• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 31
  • 22
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 426
  • 274
  • 168
  • 158
  • 157
  • 148
  • 122
  • 74
  • 67
  • 65
  • 51
  • 50
  • 46
  • 43
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Unbiased Spectral Survey towards the intermediate-mass Class 0 protostar Cep E-mm / Étude systématique spectrale vers la protoétoile de classe 0 de masse intermédiaire Cep E-mm

Pacheco-Vazquez, Susana 11 December 2012 (has links)
Les protoétoiles de masse intermédiaire (IM) (2 ≤ M* ≤ 8 Msun) sont le lien entre les étoiles de faible et haute masse car elles couvrent également un intervalle intermédiaire de luminosités, de densités et de températures [Fuente et al., 2012]. Même si les « IM-YSOs » jouent un rôle important dans l'étude de la formation des étoiles, on a très peu de connaissances sur la formation et l'évolution des premières étapes des protoétoiles de masse intermédiaire. Les études systématiques spectrales sont un outil puissant pour caractériser la composition chimique d'un objet astrophysique, et la seule façon d'obtenir un recensement complet des espèces chimiques. Une étude spectrale fournit également des lignes multiples de la même molécule, donnant la possibilité d'une analyse multifréquences ainsi que d'une modélisation. En outre, grâce aux profils des raies, nous pouvons obtenir des informations sur la cinématique, et identifier les structures au long de la ligne de vue, en tant que sources multiples, des jets ou des cavités, par exemple, [Caux et al., 2011]. Les phénomènes d'éjection (jets, des vents et des « outflows » bipolaires moléculaires), sont une phase inhérente au processus de formation d'étoiles observées dans les YSOs de toutes masses dans des longueurs d'onde millimétriques. Cependant, il n'y a pas d'études systématiques dans l'intervalle de masse intermédiaire comme dans le cas des protoétoiles de faible et haute masse. Compte tenu de l'absence d'une étude systématique de la partie mm/submillimétrique dans le spectre des protoétoiles de masse intermédiaire, au cours de ma thèse, j'ai mené une étude systématique spectrale vers la protoétoile de masse intermédiaire de classe 0 Cep E et de son « outflow » moléculaire. / Intermediate-mass (IM) protostars (2 ≤ M∗ ≤8 Msun) are the link between low and the high mass stars as they cover also an intermediate range of luminosities, densities and temperatures [Fuente et al., 2012]. Even though the IM-YSOs are important in the study of star formation, very little is known about the formation and first evolutionary stages of IM protostars. Unbiased spectral surveys are a powerful tool to characterize the chemical composition of an astrophysical object, and the only way to obtain a complete census of the chemical species. A spectral survey provides also multiple lines from the same molecule, giving the possibility of a multi-frequency analysis and modeling. Also, through line profiles, we can obtain kinematic information, and identify structures along the line of sight, as multiple sources, outflows, jets or cavities, e.g. [Caux et al., 2011]. The outflow phenomena (jets, winds and bipolar molecular outflows), are an inherent phase in the process of star formation observed in YSOs of all range of masses at millimeter wavelengths. However, there are not systematic studies in IM range as in the case of of low- and high-mass protostars. Given the lack of a systematic study of the mm/submm spectrum of IM protostars, during my thesis I carried out an unbiased spectral survey towards IM Class 0 Cep E protostar and its molecular outflow.
382

The protosolar nebula heritage : the nitrogen isotopic ratio from interstellar clouds to planetary systems / Le patrimoine de la nébuleuse protosolaire : le rapport isotopique de l'azote des nuages interstellaires à des systèmes planétaires

Magalhaes, Victor de Souza 20 December 2017 (has links)
L'existence de molécules interstellaires soulève une question, ces molécules sont-elles les mêmes molécules que nous voyons dans le système Solaire aujourd'hui ? C'est une question toujours ouverte qui implique des conséquences profondes. Il est possible d’éclaircir cette question en étant capables de retracer l'héritage d'un groupe de molécules chimiquement liées, ce que nous appelons un réservoir. Le meilleur outil pour retracer l'héritage des réservoirs sont les rapports isotopiques. L'élément qui montre les plus grandes variations du rapport isotopique dans le système Solaire est l'azote. Ces variations indiquent que le rapport isotopique de l'azote est sensible aux conditions physiques de la formation des étoiles.L'objectif principal de cette thèse est d'identifier les réservoirs d'azote à différents étapes de la formation des étoiles et des planètes. La première étape de cette entreprise était d'identifier le rapport isotopique de la masse principal d'azote du milieu interstellaire local aujourd'hui.Cela a été déterminé égale à 323 ± 30 à partir du rapport CN/C 15 N mesuré dans le disque protoplanétaire autour de TW Hya. Parallèlement à cela, nous avons également mesuré un rapport HCN/HC 15 N=128 ± 36 dans le disque protoplanétaire autour de MWC 480. Ces rapports isotopiques très distinctes mesurées sur les disques protoplanétaires sont une indication claire de la présence d'au moins deux réservoirs d'azote dans les disques protoplanétaires. La façon dont ces réservoirs se séparent est cependant inconnue. Cela pourrait peut-être se produire en raison de réactions de fractionnement chimique ayant lieu dans les cœurs prestellaires. Nous avions donc comme objectif d'obtenir une mesure précise et directe du rapport isotopique de l'azote des molécules d'HCN dans le cœur prestellaire L1498.Pour obtenir cette mesure, l'obstacle le plus important à surmonter était due aux anomalies hyperfines des molécules d'HCN. Ces anomalies hyperfines sont induites par le chevauchement des composants hyperfins. Ceci sont particulièrement sensibles à la densité de colonne d'HCN, mais aussi au champ de vitesses et aux largeurs de raies. Ainsi les anomalies hyperfines sont un outil de mesure de l'abondance d'HCN permettant aussi de sonder la cinématique des cœurs prestellaires.Pour reproduire avec précision les anomalies hyperfines, et ainsi mesurer des densités de colonne précises d'HCN, nous avions besoin d'explorer un espace de paramètres dégénéré de 15 dimensions. Pour minimiser les dégénérescences nous avons obtenu un profil de densité basé sur des cartes du continuum de L1498. Ceci permettant de réduire à 12 dimensions l'espace des paramètres. L'exploration de cet espace de paramètre a été fait grâce à l'utilisation d'un méthode de minimisation MCMC. Grâce à cette exploration, nous avons obtenu HCN/HC 15 N = 338 ± 28 et HCN/H 13 CN = 45 ± 3. Les incertitudes sur ces valeurs sont limités par les erreurs de calibration et sont dé-terminés de manière non arbitraire par le méthode MCMC. Les implications de ces résultats sont discutées dans le chapitre de conclusion,où nous présentons également quelques perspectives sur l'avenir. / The existence of interstellar molecules raises the question, are thesemolecules the same molecules we see on the Solar system today? Thisis still an open question with far reaching consequences. Some lightmay be shed on this issue if we are able to trace the heritage of agroup of chemically linked molecules, a so-called reservoir. The besttool to trace the heritage of reservoirs are isotopic ratios. The elementthat shows the largest isotopic ratio variations in the Solar system isnitrogen. For this is an indication that the isotopic ratio of nitrogen issensitive to the physical conditions during star formation.The main objective of this thesis is to identify the reservoirs of ni-trogen at different stages of star and planet formation. The first stepin this endeavour was to identify the isotopic ratio of the bulk of ni-trogen in the local ISM today. This was determined to be 323 ± 30from the CN/C 15 N ratio in the protoplanetary disk around TW Hya.Along with it we also measured the HCN/HC 15 N= 128 ± 36 in theprotoplanetary disk around MWC 480. This very distinct nitrogen iso-topic ratios on protoplanetary disks are a clear indication that thereare at least two reservoirs of nitrogen in protoplanetary disks. Howthese reservoirs get separated is however unknown. This could pos-sibly happen due to chemical fractionation reactions taking place inprestellar cores. We therefore aimed to obtain an accurate direct mea-surement of the nitrogen isotopic ratio of HCN in the prestellar coreL1498.To obtain this measurement the most important hurdle to overcomewere the hyperfine anomalies of HCN. These hyperfine anomaliesarise due to the overlap of hyperfine components. They are especiallysensitive to the column density of HCN, but also to the velocity fieldand line widths. Thus hyperfine anomalies are a tool to measure theabundance of HCN and to probe the kinematics of prestellar cores.To accurately reproduce the hyperfine anomalies, and thus mea-sure accurate column densities for HCN, we needed to explore adegenerate parameter space of 15 dimensions. To minimise the de-generacies we have derived a density profile based on continuummaps of L1498. This reduced the parameter space to 12 dimensions.The exploration of this parameter space was done through the useof a MCMC minimisation method. Through this exploration we ob-tained HCN/HC 15 N = 338 ± 28 and HCN/H 13 CN = 45 ± 3. Theuncertainties on these values are calibration limited and determinednon-arbitrarily by the MCMC method. Implications of these resultsare discussed in the concluding chapter, where we also present somefuture perspectives.
383

Modélisation 3D de régions de formation d'étoiles : la contribution de l'interface graphique GASS aux codes de transfert radiatif / 3D modelling of star-forming regions : the contribution of the graphical interface GASS to radiative transfer codes

Quénard, David 20 September 2016 (has links)
L'ère des observations interférométriques mène à la nécessité d'une description plus précise de la structure physique et de la dynamique des régions de formation d'étoiles, des coeurs pré-stellaires et des disques proto-planétaires. L'émission moléculaire et du continuum de la poussière peuvent être décrites par de multiples composantes physiques. Pour comparer avec les observations, un modèle de transfert radiatif précis et complexe de ces régions est nécessaire. J'ai développé au cours de cette thèse une application autonome appelée GASS (Generator of Astrophysical Sources Structures, Quénard et al., soumis) à cette fin. Grâce à son interface, GASS permet de créer, de manipuler et de mélanger différents composants physiques tels que des sources sphériques, des disques et des outflows. Dans cette thèse, j'ai utilisé GASS pour travailler sur différents cas astrophysiques et, entre autres, j'ai étudié en détail l'eau et l'émission de l'eau deutérée dans le coeur pré-stellaire L1544 (Quénard et al., 2016) ainsi que l'émission des ions dans la proto-étoile de faible masse IRAS16293-2422 (Quénard et al., soumis). / The era of interferometric observations leads to the need of a more and more precise description of physical structure and dynamics of star-forming regions, from pre-stellar cores to proto-planetary disks. The molecular and dust continuum emission can be described with multiple physical components. To compare with the observations, a precise and complex radiative transfer modelling of these regions is required. I have developed during this thesis a standalone application called GASS (Generator of Astrophysical Sources Structures, Quénard et al., submitted) for this purpose. Thanks to its interface, GASS allows to create, manipulate, and mix several different physical components such as spherical sources, disks, and outflows. In this thesis, I used GASS to work on different astrophysical cases and, among them, I studied in details the water and deuterated water emission in the pre-stellar core L1544 (Quénard et al., 2016) and the emission of ions in the low-mass proto-star IRAS16293-2422 (Quénard et al., submitted).
384

A Study of Superbubbles in the ISM : Break-Out, Escape of LYC Photons and Molecule Formation

Roy, Arpita January 2016 (has links) (PDF)
Multiple coherent supernova explosions (SNe) in an OB association can produce a strong shock that moves through the interstellar medium (ISM). These shocks fronts carve out hot and tenuous regions in the ISM known as superbubbles. The density contour plot at three different times (0.5 Myr (left panel), 4 Myr (middle panel), 9.5 Myr (right panel)) showing different stages of superbubble evolution for n0 = 0.5 cm−3, z0 = 300 pc, and for NOB = 104. This density contour plot is produced using ZEUS-MP 2D hydrodynamic simulation with a resolution of 512 × 512 with a logarithmic grid extending from 2 pc to 2.5 kpc. For a detailed description of this figure, see Roy et. al., 2015. The evolution of a superbubble is marked by different phases, as it moves through the ISM. Consider an OB association at the center of a disk galaxy. Initially the distance of the shock front is much smaller than the disk scale height. The superbubble shell sweeps up the ISM material, and once the amount of swept up material becomes comparable to the ejected material during SNe, the superbubble enters a self-similar phase (analogous to the Sedov-Taylor phase of individual SNe). As the superbubble shell sweeps up material, its velocity decreases, and thus the corresponding post-shock temperature drops. At a temperature of ∼ 2 × 105 K (where the cooling function peaks), the superbubble shell becomes radiative and starts losing energy via radiative cooling. This radiative phase is shown in the left panel of Figure 1. The superbubble shell starts fragmenting into clumps and channels due to Rayleigh-Taylor instabilities (RTI) (which is seeded by the thermal instability; for details see Roy et. al., 2013) when the superbubble shell crosses a few times the scale height. This is represented in the middle panel of the same figure. At a much later epoch, RTI has a strong effect on the shell fragmentation and the top of the bubble is completely blown off (the right panel). In the first chapter of the thesis (reported in Sharma et. al., 2014), we show using ZEUS-MP hydrodynamic simulations that an isolated supernova loses almost all its mechanical energy within a Myr whereas superbubbles can retain up to ∼ 40% of the input energy over the lifetime of the starcluster (∼ few tens of Myr), consistent with the analytic estimate of the second chapter. We also compare different recipes (constant luminosity driven model (LD model), kinetic energy driven model (KE model) to implement SNe feedback in numerical simulations. We determine the constraints on the injection radius (within which the SNe input energy is injected) so that the supernova explosion energy realistically couples to the interstellar medium (ISM). We show that all models produce similar results if the SNe energy is injected within a very small volume ( typically 1–2 pc for typical disk parameters). The second chapter concentrates on the conditions for galactic disks to produce superbubbles which can give rise to galactic winds after breaking out of the disk. The Kompaneets formalism provides an analytic expression for the adiabatic evolution of a superbubble. In our calculation, we include radiative cooling, and implement the supernova explosion energy in terms of constant luminosity through out the life-time of the OB stars in an exponentially stratified medium (Roy et. al., 2013). We use hydrodynamic simulations (ZEUS-MP) to determine the evolution of the superbubble shell. The main result of our calculation is a clear demarcation between the energy scales of sources causing two different astrophysical phenomenon: (i) An energy injection rate of ∼ 10−4 erg cm−2 s−1 (corresponding Mach number ∼ 2–3, produced by large OB associations) is relevant for disk galaxies with synchrotron emitting gas in the extra-planar regions. (ii) A larger energy injection scale ∼ 10−3 erg cm−2 s−1, or equivalently a surface density of star formation rate ∼ 0.1 M⊙ yr−1 kpc−2 corresponding to superbubbles with high Mach number (∼ 5–10) produces galactic-scale superwinds (requires superstar clusters to evolve coherently in space and time). The stronger energy injection case also satisfies the requirements to create and maintain a multiphase halo (matches with observations). Roy et. al., 2013 also points out that Rayleigh-Taylor instability (RTI) plays an important role in the fragmentation of superbubble shell when the shell reaches a distance approximately 2–3 times the scale-height; and before the initiation of RTI, thermal instability helps to corrugate the shell and seed the RTI. Another important finding of this chapter is the analytic estimation of the energetics of superbubble shell. The shell retains almost ∼ 30% of the thermal energy after the radiative losses at the end of the lifetime of OB associations. The third chapter considers the escape of hydrogen ionizing (Lyc) photons arising from the central OB-association that depends on the superbubble shell dynamics. The escape fraction of Lyc photons is expected to decrease at an initial stage (when the superbubble is buried in the disk) as the dense shell absorbs most of the ionizing photons, whereas the subsequently formed channels (created by RTI and thermal instabilities) in the shell creates optically thin pathways at a later time (∼ 2–3 dynamical times) which help the ionizing photons to escape. We determine an escape fraction (fesc) of Lyc photons of ∼ 10 ± 5% from typical disk galaxies (within 0 ≤ z (redshift) ≤ 2) with a weak variation with disk masses (reported in Roy et. al., 2015). This is consistent with observations of local galaxies as well as constraints from the epoch of reionization. Our work connects the fesc with the fundamental disk parameters (mid-plane density (n0), scale-height (z0)) via a relation that fescαn20z03 (with a ≈ 2.2) is a constant. In the fourth chapter, we have considered a simple model of molecule formation in the superbubble shells produced in starburst nuclei. We determine the threshold conditions on the disk parameters (gas density and scale height) for the formation of molecules in superbubble shells breaking out of disk galaxies. This threshold condition implies a gas surface density of ≥ 2000 M⊙ pc−2, which translates to a SFR of ≥ 5 M⊙ yr−1 within the nuclear region of radius ∼ 100 pc, consistent with the observed SFR of galaxies hosting molecular outflows. Consideration of molecule formation in these expanding superbubble shells predicts molecular outflows with velocities ∼ 30–40 km s−1 at distances ∼ 100–200 pc with a molecular mass ∼ 106–107 M⊙, which tally with the recent ALMA observations of NGC 253. We also consider different combinations of disk parameters and predict velocities of molecule bearing shells in the range of ∼ 30–100 km s−1 with length scales of ≥ 100 pc, in rough agreement with the observations of molecules in NGC 3628 and M82 (Roy et. al., 2016, submitted to MNRAS).
385

Simulations expérimentales en laboratoire pour la préparation à l'analyse des données issues de missions spatiales, ainsi que pour l'étude de l'impact en exobiologie de l'évolution de la matière organique au sein d'environnements astrophysiques / Experimental simulations of the evolution of organic matter in astrophysical environments : a study in preparation for the analysis of astrobiologically relevant data acquired from space missions

Fresneau, Aurélien 15 December 2016 (has links)
Les grains de poussière se trouvant dans les nuages moléculaires denses jouent un grand rôle dans la formation de molécules organiques complexes. Ces grains sont recouverts d'un manteau glacé contenant des molécules primitives. Au cours de l'évolution des nuages moléculaires vers des systèmes planétaires, les grains sont soumis à des processus énergétiques transformant la matière organique présente dans les glaces. Les grains finissent par être intégrés dans les petits corps du système solaire tels que les comètes et les astéroïdes. Cette thèse cherche à simuler en laboratoire l'évolution chimique de ces glaces. Des analogues de ces glaces sont formés sur un substrat à basse température, et sont irradiés avec des photons UV et/ou réchauffés afin de simuler les processus astrophysiques. On forme ainsi un résidu organique que l'on caractérise grâce à la spectroscopie infrarouge à transformée de Fourier (IRTF) et la spectrométrie de masse à très haute résolution (VHRMS) par Orbitrap.Nous avons d'abord effectué des études mécanistiques centrées autour de la formation d'aminoalcools et d'hydroxynitriles lors du réchauffement de glaces contenant de l'acétaldéhyde (CH$_3$CHO) ou de l'acétone ((CH$_3$)$_2$CO) avec NH$_3$, HCN et H$_2$O. Nous avons ensuite étudié la composition globale de résidus issus de l'irradiation et du réchauffement de glaces contenant H$_2$O, CH$_3$OH, et NH$_3$. Nous présentons une nouvelle approche pour interpréter les données Orbitrap de ces résidus. Les similarités trouvées avec des analyses de matière organique météoritique issues de la littérature laissent à penser qu'une partie de son évolution pourrait être semblable à celle de nos résidus. / Dust grains located in dense molecular clouds play a major role in the formation of complex organic molecules. These grains are covered by icy mantles containing primitive molecules. Dense molecular clouds can collapse and lead to the formation of planetary systems such as our own. During this evolution, the grains are exposed to energetic processes which transform the organic matter inside the ices. The grains are ultimately incorporated into small solar system bodies such as comets and asteroids, which can then contribute to the exogenous delivery of organic matter on Earth. In this context, this thesis focuses on simulating the chemical evolution of ices. To that end, ice analogues are formed by condensing a relevant gas mixture on a cold substrate. These interstellar ice analogues are irradiated with UV photons and/or heated in order to simulate astrophysical processes. An organic residue is formed which we characterized with Fourier transform infrared spectroscopy (FTIR) and very high resolution mass spectrometry (VHRMS) by Orbitrap.First, we performed mechanistic studies focused on the formation of aminoalcohols and hydroxynitriles from the warming of ices containing acetaldehyde (CH$_3$CHO) or acetone ((CH$_3$)$_2$CO) with NH$_3$, HCN and H$_2$O. Secondly, we studied the global composition of residues made from irradiation and warming of ices containing H$_2$O, CH$_3$OH, and NH$_3$. We present a new approach to interpret Orbitrap data of the residues. Similarities observed with meteoritic organic matter analyses found in the literature could mean that some of the evolution that led to meteoritic organic matter is shared with the evolution of our residues.
386

Star formation in LITTLE THINGS dwarf galaxies

Ficut-Vicas, Dana January 2015 (has links)
In this thesis we test and expand our current knowledge of Star Formation Laws (SF laws) in the extreme environment of dwarf irregular galaxies. We focus on the SF characteristics of our 18 galaxies sample, extending current investigations of the Schmidt-Kennicutt law to the low luminosity, low metallicity regime. The Hi data used in this project have been observed, calibrated and imaged according to the LITTLE THINGS Survey prescription to which I brought my own contribution as a member of the team. Apart from high resolution, VLA data in B, C and D array configurations, this project makes use of an extensive set of multi- wavelength data (H , FUV, 24 m, 3.6 m, V-band and K-band). Molecular gas in dwarfs is very difficult to observe, mainly because due to the low metallicity environment, we lose our only molecular tracer, the CO which becomes under luminous. Therefore the gas distribution is represented by Hi gas only. We create our Star Formation Rate (SFR) maps mainly based on FUV maps because our analysis shows that FUV is the SF tracer that allows us the most extensive sampling of the SFR surface density (SFRD) and Hi surface density relation. The main results of our study are: Whereas in spiral galaxies Bigiel et al. (2008) have found a one to one relation between star formation rate and molecular gas and no relation between the SFR and the neutral gas, in a small sample of dwarfs as well as in the outskirts of spiral galaxies Bigiel et al. (2010b) has found that SFRD does correlate with Hi surface density. We confirm the existence of the SFRD vs. Hi surface density relation in dwarf irregular galaxies and a linear fitting through all our data (all 18 galaxies combined) yields a power law relation ΣSFR ∝ Σ1.87±0.3/HI . We find that the interiors of Hi shells, at 400 pc scales, become resolved and show up in SFRD versus Hi surface density plots although within the shell interior we have SFRD values but no Hi surface density related to them. Thus, the points originating from those regions contribute significantly to the increase of the scatter in the plot. We show that by excluding those points the correlation between SFRD and Hi surface density improves between 10% and 20%. Eight of the 18 galaxies in our sample have Hi maxima higher than the 10M pc-2 value found by Bigiel et al. (2008) for spiral galaxies. Krumholz et al. (2011) predicted that the 10M pc-2 threshold is metallicity dependent in galaxies with sub-solar metallicity, however the theoretically predicted values for our galaxies only match the observed Hi maxima in one case (DDO168). We find that metallicity cannot be the only factor setting the Hi to H2 transition. In fact, we find evidence that the higher the interstellar radiation field (ISRF), the higher the Hi maximum is, hence we suggest that the ISRF should also be taken into consideration in predicting the Hi to H2 transition threshold. We find that even tighter than the SFRD vs. Hi surface density relation is the SFRD vs. V-band surface density relation. Unlike the SFRD vs. Hi surface density relation the SFRD vs. V-band surface density relation follows a power law and can be written as follows: ΣSFR ∝ (10^μv)^-0.43±0.03. The SFRD vs. V-band surface density relation suggests that the existing stars also play a role in the formation of the next generation of stars. Within our sample of dwarf galaxies the average pressure per resolution element and the SFRD are in a 1:1 linear relation: ΣSFR ∝ P_h^1.02±0.05. A similar relation has been found by Blitz & Rosolowsky (2006) for the low-pressure regimes of spiral galaxies. In conclusion we find that in the extreme environments of dwarf galaxies the metal deficiency and the lack of the classic SF stimulators (spiral arms, shear motions) do not impede the star forming process. In these galaxies, dust-shielding becomes predominantly self-shielding and there is plenty of Hi available to achieve this additional task. Existing stars assume the role of pressure enhancers, which in turn will stimulate SF without the need of spiral arms or shear motion.
387

La composition organique d'un noyau cométaire, l'instrument COSAC sur la sonde Philae / The organic composition of cometary nucleus, the COSAC experiment on Philae

Giri, Chaitanya 19 September 2014 (has links)
Cette thèse constitue un travail novateur dans l’analyse in situ multi disciplinaire de la surface du noyau d’une comète réalisé à l’aide du “Cometary Sampling and Composition Experiment” (COSAC). COSAC est un chromatographe en phase gazeuse et un spectromètre de masse embarqué à bord du module d’atterrissage Philae de l’Agence Spatiale Européenne dans le cadre de la mission vers la comète 67P/Tchourioumov-Guérassimenko. La thèse aborde de façon globale trois campagnes expérimentales et analytiques toutes dirigées vers les objectifs de COSAC après son futur atterrissage sur 67P. La quatrième partie, qui est un travail géologique vise à identifier le cratère de Lonar comme analogue martien. La première des expériences mentionnée ci-dessus implique l’irradiation de valine racémique à l’aide de lumière polarisé circulairement (cpl) générée par synchrotron. Nous avons démontré pour la première fois qu’en changeant l’énergie de la cpl pour une hélicité donnée de 6,19 eV à 6,74 eV, le signe de la valeur de l’excès énantiomérique des acides aminés change (dans ce cas la valine). Dans une seconde partie, nous avons démontré pour la première fois la présence de carbone graphitique dans le tholin, un solide complexe et organique synthétisé à partir de l’irradiation de décharge de plasma d’un mélange de N2:CH4=9:1. Nous expliquons que la présence possible de graphite enrichi de matière organique de type tholin sur la surface de noyaux cométaires pourrait bien contribuer à leur faible albédo géométrique typique. / This cumulative thesis forms a multi-disciplinary groundwork for the pioneering in situ organic analyses of a comet nuclei surface to be performed by the Cometary Sampling and Composition Experiment (COSAC). COSAC is a Gas Chromatograph-Mass Spectrometer on board the Philae Lander probe of European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko. The thesis holistically addresses three myriad experimental and analytical campaigns all directing to the objectives of COSAC subsequent to its landing on 67P. The fourth original geological fieldwork directs to the identification of Lonar Crater as a Martian analogue. Our first of the above mentioned experiments involved irradiation of racemic valine with synchrotron-generated circular polarized light (cpl). We made a novel demonstration that changing the energy of a certain helicity of cpl from 6.19 eV to 6.74 eV switches the sign of the enantiomeric excess value of amino acids – in this case valine. The second experiment for the first time demonstrated the presence of graphitic carbon in tholin, a complex organic solid synthesized from plasma discharge irradiation of a mixture N2:CH4=9:1. We explain that the possible presence of graphite enriched tholin-like organic material on the surface of comet nuclei could well be contributing to their typical low geometric albedos. The third experiment was directed at performance evaluation of COSAC-MS carried out with its Flight Spare Model located at the Max Planck Institute for Solar System Research.
388

Turbulence et instabilité thermique du milieu interstellaire atomique neutre : une approche numérique / Turbulence and thermal instability in the neutral and atomic interstellar medium : a numerical approach

Saury, Eléonore 28 June 2012 (has links)
En Astrophysique, la compréhension du processus de formation d'étoiles reste l'une des principales questions. Elle est directement reliée à l'évolution du gaz interstellaire dans les galaxies, et en particulier aux processus de refroidissement et de condensation pour lesquels la turbulence et l'instabilité thermique jouent un rôle dominant. Ce travail se concentre sur l'évolution du gaz atomique et diffus qui fournit les conditions initiales à la formation des nuages moléculaires et se base sur une comparaison étroite entre observations à 21 cm et simulations numériques hydrodynamiques. Pour comprendre les rôles de l'instabilité thermique et de la turbulence dans la transition du gaz chaud (WNM, T ~ 8000 K, n = 0.5 cm-³) vers le gaz froid (CNM, T ~ 80 K, n = 50 cm-³), j'ai produit 90 simulations à basse résolution qui ont permis d'étudier l'influence de la densité initiale du WNM et de la compressibilité du forçage de la turbulence sur l'efficacité de la production de CNM. Un résultat important permet de conclure que le gaz chaud, dans les conditions de turbulence caractéristiques de ce qui est observé, ne transite pas vers le gaz froid quelque soit l'amplitude de la turbulence. Ces simulations à basse résolution ont aussi permis de déterminer quelles conditions initiales permettent de reproduire les propriétés déduites des observations telles que le nombre de Mach, la quantité de CNM en masse ou la dispersion de vitesse turbulente. Un processus de compression, que l'on peut reproduire soit en augmentant la densité initiale du WNM (n ≥ 1.5 cm-³) soit en appliquant un champ de forçage compressif, est nécessaire. Ces conditions initiales ont ensuite été utilisées pour produire deux simulations à haute résolution (1024³) pour lesquelles j'ai montré que les propriétés de la turbulence et de l'instabilité du milieu atomique neutre sont bien reproduites. Les histogrammes de température portent en effet la trace d'un milieu biphasique et les distributions de pression sont semblables aux observations. D'autre part, les spectres de puissance de la densité sont caractéristiques d'un milieu fortement contrasté alors que ceux de la vitesse restent caractéristiques d'une turbulence subsonique. Finalement, les structures froides de ces deux simulations reproduisent les relations masse-échelle et dispersion de vitesse-échelle observées dans les nuages moléculaires, suggérant que la structure des nuages moléculaires pourrait être héritée de celle des nuages de HI à partir desquels ils se sont formés. Le dernier aspect de mon travail est relié à la difficulté rencontrée lors de l'interprétation des données qui n'est possible qu'à partir de grandeurs projetées en deux dimensions. J'ai donc comparé en détails les deux simulations à haute résolution à des observations de cirrus en créant des observations artificielles à 21 cm. Les spectres d'émission et les cartes de densité de colonne ainsi produits sont semblables aux observations. De plus, les simulations donnant accès à l'information en trois dimensions, j'ai étudié les effets de l'auto-absorption dans la création de cartes de densité de colonne à partir de spectres de température de brillance. J'ai conclu de cette étude que l'auto-absorption ne peut être négligée mais qu'elle ne concerne que les lignes de visée les plus brillantes et les plus denses et que la correction habituellement appliquée sur les observations est efficace. Finalement, j'ai appliqué une méthode de décomposition en gaussiennes sur les spectres synthétiques. Cette méthode a pour objectif d'étudier les propriétés de chacune des deux phases thermiques du HI. Les résultats montrent qu'elle est prometteuse pour l'analyse des données de spectro-imagerie à 21 cm, bien que nécessitant des améliorations. Elle permet en effet de bien séparer les phases chaude et froide du milieu atomique et d'en déduire la distribution massique de chacune d'elles. / One of the main current questions in Astrophysics is the understanding of the star formation process, directly related to the processes involved in the cooling and the condensation of the gas yielding to intricate filamentary structures of molecular clouds. Thermal instability and turbulence are playing dominant roles in this complex dynamics. The work presented here is focused on the evolution of the atomic and diffuse interstellar medium that provides the initial conditions to the formation of molecular clouds and is based on the comparison of hydrodynamical numerical simulations and observations. To understand the roles of thermal instability and turbulence in the WNM (warm neutral medium, T ~ 8000 K, n = 0.5 cm-³) to CNM (cold neutral medium, T ~ 80 K, n = 50 cm-³) transition, I produced 90 hydrodynamical numerical simulations of thermally bistable HI and used them to study the impact of the WNM initial density and the compressibility of the turbulent stirring on the efficiency of the CNM production. The main result here is that the warm gas in the observed turbulent conditions do not transit naturally to cold gas whatever the amplitude of turbulent motions. These small resolution simulations also allowed me to determine which initial conditions lead to the reproduction of the observed properties, as the Mach number, the amount of CNM or the amplitude of the turbulent motions. A compression is needed to trigger this transition either by increasing the initial density (n ≥ 1.5 cm-³) or by stirring with a compressive field. These initial conditions have been used to produce two high resolution simulations (1024³). I showed that these two simulations reproduce well the properties of the turbulence and the thermal instability. The temperature histograms present the evidences of a bistable gas and the pressure distributions are in agreement with the observations. On the other hand, the power spectra of the density are characteristic of a high contrasted medium while the power spectra of the velocity remain characteristic of subsonic turbulence. Finally the cold structures of these two simulations reproduce well the mass-size and velocity dispersion-size relations observed in molecular clouds. This suggests that the molecular cloud structure could be inherited from the clouds of atomic gas from which they are born. One of the main limitations in the analysis of observations comes from the fact that it can only be done on integrated quantities in two dimensions. In the last part of my work I compared the two high resolution simulations to observations by creating synthetic 21 cm observations. The emission spectra and column density maps produced in that way are similar to the ones observed. Besides, with the three dimensional informations, I was able to study the effect of the self-absorption in the creation of the column density maps from the brightness temperature spectra. I concluded from this study that the self-absorption cannot be neglected but that it only concerns the brightest and densest lines of sight and that the correction usually applied on observations is efficient. Finally I applied a method of gaussian decomposition on the synthetic spectra. This method has been build to study the properties of each thermal phase in the HI. The results show that it is a highly promising method for the analysis of 21 cm spectro-imaging data even if some improvements are needed. Indeed, it allows a good separation of the cold and warm phases of the atomic medium and a reasonable deduction of the massive distribution of each one.
389

How do the large-scale dynamics of galaxy interactions trigger star formation in the Antennae galaxy merger? / Comment la dynamique à grande échelle de rencontre des deux galaxies déclenche la formation d'étoiles dans les galaxies des Antennes?

Herrera Contreras, Cinthya Natalia 05 November 2012 (has links)
Les Antennes sont une des fusions de galaxies les plus connues dans l’Univers proche. Sa proximité nous permet d’observer et d’étudier ses gaz à l’échelle de la formation des amas stellaires. C’est une source idéale pour comprendre comment la dynamique dans les fusions de galaxies déclenche la formation d’étoiles. La plupart des étoiles dans les Antennes sont formées dans des amas stellaires compacts et massifs, surnommés super-star clusters (SSC). Les SSC les plus massifs (>106 M⊙) et les plus jeunes (<6 Myr) sont situés dans la région de collision entre les deux galaxies et sont associés aux complexes moléculaires massifs (~108 M⊙) et super-géants (des centaines de pc) (super-giant molecular clouds, SGMCs). La formation de SSC doit impliquer une intéraction complexe entre la dynamique des gaz et une turbulence entraînée par la fusion des galaxies, et la dissipation de l’énergie cinétique des gaz. Dans les SGMC, une hiérarchie de structures doit être produite, incluant des concentrations denses et compactes de gaz moléculaires qui sont suffisamment massifs pour former un SSC, des nuages pre-cluster clouds (PCC). La formation des étoiles se produira si l’énergie mécanique des PCC est émise dans le lointain, permettant à l’auto-gravité de gagner localement les pressions thermique et turbulente du gaz. Des diagnostics spécifiques de dissipation turbulente sont donc des éléments essentiels pour tester la validité de ce scénario.J’étudie la région d’intéraction des Antennes. J’utilise des observations avec le spectro- imageur SINFONI sur le VLT (raies rovibrationnelles de H2) et ALMA (raie CO(3–2) et l’émission du continuum de la poussière). Les données ont des résolutions angulaires pour résoudre les échelles de la formation des SSC et des résolutions spectrales pour résoudre les mouvements à l’intérieur du SGMC. La combinaison des raies CO et H2 est essentielle dans mon travail. J’utilise le CO comme traceur de la distribution et de la cinématique du gaz moléculaire, et H2 comme traceur du taux de dissipation d’énergie mécanique de gaz.Ma thèse se concentre sur des sources traçant des différentes étapes de la formation d’étoiles : le rassemblement des gaz pour former des SGMCs, la formation des PCC dans les SGMCs et la destruction des nuages moléculaires par les SSC. Je montre que la turbulence joue un rôle essentiel à chaque étape. J’ai trouvé que l’énergie cinétique de rencontre des deux galaxies n’est pas thermalisée dans les chocs aux échelles où elle est injectée. Elle entraîne une turbulence dans l’ISM moléculaire à un niveau beaucoup plus élevé que celui observé dans la Voie Lactée. Sauf dans les SSC encore intégrés dans les nuages moléculaires, la raie de H2 est produite par des chocs et trace la dissipation de l’énergie cinétique turbulente du gaz. J’associe l’émission de H2 à la perte d’énergie cinétique nécessaire pour former des nuages gravitationnellement liés. Cette interprétation est étayée par la découverte d’une source lumineuse et compacte en H2, qui n’est associée à aucun SSC connu, située là où les données montrent le plus grand gradient de vitesse. À notre connaissance, c’est la première fois qu’une source extragalactique avec ces caractéristiques est identifiée. Nous observons la formation d’un nuage suffisamment massif pour former un SSC. Les données montrent également la destruction d’un nuage moléculaire par un SSC récemment formé. Sa matière est faiblement liée. Sa gravité serait soutenue par la turbulence, ce qui rend plus facile pour les mécanismes de rétroaction de perturber le nuage parent.Enfin, je présente deux projets. Je propose d’établir d’autres traceurs de dissipation d’énergie observables avec ALMA, proposition du Cycle 1 acceptée en première priorité. Je propose également d’étendre mon travail pour étudier la formation des étoiles entraînées par la turbulence dans différentes sources extragalactiques en combinant les observations dans le proche infrarouge et submillimétrique. / The Antennae (22 Mpc) is one of the most well-known mergers in the nearby Universe. Its distance allow us to observe and study the gas at the scales of stellar cluster formation. It is an ideal source to understand how the galaxy dynamics in mergers trigger the formation of stars. Most of the stars in the Antennae are formed in compact and massive stellar clusters, dubbed super-star clusters (SSCs). The most massive (>106 M⊙) and youngest (<6 Myr) SSCs are located in the overlap region, where the two galaxies collide, and are associated with massive (several 108 M⊙) and super-giant (few hundred of pc) molecular complexes (SGMCs). The formation of SSCs must involve a complex interplay of merger-driven gas dynamics, turbulence fed by the galaxy interaction, and dissipation of the kinetic energy of the gas. Within SGMCs, a hierarchy of structures must be produced, including dense and compact concentrations of molecular gas massive enough to form SSCs, pre-cluster clouds (PCCs). For star formation to occur, the mechanical energy of PCCs must be radiated away to allow their self-gravity to locally win over their turbulent gas pressure. Specific tracers of turbulent dissipation are therefore key inputs to test the validity of this theoretical scenario. In my thesis, I studied the Antennae overlap region. My work is based on observations with the SINFONI spectro-imager at the VLT, which includes H2 rovibrational and Brγ line emission, and with ALMA, which includes the CO(3-2) line and dust continuum emission. Both data-sets have the needed sub-arcsecond angular resolution to resolve the scales of SSC formation. The spectral resolutions are enough to resolve motions within SGMCs. Combining CO and H2 line emission is key in my PhD work. I use CO as a tracer of the distribution and kinematics of the molecular gas, and H2 as a tracer of the rate at which the gas mechanical energy is dissipated.My thesis focuses on diverse sources in the Antennae overlap region which trace different stages of star formation: the gathering of mass necessary to form SGMCs, the formation of PCCs within SGMCs and the disruption of a parent cloud by a newly formed SSC. I show that at each stage turbulence plays a key role. I found that the kinetic energy of the galaxies is not thermalized in large scale shocks, it drives the turbulence in the molecular ISM at a much higher level than what is observed in the Milky Way. Near-IR spectral diagnostics show that, outside of SSCs embedded in their parent clouds, the H2 line emission is powered by shocks and traces the dissipation of the gas turbulent kinetic energy. I relate the H2 emission to the loss of kinetic energy required to form gravitationally bound clouds. This interpretation is supported by the discovery of a compact, bright H2 source not associated with any known SSC. It has the largest H2/CO emission ratio and is located where the data show the largest velocity gradient in the interaction region. To our knowledge, this is the first time that an extragalactic source with such characteristics is identified. We would be witnessing the formation of a cloud massive enough to form a SSC. The data also allow us to study the disruption of a parent molecular cloud by an embedded SSC. Its matter is loosely bound and its gravity would be supported by turbulence, which makes it easier for feedback to disrupt the parent cloud. I end my manuscript presenting two projects. I propose to establish additional energy dissipation tracers observable with ALMA, which gives us the high spatial and spectral resolution needed to isolate scales at which clusters form. This is a Cycle 1 proposal accepted in first priority. I also plan to expand my work to other nearby extragalactic sources by investigating the turbulence-driven formation of stars in different extragalactic sources by combining near-IR and submillimeter observations.
390

Formation of Small Hydrocarbon Ions Under Inter- and Circumstellar Conditions: Experiments in Ion Traps

Savić, Igor 26 August 2004 (has links)
Using ion-trapping techniques, selected laboratory experiments on ion-molecule reactions of astrophysical interest have been performed. For the first time a carbon beam source has been integrated into an ion trapping machine for studying collisions between ions and neutral carbon atoms and molecules. Results are presented for the interaction of D3+ ions stored in a ring-electrode trap (RET), with a beam of hot neutral carbon molecules, Cn (n = 1, 2, 3). The measured reaction rate coefficients are up to a factor two smaller than values presently used in astrophysical models. In order to complete our knowledge about the ion chemistry involving three carbon atoms, detailed investigations of reactions of C3+, C3H+ and C3H3+ with H2 and HD have been performed between 15 K and room temperature. These studies have been performed in a second apparatus, a variable-temperature 22-pole trap machine (VT-22PT). Results include reactive collisions, deuteration and radiative association. It is discussed in connection with the increase in lifetime of the C3+ + H2 collision complexes with falling temperature, what could be responsible for producing more C3H+ at 15 K. Tunneling is excluded. In C3+ + HD collisions an isotope effect has been detected, the C3D+ product ions being slightly more abundant than C3H+. Comparison of the reaction of C3H+ primary ions with HD and H2 gas revealed that the deuterated molecules are significantly more reactive. The process of radiative association of C3H+ and for the first time of C3+ with hydrogen molecules has been observed. An analysis of the data shows that radiative association becomes slower, if the neutral reactant is deuterated. Finally, the theoretical prediction from ab initio calculations that C3H3+ does not exchange an H for a D in collisions with HD, has been proven in an ion trap experiment. Careful analysis of all competing processes allows the conclusion that the rate coefficient is smaller than 4x10-16 cm3s-1 at 15 K. / Unter Verwendung von zwei Speicherapparaturen wurden ausgewählte, astrophysikalische wichtige Ionen-Molekülreaktionen untersucht. Durch die Kombination einer Kohlenstoffquelle mit einem Ionenspeicher, in dem so Reaktionen zwischen Ionen und Kohlenstoffmolekülen oder -atomen untersucht werden können, wurde Neuland betreten. Es werden Ergebnisse vorgestellt für die Reaktion von D3+ Ionen, die in einem Ringelektrodenspeicher gefangen sind, mit einem Strahl von heißen Cn (n = 1, 2, 3). Die gemessenen Ratenkoeffizienten sind nur halb so groß wie die Werte, die in astrophysikalischen Modellen verwendet werden. Um die Kenntnis über alle möglichen Reaktionen, bei denen drei C-Atome beteiligt sind, abzurunden, wurden zwischen 15 K und Zimmertemperatur die Reaktionen zwischen C3+, C3H+ und C3H3+ Ionen mit H2 und HD in vielen Details untersucht. Diese Experimente wurden in einer zweiten Apparatur durchgeführt, in der ein temperaturvariabler 22-Polspeicher das zentrale Element ist (VT-22PT). Berichtet werden Ergebnisse zu reaktiven Stößen, zur Deuterierung von Kohlenwasserstoffen und zur Strahlungsassoziation. In der Diskussion bleibt offen, was - in Verbindung mit der von 300 K zu 15 K zunehmenden Lebensdauer - der Grund dafür sein kann, daß die Bildung des exothermen Produkts C3H+ anwächst. Der Tunneleffekt scheidet aus. Bei der Reaktion C3+ + HD wurde ein Isotopeneffekt beobachtet, das C3D+ Produkt wird etwas häufiger gebildet als C3H+. Ein Vergleich der Reaktion zwischen C3H+ Ionen mit HD bzw. H2 zeigt, daß das deuterierte Molekül wesentlich reaktiver ist. Es wurden Ratenkoeffizienten für die Strahlungsassoziation von H2 Molekülen mit C3H+ und erstmals mit C3+ Ionen gemessen. Die Auswertung der Daten zeigt, dass der Prozeß langsamer abläuft, wenn der neutrale Stoßpartner deuteriert ist. Schließlich wurde experimentell die theoretische Vorhersage überprüft, dass C3H3+ keinen H-D Austausch mit HD eingeht. Eine sorgfältige Analyse aller konkurrierenden Prozesse ergab, dass bei 15 K der Raten koeffizient kleiner als 4x10-16 cm3s-1 ist.

Page generated in 0.033 seconds