• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Trafficking Factors Involved in Ebola Virus Entry

Qiu, Shirley 08 June 2021 (has links)
Ebola virus (EBOV) and other members of the Filoviridae family are enveloped RNA viruses that are the causative agents of sporadic outbreaks of highly lethal disease in humans and non-human primates. EBOV entry into host cells requires attachment, internalization, and subsequent trafficking to the late endosomal/lysosomal compartment in order to reach the filovirus entry receptor, Niemann-Pick C1 (NPC1) and other triggering factors required for EBOV glycoprotein (GP)-mediated fusion between the viral and host membranes. The highly regulated nature of endosomal trafficking coupled with the dependence of EBOV on accurate endolysosomal trafficking for entry led us to hypothesize that the virus depends on—and potentially actively regulates—a consortium of specific host trafficking factors. In this thesis, we investigated the role of two trafficking complexes involved in endosomal maturation and trafficking, the Homotypic Fusion and Vacuole Protein Sorting (HOPS) complex and the PIKfyve-ArPIKfyve-Sac3 (PAS) complex, in EBOV entry. Furthermore, in order to further dissect how the PAS complex is regulated and performs its effector functions, we performed a protein-protein interaction screen using BioID in order to define the PAS cellular interactome. Using an inducible CRISPR/Cas9 system, we found that depletion of each HOPS subunit, as well as depletion of a positive regulator of the HOPS complex, UVRAG, impaired EBOV entry. Furthermore, we mapped a region of UVRAG spanning residues 269-442 to be key for binding to the HOPS complex and mediating EBOV entry, indicating that expression of and coordination between the HOPS complex and UVRAG are required for EBOV entry. Similarly, knockout of each subunit of the PAS complex was found to impair EBOV entry. Further molecular dissection using small molecule inhibitors and enzymatic mutants of PIKfyve and Sac3 demonstrated that PIKfyve kinase activity is required for EBOV entry, while Sac3 phosphatase activity is dispensable. Using a fluorescent probe for phosphatidylinositol(3,5)bisphosphate, the lipid product generated by PIKfyve, we also found evidence that stimulation of cells by EBOV virus-like-particles enhances PIKfyve activity, suggesting that the virus can promote its entry by activating the PAS complex. Finally, using BioID to screen for interacting proteins of the PAS complex, we identified candidate interactors involved in endosomal trafficking as well as other cell processes including mitochondrial function and cell cycle regulation. Further characterization of one candidate interactor, the coatomer complex I (COPI), using proximity ligation assays validated the interaction between ArPIKfyve and COPI subunit COPB1, and provides further evidence for a role of COPI in endosomal trafficking. Taken together, these results highlight the importance of cellular trafficking factors involved in diverse facets of endosomal dynamics, from lipid metabolism to membrane tethering, for the entry of EBOV and other filoviruses, and further shed light on how EBOV can actively modulate host trafficking networks to promote successful viral entry and infection. Further molecular dissection of how the virus hijacks cell trafficking will facilitate the development of antiviral therapeutics as well as elucidate how these fundamental cellular processes are regulated.
2

Protein trafficking and host cell remodeling in malaria parasite infection / Le trafic des protéines et le remodelage de la cellule hôte dans l'infection par le parasite du paludisme

Curra, Chiara 05 July 2010 (has links)
Pour assurer ses besoins de croissance, multiplication, et survie, Plasmodium modifie sa cellule hôte, l'érythrocyte, après l'invasion. Le parasite met en place ainsi un système d'échanges (import/export) avec sa cellule hôte et le milieu extérieur. Nous avons identifié dans la base de données de Plasmodium berghei, le parasite de rongeurs, une famille de gènes, sep, correspondant à la famille etramp chez Plasmodium falciparum. Cette famille de gènes code pour des petites protéines exportées, et conservées dans tout le genre Plasmodium. Les protéines SEP (13?16 kDa) contiennent en N-terminal un peptide signal prédit, un domaine hydrophobe interne, et elles diffèrent au niveau des régions C-terminal et 3' UTR. Toutefois, les protéines SEP sont exprimées à différents moments du cycle de Plasmodium. Durant le cycle érythrocytaire, PbSEP1 et PbSEP3 sont exprimées à partir du stade trophozoïte, et la même quantité de protéine est détectée au stade schizonte et gamétocyte, pendant que PbSEP3 est hautement détectée dans les trophozoïtes mûrs et les gamétocytes. Chez le moustique, PbSEP1 et PbSEP3 sont détectées seulement chez les ookinètes, alors que PbSEP2 est très abondante dans les ookinètes, oocystes, et sporozoïtes des glandes salivaires. Les protéines SEP ont également des localisations différentes. Dans l'érythrocyte, PbSEP1 est localisée dans la membrane de la vacuole parasitophore, alors que PbSEP2 et PbSEP3 sont exportées au-delà de cette vacuole, et sont ainsi localisées dans la cellule hôte, en association avec des structures vésiculaires. Dans cette étude, nous avons identifié les signaux d'adressage des protéines SEP dans la vacuole parasitophore et dans la cellule hôte, chez Plasmodium berghei. L'autre partie du travail, effectuée à l'Université de Montpellier II, a consisté à étudier la localisation de deux protéines du squelette sous- membranaire de l'érythrocyte, la dématine, et l'adducine, durant le développement intra-érythrocytaire de Plasmodium falciparum. Le but de cette étude étant d'identifier un mécanisme potentiel d'internalisation des composants du squelette sous-membranaire de l'érythrocyte dans le parasite. Des études d'immuno-localisation ont montré que la dématine et l'adducine sont internalisées à partir du stade trophozoïte, et sont localisées probablement à la vacuole parasitophore (membrane et/ou lumière). Cette internalisation a été confirmée par des études de fractionnement cellulaire et d'accessibilité à la protéinase K, montrant que la dématine est totalement internalisée, alors l'adducine ne l'est que partiellement, suggérant une localisation de la protéine à la périphérie du parasite. / Plasmodium endurance depends on the ability of the parasite to reorganize the cytosol of the erythrocyte, a terminally differentiated cell, and remodel its skeleton membrane immediately after invasion. In this way the parasite can organize the import/export of the molecules necessary to its survival. The comprehension of cellular trafficking mechanisms which occur during Plasmodium infection is a very important step and fundamental contribute to understand the biology of the malaria parasite.We identified in database of the rodent malaria parasite Plasmodium berghei the gene family sep, corresponding to etramp in P. falciparum, encoding small exported proteins conserved in the genus Plasmodium. SEP proteins (13?16 kDa) contain a predicted signal peptide at the NH2-terminus, an internal hydrophobic region while they differ in their C-terminal region; the genes share the upstream regulative region while differ in the 3' UTR. Despite this, we showed that SEPs have a different timing of expression and a different localization: in the erythrocytic cycle PbSEP1 and PbSEP3 start to be expressed at trophozoite and the same amount of protein is detected also in schizonts and gametocytes, while PbSEP2 is highly detected in mature trophozoites and even more in gametocytes. In mosquitoes stages PbSEP1 and PbSEP3 are expressed only in ookinetes, while PbSEP2 is very abundant in ookinetes, oocysts and in sporozoites of the salivary glands. SEPs also have a different localization in the iRBC: PbSEP1 is targeted to the membrane of the parasitophorous vacuole, while PbSEP2 and 3 are exported beyond the parasite membrane and translocated to the host cell compartment in association with vesicle-like structures. In this study we identified the specific signals necessary for the correct timing of expression and to direct SEP proteins to the vacuolar membrane and to the host cell compartments.The second part of the work was carried out in Montpellier II University and aims to identify the localization of two RBC membrane skeleton components, dematin and adducin, during Plasmodium falciparum infection. Our purpose is to recognize a possible mechanism of internalization of host cytoskeleton components to the parasite compartments. In fact, IFA experiments carried on iRBCs showed that dematin and adducin start to be internalized at trophozoite stage and localize at the periphery of the parasite, most probably at the parasitophoruos vacuole (PV) membrane/lumen. Dematin and adducin internalization during Plasmodium infection is also demonstrated by subcellular fractionation and proteinase K assay: while dematin is fully internalized, adducin is partially protected and suggesting a localization of the protein at the periphery of the parasite where it can be exposed to PK degradation.
3

Dynamique de la protéine Nox2 lors de la phagocytose / Nox2 Protein Dynamics during Phagocytosis

Joly, Jérémy 20 November 2019 (has links)
Les neutrophiles sont les leucocytes les plus nombreux et les premières cellules à arriver au site de l’infection où elles internalisent les pathogènes par phagocytose. Dès le début du processus, la NADPH oxydase s’assemble au phagosome où elle permet la production de formes réactives de l’oxygène contribuant ainsi à la destruction du pathogène. La sous-unité catalytique membranaire de la NADPH oxydase, Nox2, est donc présente à la coupe phagocytaire puis au phagosome. Le dessein de cette étude était de déterminer quelles sont les sources subcellulaires de la protéine Nox2, de savoir si la protéine s’accumule au phagosome et le cas échéant selon quelle cinétique. Dans le but de comprendre la dynamique de la protéine Nox2, la protéine d’échafaudage IQGAP1 qui est associée au cytosquelette a également été étudiée. Enfin l’étude de l’organisation spatiale de la protéine Nox2 à la synapse phagocytaire a également été abordé.En utilisant des cellules neutrophil-like (PLB-985) ainsi que des neutrophiles humains, notre étude a montré par immunofluorescence la présence de la protéine Nox2 dans des endosomes de recyclage ou dans des endosomes précoces. Lors de la phagocytose ils avoisinent le phagosome suggérant leur implication dans l’apport de la protéine Nox2 à la membrane de ce dernier. L’utilisation de cellules PLB-985 pour lesquelles l’expression de Nox2 a été supprimée puis réintroduite avec un transgène codant pour la protéine GFP-Nox2 montre que la sous-unité Nox2 s’accumule au phagosome pendant les vingt minutes suivant sa fermeture. Dans notre étude, la protéine IQGAP1 ne semble pas avoir d’effet sur la phagocytose ou sur la production de FRO par la NADPH oxydase. Enfin, grâce à une technique de microscopie super-résolution (le dSTORM) l’évolution du pattern de Nox2 dans la membrane a été évalué au cours du temps en phagocytose frustrée. En dix minutes, le nombre de clusters de protéine Nox2 augmente mais leur taille reste inchangée. / Neutrophils are the most numerous leukocytes and the first cells to arrive at the site of infection where they internalize pathogens by phagocytosis. From the beginning of the process, the NADPH oxidase is assembled at the phagosome, where it allows the production of reactive oxygen species (ROS), thus contributing to the destruction of the pathogen. The membrane bound catalytic subunit of the NADPH oxidase, Nox2, is therefore recruited at the phagocytic cup and then at the phagosome. The purpose of this study was to determine, which are the subcellular sources of the Nox2 protein, whether the protein accumulates at the phagosome and if so, according to which kinetics. In order to modify the dynamics of the Nox2 protein, the scaffold protein IQGAP1 that is associated with the cytoskeleton was also studied. Finally, the spatial organization of the Nox2 protein in the phagocytic synapse was also investigated.Using neutrophil-like cells (PLB-985) as well as human neutrophils, our study showed by immunofluorescence the presence of the Nox2 protein in recycled or early endosomes. During phagocytosis, they are close to the phagosome, suggesting their involvement in the contribution of the Nox2 protein to the phagosome membrane. The use of PLB-985 for which Nox2 expression has been suppressed and then reintroduced with a transgene encoding the GFP-Nox2 protein shows that the Nox2 subunit accumulates at the phagosome during the first twenty minutes after its closure. In our study, the protein IQGAP1 does not appear to have any effect on phagocytosis or on the production of ROS by NADPH oxidase. Finally, using super resolution microscopy (dSTORM) the evolution of the Nox2 pattern in the membrane has been evaluated over time in frustrated phagocytosis. Within ten minutes, the number of Nox2 protein clusters increases but their size remains unchanged.
4

Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familiale

Poirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma. In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9? [1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family. [2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner. [3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation. In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
5

Dégradation des membres de la famille du LDLR par la convertase PCSK9 : troisième locus de l'hypercholestérolémie familiale

Poirier, Steve 12 1900 (has links)
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel. / Cardiovascular disease (CVD) is the primary cause of death and morbidity worldwide, claiming about 900 000 lives yearly in North America alone. A high level of circulating LDL-cholesterol is a major risk factor positively correlated with premature development of complex CVD mainly due to a rapid buildup of lipid deposition in the arteries. In collaboration with Dre Boileau, we recently discovered that the convertase PCSK9 is the third locus of familial hypercholesterolemia. A study published in the New Eng J Med revealed that the absence of PCSK9 reduces the risk of CVD by ~88%, resulting from a strong reduction of cholesterol in the bloodstream (LDL-C). It has been shown that PCSK9 directly binds the low-density lipoprotein receptor (LDLR) and by an unknown mechanism, reroutes it towards degradation in late endosomes/lysosomes, resulting in the accumulation of LDL-C particles in plasma. In this thesis, we addressed three different aspects of PCSK9 biology: [1] What are the targets of PCSK9? [2] Which cellular trafficking components are involved in PCSK9-induced LDLR degradation? [3] How can we inhibit the function of PCSK9? [1] We first demonstrated that PCSK9 induces the degradation of the LDLR and two of its closest family members. These include the very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. In addition, we demonstrated that these receptors enhance the cellular association of PCSK9 independently of the presence of the LDLR. This study represents the first evidence that PCSK9 could target other proteins for degradation, reinforcing its role as a key regulator of some members of the LDLR family. [2] Since PCSK9 is a secreted protein, we decided to investigate the contributions of both the intra- and extracellular trafficking pathways in LDLR degradation. Using conditioned media derived from mice primary hepatocytes, we showed that endogenously secreted PCSK9 was not able to influence LDLR levels of PCSK9-deficient primary hepatocytes (Pcsk9-/-). By flow cytometry (FACS), we observed that overexpression of the gain-of-function PCSK9-D374Y, but not wild type PCSK9, decreases cell surface LDLR on adjacent cells suggesting that its spectrum of action is local. We also noticed that blockade of endocytosis in HepG2 cells (commonly used to study endogenous LDLR degradation by PCSK9) does not affect total LDLR protein levels. In contrast, disruption of the intracellular trafficking between the trans-Golgi network (TGN) and endosomes (siRNAs against clathrin light chains; CLCs) prevented LDLR degradation in a PCSK9-specific manner. [3] By Far Western blotting, we identified that Annexin A2 (AnxA2) specifically interacts with the C-terminal domain of PCSK9, which is crucial for its function in LDLR degradation. Moreover, we determined that the R1 domain (amino acids 34 to 108) is responsible for the PCSK9AnxA2 interaction, which confers a new function for this protein. Finally, we showed that addition of AnxA2 prevents PCSK9-induced LDLR degradation. In summary, this work allowed us to identify that PCSK9 induces the degradation of the LDLR and its closest family members, ApoER2 and VLDLR. We also highlighted that the integrity of the intracellular trafficking pathway is crucial for endogenous PCSK9-induced LDLR degradation. Furthermore, we discovered that AnxA2 is a unique, natural inhibitor capable of interfering with the action of PCSK9 in LDLR degradation. It is undeniable that PCSK9 is a genetically validated target to reduce circulating LDL-cholesterol and prevent CVD. This thesis brings forth important contributions in our understanding of the cellular pathways involved and opens the door for novel therapeutic approaches.
6

Étude du trafic cellulaire de la convertase de proprotéine PCSK9 responsable de la dégradation du récepteur des lipoprotéines de faible densité (LDLR)

Ait Hamouda, Hocine 06 1900 (has links)
Les maladies cardiovasculaires (MCV) sont la principale cause de mortalité dans les pays industrialisés. L'hypercholestérolémie constitue un facteur de risque majeur pour les MCV. Elle est caractérisée par des niveaux élevés de lipoprotéines de faible densité (LDL, aussi appelé “mauvais cholestérol”). La présence prolongée de haut niveaux de LDL dans la circulation augmente le risque de formation de plaques athérosclérotiques, ce qui peut conduire à l'obstruction des artères et l'infarctus du myocarde. Le LDL est normalement extrait du sang par sa liaison au récepteur du LDL (LDLR) qui est responsable de son endocytose dans les hépatocytes. Des études génétiques humaines ont identifié PCSK9 (proprotein convertase subtilisin/kexin type 9) comme le troisième locus responsable de l'hypercholestérolémie autosomique dominante après le LDLR et son ligand l’apolipoprotéine B-100. PCSK9 interagit avec le LDLR et induit sa dégradation, augmentant ainsi les niveaux plasmatiques de LDL. Les mutations gain de fonction (GF) de PCSK9 sont associées à des niveaux plasmatiques élevés de LDL et à l'apparition précoce des MCV, alors que les mutations perte de fonction (PF) de PCSK9 diminuent le risque de MCV jusqu’à ~ 88% grâce à une réduction du LDL circulant. De ce fait, PCSK9 constitue une cible pharmacologique importante pour réduire le risque de MCV. PCSK9 lie le LDLR à la surface cellulaire et/ou dans l'appareil de Golgi des hépatocytes et provoque sa dégradation dans les lysosomes par un mécanisme encore mal compris. Le but de cette étude est de déterminer pourquoi certaines mutations humaines de PCSK9 sont incapables de dégrader le LDLR tandis que d'autres augmentent sa dégradation dans les lysosomes. Plusieurs mutations GF et PF de PCSK9 ont été fusionnées à la protéine fluorecente mCherry dans le but d'étudier leur mobilité moléculaire dans les cellules hépatiques vivantes. Nos analyses quantitatives de recouvrement de fluorescence après photoblanchiment (FRAP) ont montré que les mutations GF (S127R et D129G) avaient une mobilité protéique plus élevée (> 35% par rapport au WT) dans le réseau trans- Golgien. En outre, nos analyses quantitatives de recouvrement de fluorescence inverse après photoblanchiment (iFRAP) ont montré que les mutations PF de PCSK9 (R46L) avaient une mobilité protéique plus lente (<22% par rapport au WT) et une fraction mobile beaucoup plus petite (<40% par rapport au WT). Par ailleurs, nos analyses de microscopie confocale et électronique démontrent pour la toute première fois que PCSK9 est localisée et concentrée dans le TGN des hépatocytes humains via son domaine Cterminal (CHRD) qui est essentiel à la dégradation du LDLR. De plus, nos analyses sur des cellules vivantes démontrent pour la première fois que le CHRD n'est pas nécessaire à l'internalisation de PCSK9. Ces résultats apportent de nouveaux éléments importants sur le mécanisme d'action de PCSK9 et pourront contribuer ultimement au développement d'inhibiteurs de la dégradation du LDLR induite par PCSK9. / Coronary heart diseases (CHD) are a leading cause of death in Western societies. Hypercholesterolemia is a major risk factor for CHD. It is characterized by high levels of circulating low-density lipoprotein cholesterol (LDL, also called "bad cholesterol"). The prolonged presence of elevated levels of LDL in the circulation increases the risk of formation of atherosclerotic plaques, which can lead to obstruction of arteries and myocardial infarction. LDL is normally cleared from the blood through the binding of its sole protein constituent apolipoprotein B100 to hepatic LDL receptor (LDLR), which mediates its endocytosis in the liver. Human genetic studies have identified PCSK9 as the third gene responsible of autosomal dominant hypercholesterolemia after LDLR and its ligand apolipoprotein B100. PCSK9 interacts with the LDLR and induces its degradation thereby causing plasma LDL levels to rise. PCSK9 gain-of-function (GOF) mutations are associated with elevated plasma LDL levels and premature CHD while PCSK9 loss-offunction (LOF) mutations reduce the risk of CHD up to ~88% owing to reduction of circulating LDL. Accordingly, PCSK9 is recognized as a major pharmacological target to lower the risk of CHD. PCSK9 binds the LDLR at the cell surface and/or in the Golgi apparatus of hepatocytes and causes its degradation in lysosomes by a mechanism not yet clearly understood. The goal of this study was to determine why some human PCSK9 mutations fail to induce LDLR degradation while others increase it in lysosomes. Several PCSK9 LOF and GOF mutations were fused to the fluorescent protein mCherry to study their molecular mobility in living human liver cells. Our quantitative analysis of fluorescence recovery after photobleaching (FRAP) showed that PCSK9 GOF mutations S127R and D129G have a higher protein mobility (>35% compared to WT) at the trans- Golgi network (TGN). Our quantitative analysis of inverse fluorescence recovery after photobleaching (iFRAP) showed that PCSK9 LOF mutation R46L presented a much slower protein mobility (<22% compared to WT) and a much slower mobile fraction (<40% compared to WT). In addition, our confocal and electron microscopy analyses demonstrate for the first time that PCSK9 is localized and concentrated at the TGN of human hepatocytes. Furthermore, our results demonstrate that PCSK9 localization in the TGN is mediated through its C-terminal cysteine and histidine-rich domain (CHRD), which is essential for LDLR degradation. Also, our live-cell analyses demonstrate for the first time that the CHRD is not required for internalization of PCSK9. These results provide important new information on the mechanism of action of PCSK9 and may ultimately help in the development of inhibitors of the PCSK9-induced LDLR degradation.
7

Host cell factors influencing intracellular survival and replication of Legionella pneumophila

Engels, Cecilia Maria Amelie 28 April 2010 (has links)
Legionella pneumophila ist der Erreger der Legionärskrankheit. Die Pathogenität des Bakteriums basiert auf seiner Fähigkeit innerhalb menschlicher Lungenzellen zu überleben und sich zu vermehren. Demzufolge ist L. pneumophila nicht nur interessant als wichtiges Pathogen, sondern kann auch als Sonde verwendet werden, um allgemeine intrazelluläre Ereignisse zu untersuchen. Ein Beispiel hierfür ist die, durch das Pathogen gestörte, intrazelluläre Kommunikation zwischen den Organellen des endoplasmatischen Retikulums (ER) und dem Golgi Apparat (GA). In der vorliegenden Studie schlagen wir ein neues Modell vor, wie das Bakterium erfolgreich seine replikative Nische, die Legionella Vakuole (LV), innerhalb des Zytosols aufbauen könnte, um seine Ausbreitung zu garantieren. Um die Mechanismen für die erfolgreiche Ausbeutung der Wirtszelle gezielt untersuchen zu können, haben wir mit Hilfe von siRNA spezifisch verschiedene Wirtszellproteinen herunterreguliert und den Einfuß der Abwesenheit dieser Proteine auf die Vermehrung von L. pneumophila gemessen. Die Ergebnisse wiesen darauf hin, dass die LV möglicherweise den Golgi Apparat imitiert und auf diese Weise den zellulären Vesikeltransport umleitet. Diese Theorie wurde durch in silico Ergebnisse unterstützt, die in der Proteinsequenz des Legionella Effektor-Proteins LidA, das auf der Vakuole lokalisiert ist, ein SNARE-ähnliches Motiv zeigte. Dies weist auf ein auf der Vakuole lokalisiertes SNARE-Erkennungsmotiv hin, das notwendig sein könnte, um zelluläre Transportvesikel zu koppeln. Aus dem Wissen heraus, dass L. pneumophila in der Lage ist, die Aktivierung der zellulären Proteine Arf1 und Rab1 durch Phosphorylierung und Dephosphorylierung zu regulieren, machten wir uns auf die Suche nach Proteinen, die auf Infektion hin modifiziert werden. Die Kommunikation von Wirt und Pathogen über Phosphorylierung ist bekannt im Bezug auf pathogenspezifische Modifikation des Zytoskeletts und Signalkaskaden in der Anti-Apoptose. Für diese Studie wurde ein Antikörper verwendet, der spezifisch phosphorylierte Tyrosinreste erkennt. Dies resultierte in der Detektion einer Serin-Threonin-Kinase in der Amöbe Acanthamöba castellanii, die an einem Tyrosinrest phosphoryliert ist. Diese Amöben-Kinase wies in silico Homologie zu der humanen GS-Kinase 3 des Wnt-Signalwegs, bekannt aus der Forschung der embronalen Entwicklung bei Drosophila, auf. Der letzte Teil dieser Arbeit konzentrierte sich auf die, durch eine L. pneumophila-Infektion ausgelöste, anti-apoptotische Signalkaskade. Es ist bekannt, dass auf eine Infektion hin NF-kappaB aktiviert wird. Dies führt dazu, dass p65 in den Zellkern wandert und dort als Transkriptionsfaktor aktiv wird. Diese Translokation geschieht in 2 zeitversetzten Phasen. Eine Aktivierungsspitze wird nach dem Kontakt mir bakteriellem Flagellin gemessen, gefolgt, von einer dauerhaften Aktivierung, abhängig von einem funktionierenden Dot/ Icm Typ-IV-Translokationssystem. In dieser Arbeit stießen wir auf eine L. pneumophila Mutante, die den Dot/ Icm-Effektor SdbA nicht bildet, und die daraufhin NF-appaB nicht aktivieren kann. Diese Mutante war ebenfalls nicht in der Lage, sich in Epithelzellen zu vermehren. Dies ist außergewöhnlich, da das L. pneumophila Effektor Repertoire so redundant ist, dass die Abwesenheit eines einzigen Effektors selten einen so starken Einfluss auf die Replikation hat. All diese Ergebnisse zeigen zusammengenommen, auf wie vielen verschiedenen Ebenen L. pneumophila in der Lage ist, seine Wirtszelle zu manipulieren, um einerseits die nötige Nische für seine Vermehrung zu etablieren und andererseits die Zelle am Selbstmord zu hindern. Dies geschieht durch Imitation zellulärer Prozesse. / Legionella pneumophila is the causative agent of Legionnaires´ disease. The bacterium’s pathogenicity is based on its ability to survive and multiply efficiently inside human alveolar cells. Therefore, L. pneumophila is not only an important pathogen, but can also be used as a probe to investigate host cell function as for example, in the cellular trafficking pathway. In this study, we establish a new model of how this pathogen efficiently constructs its replicative niche, the Legionella containing vacuole (LCV), inside the host cytosol, enabling its dissemination. To investigate the mechanisms that lead to effective exploitation of the host cell, we down-regulated specific host cellular proteins via siRNA technology and measured the subsequent impact on L. pneumophila replication. The results suggest that the LCV mimicks the Golgi apparatus and via this mechanism hijacks host cellular vesicular trafficking. The L. pneumophila secreted effector protein LidA, located within the LCV, is shown to have a SNARE-like motif, suggesting a SNARE like sole connected to the LCV. Since it is known that cellular signalling proteins are controlled via phosphorylation and dephosphorylation, we went on to search for specifically modulated host cell proteins after L. pneumophila infection. The cross-talk of the pathogen with its host via phosphorylation has been connected to several sub-cellular activities leading to, for instance, cytoskeleton rearrangement and signalling events including anti-apoptosis pathways. Here we used a phosphorylated tyrosine antibody resulting in the detection of an amoeba serine-threonine-kinase, phosphorylated at its tyrosine residue. This kinase shows homologies to the human GSK3 of the wnt-signalling pathway. (“Wnt“ is merged from the names of the homologues genes Wg (Drosophila melanogaster) and Int (mouse) both employed in evolutionary developement.) The final part of this work concentrated on anti-apoptotic signalling events induced upon L. pneumophila infection. It is known that during L. pneumophila infection the activation of NF-kappaB and subsequent translocation of p65 from the cytosol into the nucleus follows a biphasic pattern. One short peak of activation is induced upon contact with bacterial flagellin, succeeded by a permanent Dot/ Icm type IV secretion system-dependent activation. In this study, we found the L. pneumophila mutant lacking the Dot/ Icm effector SdbA to be unable to activate NF-kappaB. This mutant also showed impaired growth in epithelial cells. This is remarkable due to the high redundancy of the L. pneumophila effector system, meaning deletion of a single effector rarely has such a big impact on replication. Taken together this work demonstrates, the manifold ways in which L. pneumophila on the one hand side establishes its niche to ensure replication and on the other hand side to bars its host cell from suicide. All of this is managed by mimicking cellular processes.
8

Étude de la toxicité de DspA, protéine essentielle au pouvoir pathogène d’Erwinia amylovora, chez la levure Saccharomyces cerevisiae / Analysis of the toxicity of DspA, a protein essential for the pathogenicity of Erwinia amylovora, in the yeast Saccharomyces cerevisiae

Siamer, Sabrina 01 March 2013 (has links)
La bactérie phytopathogène E. amylovora, est l'agent responsable du Feu bactérien des Spiraeoideae (pommier, poirier, pyracantha), une maladie caractérisée par l'apparition de symptômes nécrotiques des tissus infectés. Le pouvoir pathogène d’E. amylovora repose entre autre sur un système de sécrétion de type III (SSTT) qui permet la sécrétion et l'injection d'effecteurs dans la cellule hôte végétale. Parmi les protéines injectées par le T3SS d'E. amylovora, DspA est essentielle au pouvoir pathogène de la bactérie puisqu’un mutant dspA est non pathogène sur plante (Gaudriault et al., 1997). Le rôle de DspA est dual, d’une part, l’expression de dspA est suffisante pour provoquer des symptômes nécrotiques sur plante et une toxicité chez la levure, d’autre part, DspA est impliquée dans la suppression des réactions de défense telles que la déposition de callose (Degrave et al., 2008; Boureau et al., 2006; Oh et al., 2007; DebRoy et al., 2004). DspA appartient à la famille des effecteurs AvrE qui sont répandus chez les bactéries phytopathogènes et semblent posséder une fonction similaire. Cependant, peu de connaissance existe sur la structure ainsi que la fonction de DspA. L'objectif de ce travail de thèse était de déterminer les domaines ou motifs importants pour la fonction de DspA. Pour cela nous avons choisi d'effectuer une analyse in silico et fonctionnelle de la protéine DspA. L'analyse in silico révèle la présence d'un domaine bêta-propeller au sein de la protéine DspA ainsi que de tous les homologues analysés. De plus, l'analyse fonctionnelle indique que ce domaine est important pour la structure et la fonction de DspA. Dans un second temps, j'ai étudié le mécanisme d'action de DspA dans la levure Saccharomyces cerevisiae. J'ai pu mettre en évidence que l'expression de dspA chez la levure induit un arrêt de croissance et une forte altération du trafic cellulaire. L'étude de mutants de levure suppresseurs de la toxicité de DspA, effectuée avant mon arrivée au laboratoire, montre que les suppresseurs les plus forts sont affectés dans la voie de biosynthèse des sphingolipides, je me suis donc plus particulièrement intéressée au rôle des sphingolipides dans la toxicité générée par DspA. Nos résultats montrent que DspA inhibe la biosynthèse des sphingolipides indirectement via les régulateurs négatifs de la voie, les protéines Orms. / Erwinia amylovora is the causative agent of fire blight of Spiraeoideae (apple, pear, pyracantha), a disease characterized by the apparition of necrotic symptoms on infected tissues. The pathogenicity of E. amylovora relies on a functional type III secretion system (T3SS) that allows secretion and injection of effector proteins into the host plant cell. Among these effector proteins injected by the T3SS of E. amylovora, DspA is essential to the bacteria disease process since a dspA mutant is nonpathogenic on plants (Gaudriault et al., 1997). DspA has a dual role; on the one hand dspA expression is sufficient to induce cell death on plants and toxicity on yeast, on the other hand, DspA is involved on suppression of defense reactions like callose deposition (Degrave et al., 2008; Boureau et al., 2006; Oh et al., 2007; DebRoy et al., 2004). DspA belongs to the AvrE familly of type III effectors which are widespread on phytopathogenic bacteria and likely possess a similar function. However, the structure and function of DspA remain unknown. In the first part of my thesis, I attempted to characterize domains or motifs important for the function of DspA. We performed an in silico and a functional analysis of the DspA protein. In silico analysis predicted a bêta-propeller domain in DspA and all the analysed effectors. In the second part of my thesis, I analysed the mechanism of function of DspA in the yeast Saccharomyces cerevisiae. Results showed that expression of dspA in yeast inhibits cell growth and alters the actin cytoskeleton and endocytosis. Screening of the Euroscarf library for mutants resistant to DspA induced toxicity revealed that mutants impaired in the sphingolipid biosynthetic pathway are the best suppressors. Based on this results, I attempted to determine the role of sphingolipids in the toxicity induced by DspA. Results showed that DspA inhibits indirectly the sphingolipid biosynthetic pathway via the negative regulators, Orm proteins.

Page generated in 0.0963 seconds