coronarien a été établi sur 25 ans. La prévalence de l’HF parmi le total des hospitalisations coronariennes a chuté de 9,6% à 5,5% et les patients contemporains étaient significativement plus âgés. Conséquemment, le taux d'hospitalisation pour MCAS prématurée a significativement diminué parmi les HF. Les patients contemporains recevaient un meilleur traitement hypolipémiant contrôlant mieux leur profil lipidique, mais leurs des facteurs de risque cardiovasculaire (diabètes, obésité, hypertension) étaient plus fréquents. La sévérité et la complexité anatomiques globales de la coronaropathie restent inchangées, mais certains marqueurs secondaires se sont améliorés.
Malgré des avancées dans le diagnostic et le traitement, la prise en charge de l’HF reste sous-optimale, avec un écart entre les thérapies recommandées et la pratique clinique, entraînant un fardeau persistant pour beaucoup de ces patients qui présentent encore une coronaropathie prématurée et sévère. / Familial hypercholesterolemia (FH) is an autosomal co-dominant trait associated with lifelong elevated concentrations of low-density lipoprotein (LDL) cholesterol causing a high risk of premature and severe coronary heart disease (CHD). In twenty years, lipid lowering therapies and practice guidelines allow an earlier and more effective clinical management, but FH is still underdiagnosed and undertreated. Moreover, the impact of these measures on the clinical and coronary anatomical burden of FH is not well documented.
By studying FH patients hospitalized between 2017-2021 (n=108) for an angiographically-confirmed CHD event in the Saguenay-Lac-saint-Jean founder population where FH is highly prevalent and comparing it to a sample from 1995-1998 (n=240), a comparative estimate of the management and coronary burden over 25 years was established. FH prevalence among patients hospitalized for CHD patients decreased from 9.6% to 5.5%, FH patients were significantly older in 2021 and the prevalence of premature CHD requiring hospitalization significantly decreased during the same period. Contemporary patients received more potent lipid lowering therapies, their lipid profile was better controlled, but other cardiovascular risk factors (diabetes, obesity, hypertension) were more prevalent in 2021. Global coronary anatomical severity and complexity of CHD was unchanged, though certain secondary markers were improved.
Despite significant improvement in diagnosis and treatment, FH management remains sub-optimal, despite guidelines, the evolution of the therapeutic arsenal and improvements in clinical practice, causing a persistent burden on several of FH patients who still present with premature and severe CHD.
|
14 |
Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaineLuna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma.
L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD.
Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire.
Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9.
En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood.
Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9.
The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one.
The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1.
In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
|
15 |
La PCSK9 humaine, une molécule aux multiples facettes métaboliques et une cible thérapeutique prometteuse : études de régulation in vitro et in vivoDubuc, Geneviève 09 1900 (has links)
La proprotéine convertase subtilisine/kexine-9 (PCSK9) a été identifiée comme le troisième locus impliqué dans l’hypercholestérolémie autosome dominante (ADH). Les deux autres gènes impliqués dans l’ADH encodent le récepteur des lipoprotéines de faible densité (LDLR) et l’apolipoprotéine B. La PCSK9 est une convertase qui favorise la dégradation du LDLR dans les hépatocytes et augmente le niveau plasmatique de cholestérol des LDL (LDL-C). Les mutations « gain de fonction » de la PCSK9 sont associées à un phénotype d’hypercholestérolémie familiale, tandis que les variantes « perte de fonction » sont associées à un LDL-C réduit et à un risque coronarien plus faible.
Pour élucider le rôle physiologique de la PCSK9, nous avons étudié sa régulation génique. En utilisant le RT-PCR quantitatif dans des hépatocytes humains, nous avons analysé la régulation de PCSK9 sous différentes conditions modulant l’expression des gènes impliqués dans le métabolisme du cholestérol. Nous avons démontré que l’expression de la PCSK9 était induite par les statines de manière dose-dépendante et que cette induction était abolie par le mévalonate. De plus, le promoteur de PCSK9 contenait deux motifs conservés pour la régulation par le cholestérol : le sterol regulatory element (SRE) et un site Sp1. La PCSK9 circule dans le plasma sous des formes mature et clivée par la furine. Grâce à notre anticorps polyclonal, nous avons mis au point un test ELISA mesurant la PCSK9 plasmatique totale. Une étude transversale a évalué les concentrations plasmatiques de PCSK9 chez des sujets sains et hypercholestérolémiques, traités ou non par des statines ou une combinaison statine/ezetimibe. Chez 254 sujets sains, la valeur moyenne de PCSK9 (écart-type) était de 89,5 (31,9) µg/L. La concentration plasmatique de la PCSK9 corrélait avec celle de cholestérol total, du LDL-C, des triglycérides (TG), de la glycémie à jeun, l’âge et l’indice de masse corporelle. Le séquençage de PCSK9 chez des sujets aux extrêmes de la distribution des concentrations de PCSK9 de notre cohorte a révélé la présence d’une nouvelle variation « perte de fonction » : R434W. Chez 200 patients hypercholestérolémiques, la concentration de PCSK9 était plus élevée que chez les sujets sains (P<0,04). Elle a augmenté avec une dose croissante de statine (P<0,001), et a augmenté encore plus suite à l’ajout d’ezetimibe (P<0,001). Chez les patients traités, ceux présentant une hypercholestérolémie familiale (HF; due à une mutation du LDLR) avaient des concentrations plus élevées de PCSK9 que les non-HF (P<0,005), et la réduction de LDL-C corrélait positivement avec la concentration de PCSK9 atteinte de la même manière dans les deux sous-catégories (P<0,02 et P<0,005, respectivement). Par ailleurs, une incubation des cellules HepG2 (hépatocytes) et Caco-2 (entérocytes) avec de l’ezetimibe a provoqué une augmentation de l’ARNm de PCSK9 et de NPC1L1 de 1,5 à 2 fois (P<0,05), mais aucune variation significative de PCSK9 sécrétée n’a été observée, suggérant que ces lignées cellulaires ne sont pas un modèle idéal.
Nous avons également mesuré le niveau de PCSK9 chez 1 739 Canadiens-français âgés de 9, 13 et 16 ans. La valeur moyenne (écart-type) de PCSK9 dans cette cohorte était de 84,7 (24,7) µg/L, légèrement plus basse que dans la cohorte d’adultes (89,5 (31,9) µg/L). Chez les garçons, la PCSK9 circulante diminuait avec l’âge, tandis que c’était l’inverse chez les filles. Il y avait des associations positives et significatives entre la PCSK9 et la glycémie à jeun, l’insulinémie, le HOMA-IR, et les paramètres lipidiques (TC, LDL-C, TG, HDL-C, apoAI et apoB). Dans l’analyse multivariée, une hausse de 10% de l’insulinémie à jeun était associée à une augmentation de 1 à 2% de PCSK9.
La régulation de PCSK9 est typique de celle d’un gène impliqué dans le métabolisme des lipoprotéines et est probablement la cible du facteur de transcription «sterol regulatory element-binding protein » (SREBP-2). La concentration plasmatique de la PCSK9 est associée avec l’âge, le sexe, et de multiples marqueurs métaboliques chez les enfants et les adultes. La détection de la PCSK9 circulante chez les sujets HF et non-HF signifie que ce test ELISA spécifique à PCSK9 pourrait servir à suivre la réponse à la thérapie chez un grand éventail de sujets. PCSK9 semble être une cible thérapeutique prometteuse dans le traitement de l’hypercholestérolémie et de la maladie cardiovasculaire. / Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been identified as the third locus implicated in autosomal dominant hypercholesterolemia (ADH). The two other known genes implicated in ADH encode the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 is a protein convertase that post-translationally promotes the degradation of the LDLR in hepatocytes and increases plasma LDL cholesterol concentration (LDL-C). Heterozygote “gain-of-function” mutations of PCSK9 are associated with the familial hypercholesterolemia phenotype, whereas “loss-of-function” variants are associated with reduced LDL-C concentrations and lower coronary risk.
As an approach toward the elucidation of the physiological role(s) of PCSK9, we studied its transcriptional regulation. Using quantitative RT-PCR, we assessed PCSK9 regulation under conditions known to regulate genes involved in cholesterol metabolism in HepG2 cells and in human primary hepatocytes. We found that PCSK9 expression was strongly induced by statins in a dose-dependent manner and that this induction was efficiently reversed by mevalonate. The PCSK9 promoter contains two typical conserved motifs for cholesterol regulation: a sterol regulatory element (SRE) and an Sp1 site.
PCSK9 circulates in plasma as mature and furin-cleaved forms. A polyclonal antibody against human PCSK9 was used to develop an ELISA that measures total plasma PCSK9 rather than only the mature form. A cross-sectional study evaluated plasma levels in normal and hypercholesterolemic subjects treated or untreated with statins or statin plus ezetimibe. In 254 healthy subjects, the mean plasma PCSK9 (SD) concentration was 89 (32) µg/L. PCSK9 levels correlated positively with plasma cholesterol, LDL-C, triglycerides, fasting glucose, age and body mass index. Sequencing PCSK9 from subjects at the extremes of PCSK9 plasma distribution revealed a new loss-of-function R434W variant. In 200 hypercholesterolemic patients, circulating PCSK9 was higher than in controls (P<0.04), increased with increasing statin dose (P<0.001), and further increased when ezetimibe was added (P<0.001). In treated patients (n = 139), those with familial hypercholesterolemia (FH; due to LDLR gene mutations) had higher PCSK9 values than non-FH (P<0,005), and LDL-C reduction correlated positively with achieved plasma PCSK9 levels to a similar extent in both subsets (P<0.02 and P<0.005, respectively). However, incubation with ezetimibe of HepG2 (hepatocytes) and Caco-2 (enterocytes) cells caused an increase in PCSK9 and NPC1L1 mRNA of 1.5 to 2-fold (P<0.05), but no significant rise in PCSK9 protein secretion, suggesting that these transformed cells are not an ideal model.
We also studied PCSK9 levels in 1,739 French Canadian youth ages 9, 13, and 16 years old. The mean (SD) plasma PCSK9 concentration, measured by ELISA, was 84.7 (24.7) µg/L in the cohort, slightly lower than in the adult cohort (89.5 (31.9) µg/L. In boys, plasma PCSK9 decreased with age, whereas the inverse was true for girls. There were significant positive associations between PCSK9 and fasting glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). In multivariable analysis, a 10% higher fasting insulin was associated with a 1%-2% higher PCSK9 in both sexes. There were also positive associations between PCSK9 and total cholesterol, LDL-C, and triglycerides, as well as with HDL-C and apolipoproteins A1 and B.
PCSK9 regulation is typical of that of the genes implicated in lipoprotein metabolism. In vivo, PCSK9 is probably a target of the transcription factor “sterol response element-binding protein” (SREBP)-2. The PCSK9 plasmatic concentration is associated with age, sex, and multiple metabolic markers in youth and adult samples. The detection of circulating PCSK9 in both FH and non-FH subjects means that this PCSK9 ELISA test could be used to monitor response to therapy in a wide range of patients. PCSK9 seems to be a promising drug target in the treatment of hypercholesterolemia and coronary heart disease.
|
16 |
Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familialePoirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma.
Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ?
[1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires.
[2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante.
[3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9.
En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma.
In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9?
[1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family.
[2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner.
[3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation.
In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
|
17 |
Étude de la Structure-Fonction du Prosegment et du domaine CHRD de la PCSK9 humaineLuna Saavedra, Yascara Grisel 08 1900 (has links)
L’excès des particules de LDL dans le sang constitue un facteur de risque majeur dans le développement des maladies cardiovasculaires. Dans ce contexte, nous étudions la protéine PCSK9 qui favorise directement ce facteur de risque. Cette protéine est sécrétée en majorité au niveau du foie par les hépatocytes et possède la capacité de reconnaître et de lier le récepteur LDLR. Le rôle premier de ce dernier est d’éliminer les particules de LDL circulant dans le plasma. Ainsi, lorsque la PCSK9 forme un complexe avec le LDLR et l’amène à la dégradation, la conséquence directe de la diminution des ces récepteurs est une accumulation malsaine des particules LDL dans le plasma.
L’importante implication de la PCSK9 dans le métabolisme des lipides nous a menés vers des recherches de caractérisation de cette protéine ainsi que dans l’étude de son mode d’action. La PCSK9 est composée de trois domaines et notre intérêt s’est porté sur l’étude structure-fonction des deux domaines dont la fonction était inconnue, soit le domaine en N-terminal : le prodomaine et de son domaine en C-terminal : CHRD.
Le premier article présenté dans cette thèse révèle l’importance d’une région acide (acide aminés 33-58) régulatrice de l’activité de la PCSK9 localisée en N-terminal du prodomaine ainsi que l’effet du pH acide, équivalent à celui des endosomes tardifs, qui accroît la capacité de la PCSK9 à induire la dégradation du LDLR. Le deuxième article dissèque davantage la structure de la PCSK9 et met en lumière la différence des prérequis structurels de la région ‘’Hinge’’ ainsi que du module M2, composant du domaine CHRD, dans la voie intracellulaire et la voie extracellulaire d’activité de la PCSK9. La mutation R434W localisée dans la région ‘’Hinge’’ résulte dans une inhibition totale de l’activité intracellulaire de la PCSK9 tandis que son activité extracellulaire est réduite à ~70%. Contrairement, la perte du module M2 du domaine CHRD est bien tolérée par la PCSK9 lors de son activité intracellulaire mais totalement inhibitrice pour son activité extracellulaire.
Le troisième article se distingue en présentant une nouvelle stratégie d’inhibition de l’activité de la PCSK9 en utilisant une chimère composée de la fraction Fc de l’immunoglobuline IgG1 humaine couplée avec le prodomaine de la PCSK9. La protéine fusion Fcpro lie directement la PCSK9, crée un encombrement structurel qui résulte dans une régulation négative l’activité de la PCSK9.
En résumé, nous présentons dans cette thèse, trois manuscrits qui apportent une contribution à la connaissance des composantes structurelles de la PCSK9 et leur implication dans le rôle de la protéine en tant que régulateur négatif du LDLR. / Hypercholesterolemia is one of the major risk factors leading to cardiovascular disease. In this context, we focused our study on a protein that directly influences hypercholesterolemia: PCSK9. Since 2003, the coding gene for PCSK9 has been identified as the third locus responsible for familial hypercholesterolemia (FH3). PCSK9 is a protein secreted mostly from the liver by hepatocytes and has the capacity to recognize, bind and direct to degradation the LDLR receptor. The latter is responsible for the elimination the LDL particles from the plasma. The direct consequence of the LDLR degradation induced by PCSK9 is the harmful accumulation of the bad cholesterol in the blood.
Since PCSK9 activity has undesirable consequences on lipid metabolism homeostasis, we directed our research to characterize this protein to better understand its mechanism of action. Three domains compose PCSK9 structure and we focused on the ‘’structure-function study’’ of two domains, of which roles were still unknown: the prodomain located at the N-terminal extremity and the CHRD domain at the C-terminus of PCSK9.
The first manuscript presented in this thesis brings to light the importance of the acidic N-terminal sequence of the prosegment (amino acids 33-58) and its effect on the activity of PCSK9. It also presents a novel mechanism for fine-tuning the activity of PCSK9, which is enhanced at acidic pHs close to those of late endosomes. The second manuscript dissects further the PCSK9 structure, revealing that the structural requirements of the hinge and the M2 module located in the CHRD domain are not the same for the intracellular and extracellular pathways of PCSK9-induced LDLR degradation. Although the R434W natural mutation in the hinge region is absolutely deleterious for the intracellular activity of PCSK9, it reduces by ~70% the extracellular one. In contrast, the loss of M2 module of the CHRD domain is tolerated for the intracellular activity of PCSK9 but not for the extracellular one.
The third manuscript demonstrates for the first time that a chimera containing the prosegment (Fcpro) directly binds PCSK9 and effectively acts as a negative regulator (inhibitor) of its ability to induce LDLR degradation. Our work presents a new strategy to develop such inhibitors by interfering with the structure of PCSK9 and exploiting the properties of the PCSK9 prosegment and the advantage of its fusion to a humanized Fc of IgG1.
In summary, the present research data sheds new light on the functional contribution of the prodomain and the CHRD domain of PCSK9.
|
18 |
La PCSK9 humaine, une molécule aux multiples facettes métaboliques et une cible thérapeutique prometteuse : études de régulation in vitro et in vivoDubuc, Geneviève 09 1900 (has links)
La proprotéine convertase subtilisine/kexine-9 (PCSK9) a été identifiée comme le troisième locus impliqué dans l’hypercholestérolémie autosome dominante (ADH). Les deux autres gènes impliqués dans l’ADH encodent le récepteur des lipoprotéines de faible densité (LDLR) et l’apolipoprotéine B. La PCSK9 est une convertase qui favorise la dégradation du LDLR dans les hépatocytes et augmente le niveau plasmatique de cholestérol des LDL (LDL-C). Les mutations « gain de fonction » de la PCSK9 sont associées à un phénotype d’hypercholestérolémie familiale, tandis que les variantes « perte de fonction » sont associées à un LDL-C réduit et à un risque coronarien plus faible.
Pour élucider le rôle physiologique de la PCSK9, nous avons étudié sa régulation génique. En utilisant le RT-PCR quantitatif dans des hépatocytes humains, nous avons analysé la régulation de PCSK9 sous différentes conditions modulant l’expression des gènes impliqués dans le métabolisme du cholestérol. Nous avons démontré que l’expression de la PCSK9 était induite par les statines de manière dose-dépendante et que cette induction était abolie par le mévalonate. De plus, le promoteur de PCSK9 contenait deux motifs conservés pour la régulation par le cholestérol : le sterol regulatory element (SRE) et un site Sp1. La PCSK9 circule dans le plasma sous des formes mature et clivée par la furine. Grâce à notre anticorps polyclonal, nous avons mis au point un test ELISA mesurant la PCSK9 plasmatique totale. Une étude transversale a évalué les concentrations plasmatiques de PCSK9 chez des sujets sains et hypercholestérolémiques, traités ou non par des statines ou une combinaison statine/ezetimibe. Chez 254 sujets sains, la valeur moyenne de PCSK9 (écart-type) était de 89,5 (31,9) µg/L. La concentration plasmatique de la PCSK9 corrélait avec celle de cholestérol total, du LDL-C, des triglycérides (TG), de la glycémie à jeun, l’âge et l’indice de masse corporelle. Le séquençage de PCSK9 chez des sujets aux extrêmes de la distribution des concentrations de PCSK9 de notre cohorte a révélé la présence d’une nouvelle variation « perte de fonction » : R434W. Chez 200 patients hypercholestérolémiques, la concentration de PCSK9 était plus élevée que chez les sujets sains (P<0,04). Elle a augmenté avec une dose croissante de statine (P<0,001), et a augmenté encore plus suite à l’ajout d’ezetimibe (P<0,001). Chez les patients traités, ceux présentant une hypercholestérolémie familiale (HF; due à une mutation du LDLR) avaient des concentrations plus élevées de PCSK9 que les non-HF (P<0,005), et la réduction de LDL-C corrélait positivement avec la concentration de PCSK9 atteinte de la même manière dans les deux sous-catégories (P<0,02 et P<0,005, respectivement). Par ailleurs, une incubation des cellules HepG2 (hépatocytes) et Caco-2 (entérocytes) avec de l’ezetimibe a provoqué une augmentation de l’ARNm de PCSK9 et de NPC1L1 de 1,5 à 2 fois (P<0,05), mais aucune variation significative de PCSK9 sécrétée n’a été observée, suggérant que ces lignées cellulaires ne sont pas un modèle idéal.
Nous avons également mesuré le niveau de PCSK9 chez 1 739 Canadiens-français âgés de 9, 13 et 16 ans. La valeur moyenne (écart-type) de PCSK9 dans cette cohorte était de 84,7 (24,7) µg/L, légèrement plus basse que dans la cohorte d’adultes (89,5 (31,9) µg/L). Chez les garçons, la PCSK9 circulante diminuait avec l’âge, tandis que c’était l’inverse chez les filles. Il y avait des associations positives et significatives entre la PCSK9 et la glycémie à jeun, l’insulinémie, le HOMA-IR, et les paramètres lipidiques (TC, LDL-C, TG, HDL-C, apoAI et apoB). Dans l’analyse multivariée, une hausse de 10% de l’insulinémie à jeun était associée à une augmentation de 1 à 2% de PCSK9.
La régulation de PCSK9 est typique de celle d’un gène impliqué dans le métabolisme des lipoprotéines et est probablement la cible du facteur de transcription «sterol regulatory element-binding protein » (SREBP-2). La concentration plasmatique de la PCSK9 est associée avec l’âge, le sexe, et de multiples marqueurs métaboliques chez les enfants et les adultes. La détection de la PCSK9 circulante chez les sujets HF et non-HF signifie que ce test ELISA spécifique à PCSK9 pourrait servir à suivre la réponse à la thérapie chez un grand éventail de sujets. PCSK9 semble être une cible thérapeutique prometteuse dans le traitement de l’hypercholestérolémie et de la maladie cardiovasculaire. / Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been identified as the third locus implicated in autosomal dominant hypercholesterolemia (ADH). The two other known genes implicated in ADH encode the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 is a protein convertase that post-translationally promotes the degradation of the LDLR in hepatocytes and increases plasma LDL cholesterol concentration (LDL-C). Heterozygote “gain-of-function” mutations of PCSK9 are associated with the familial hypercholesterolemia phenotype, whereas “loss-of-function” variants are associated with reduced LDL-C concentrations and lower coronary risk.
As an approach toward the elucidation of the physiological role(s) of PCSK9, we studied its transcriptional regulation. Using quantitative RT-PCR, we assessed PCSK9 regulation under conditions known to regulate genes involved in cholesterol metabolism in HepG2 cells and in human primary hepatocytes. We found that PCSK9 expression was strongly induced by statins in a dose-dependent manner and that this induction was efficiently reversed by mevalonate. The PCSK9 promoter contains two typical conserved motifs for cholesterol regulation: a sterol regulatory element (SRE) and an Sp1 site.
PCSK9 circulates in plasma as mature and furin-cleaved forms. A polyclonal antibody against human PCSK9 was used to develop an ELISA that measures total plasma PCSK9 rather than only the mature form. A cross-sectional study evaluated plasma levels in normal and hypercholesterolemic subjects treated or untreated with statins or statin plus ezetimibe. In 254 healthy subjects, the mean plasma PCSK9 (SD) concentration was 89 (32) µg/L. PCSK9 levels correlated positively with plasma cholesterol, LDL-C, triglycerides, fasting glucose, age and body mass index. Sequencing PCSK9 from subjects at the extremes of PCSK9 plasma distribution revealed a new loss-of-function R434W variant. In 200 hypercholesterolemic patients, circulating PCSK9 was higher than in controls (P<0.04), increased with increasing statin dose (P<0.001), and further increased when ezetimibe was added (P<0.001). In treated patients (n = 139), those with familial hypercholesterolemia (FH; due to LDLR gene mutations) had higher PCSK9 values than non-FH (P<0,005), and LDL-C reduction correlated positively with achieved plasma PCSK9 levels to a similar extent in both subsets (P<0.02 and P<0.005, respectively). However, incubation with ezetimibe of HepG2 (hepatocytes) and Caco-2 (enterocytes) cells caused an increase in PCSK9 and NPC1L1 mRNA of 1.5 to 2-fold (P<0.05), but no significant rise in PCSK9 protein secretion, suggesting that these transformed cells are not an ideal model.
We also studied PCSK9 levels in 1,739 French Canadian youth ages 9, 13, and 16 years old. The mean (SD) plasma PCSK9 concentration, measured by ELISA, was 84.7 (24.7) µg/L in the cohort, slightly lower than in the adult cohort (89.5 (31.9) µg/L. In boys, plasma PCSK9 decreased with age, whereas the inverse was true for girls. There were significant positive associations between PCSK9 and fasting glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). In multivariable analysis, a 10% higher fasting insulin was associated with a 1%-2% higher PCSK9 in both sexes. There were also positive associations between PCSK9 and total cholesterol, LDL-C, and triglycerides, as well as with HDL-C and apolipoproteins A1 and B.
PCSK9 regulation is typical of that of the genes implicated in lipoprotein metabolism. In vivo, PCSK9 is probably a target of the transcription factor “sterol response element-binding protein” (SREBP)-2. The PCSK9 plasmatic concentration is associated with age, sex, and multiple metabolic markers in youth and adult samples. The detection of circulating PCSK9 in both FH and non-FH subjects means that this PCSK9 ELISA test could be used to monitor response to therapy in a wide range of patients. PCSK9 seems to be a promising drug target in the treatment of hypercholesterolemia and coronary heart disease.
|
19 |
Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familialePoirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma.
Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ?
[1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires.
[2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante.
[3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9.
En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma.
In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9?
[1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family.
[2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner.
[3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation.
In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
|
20 |
Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)Ait Hamouda, Hocine 06 1900 (has links)
Les maladies cardiovasculaires (MCV) sont la principale cause de mortalité dans
les pays industrialisés. L'hypercholestérolémie constitue un facteur de risque majeur pour
les MCV. Elle est caractérisée par des niveaux élevés de lipoprotéines de faible densité
(LDL, aussi appelé “mauvais cholestérol”). La présence prolongée de haut niveaux de
LDL dans la circulation augmente le risque de formation de plaques athérosclérotiques,
ce qui peut conduire à l'obstruction des artères et l'infarctus du myocarde. Le LDL est
normalement extrait du sang par sa liaison au récepteur du LDL (LDLR) qui est
responsable de son endocytose dans les hépatocytes. Des études génétiques humaines ont
identifié PCSK9 (proprotein convertase subtilisin/kexin type 9) comme le troisième locus
responsable de l'hypercholestérolémie autosomique dominante après le LDLR et son
ligand l’apolipoprotéine B-100. PCSK9 interagit avec le LDLR et induit sa dégradation,
augmentant ainsi les niveaux plasmatiques de LDL. Les mutations gain de fonction (GF)
de PCSK9 sont associées à des niveaux plasmatiques élevés de LDL et à l'apparition
précoce des MCV, alors que les mutations perte de fonction (PF) de PCSK9 diminuent le
risque de MCV jusqu’à ~ 88% grâce à une réduction du LDL circulant. De ce fait,
PCSK9 constitue une cible pharmacologique importante pour réduire le risque de MCV.
PCSK9 lie le LDLR à la surface cellulaire et/ou dans l'appareil de Golgi des hépatocytes
et provoque sa dégradation dans les lysosomes par un mécanisme encore mal compris. Le
but de cette étude est de déterminer pourquoi certaines mutations humaines de PCSK9
sont incapables de dégrader le LDLR tandis que d'autres augmentent sa dégradation dans
les lysosomes. Plusieurs mutations GF et PF de PCSK9 ont été fusionnées à la protéine
fluorecente mCherry dans le but d'étudier leur mobilité moléculaire dans les cellules
hépatiques vivantes. Nos analyses quantitatives de recouvrement de fluorescence après
photoblanchiment (FRAP) ont montré que les mutations GF (S127R et D129G) avaient
une mobilité protéique plus élevée (> 35% par rapport au WT) dans le réseau trans-
Golgien. En outre, nos analyses quantitatives de recouvrement de fluorescence inverse
après photoblanchiment (iFRAP) ont montré que les mutations PF de PCSK9 (R46L)
avaient une mobilité protéique plus lente (<22% par rapport au WT) et une fraction
mobile beaucoup plus petite (<40% par rapport au WT). Par ailleurs, nos analyses de
microscopie confocale et électronique démontrent pour la toute première fois que PCSK9
est localisée et concentrée dans le TGN des hépatocytes humains via son domaine Cterminal
(CHRD) qui est essentiel à la dégradation du LDLR. De plus, nos analyses sur
des cellules vivantes démontrent pour la première fois que le CHRD n'est pas nécessaire à
l'internalisation de PCSK9. Ces résultats apportent de nouveaux éléments importants sur
le mécanisme d'action de PCSK9 et pourront contribuer ultimement au développement
d'inhibiteurs de la dégradation du LDLR induite par PCSK9. / Coronary heart diseases (CHD) are a leading cause of death in Western societies.
Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of
circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The
prolonged presence of elevated levels of LDL in the circulation increases the risk of
formation of atherosclerotic plaques, which can lead to obstruction of arteries and
myocardial infarction. LDL is normally cleared from the blood through the binding of its
sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which
mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the
third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its
ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation
thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are
associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction
(LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of
circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to
lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi
apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet
clearly understood. The goal of this study was to determine why some human PCSK9
mutations fail to induce LDLR degradation while others increase it in lysosomes. Several
PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study
their molecular mobility in living human liver cells. Our quantitative analysis of
fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations
S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans-
Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after
photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much
slower protein mobility (<22% compared to WT) and a much slower mobile fraction
(<40% compared to WT). In addition, our confocal and electron microscopy analyses
demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of
human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the
TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD),
which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the
first time that the CHRD is not required for internalization of PCSK9. These results
provide important new information on the mechanism of action of PCSK9 and may
ultimately help in the development of inhibitors of the PCSK9-induced LDLR
degradation.
|
Page generated in 0.052 seconds