• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 21
  • 19
  • 9
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 162
  • 44
  • 33
  • 30
  • 25
  • 18
  • 18
  • 18
  • 17
  • 17
  • 17
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Neuromodulation of Ganglion Cell Photoreceptors

Sodhi, Puneet 20 May 2015 (has links)
No description available.
52

The Effects of Satiety-state Neuromodulation on Predatory Hunting Behaviors and CNS Sensorimotor Processing in the Praying Mantis, Tenodera sinensis

Bertsch, David J. 20 September 2021 (has links)
No description available.
53

Remaniements fonctionnels des réseaux locomoteurs spinaux au cours du développement de l’amphibien Xenopus laevis en métamorphose

Rauscent, Aude 17 December 2008 (has links)
La plasticité du système nerveux central face aux contraintes environnementales ou morphologiques est un processus fondamental mis en place afin de permettre à l’animal de maintenir des comportements adaptés. Parce que le comportement locomoteur est essentiel à la survie de l'animal, les mécanismes neuronaux permettant sa genèse doivent s’adapter aux modifications morphologiques de l’organisme pendant son développement. Pour aborder cette question, nous avons développé un nouveau modèle expérimental pour lequel les modifications morphologiques au cours du développement sont extrêmes et impliquent des reconfigurations à long terme du système nerveux. L'amphibien Xenopus laevis lors de sa métamorphose est, en effet, un modèle pertinent pour étudier (par des approches comportementales, neuroanatomiques, électro-physiologiques et pharmacologiques), les mécanismes impliqués dans la réorganisation des réseaux neuronaux locomoteurs de la moelle épinière face à des modifications extrêmes du schéma corporel. En effet, pendant sa métamorphose, l'animal passe d'un mode de locomotion ondulatoire mettant en jeu sa musculature axiale, à un mode de locomotion appendiculaire grâce aux membres néo-formés. Il existe de plus des stades intermédiaires où les deux modes de locomotion coexistent et expriment des relations fonctionnelles variables. Nos expériences d’électrophysiologie extracellulaire nous ont permis de dégager la dynamique temporelle de l’émergence du réseau de neurones commandant la locomotion appendiculaire adulte et de ses relations fonctionnelles avec le réseau locomoteur commandant la nage larvaire lorsque ces deux réseaux coexistent. D’après les résultats présentés, il apparaît un changement de l’équilibre fonctionnel et des interactions entre les commandes locomotrices ondulatoire et appendiculaire, faisant des stades intermédiaires de la métamorphose les témoins privilégiés du passage de relais progressif entre les deux systèmes locomoteurs. Nos travaux ont également démontré que l’activité de chaque réseau ainsi que leurs relations fonctionnelles sont sujettes à modulation glutamatergique et aminergique destinées à adapter la locomotion aux besoins de l'animal. Nous montrons que certains modulateurs (tels que le glutamate, la sérotonine et la noradrénaline) exercent des effets opposés sur les réseaux locomoteurs larvaires et adultes, alors qu'à l'inverse, la dopamine conserve les mêmes propriétés modulatrices sur ces réseaux malgré les profonds bouleversements subis pendant le développement. Outre leur rôle modulateur, nos résultats suggèrent aussi un rôle des afférences aminergiques dans la maturation des réseaux locomoteurs et ouvrent de nombreuses interrogations quant aux mécanismes impliqués dans la plasticité des afférences neuromodulatrices elles-mêmes au cours de la métamorphose. L’apparition et la disparition de neurones sérotoninergiques intraspinaux concomitantes avec la croissance des membres postérieurs, et précédant la régression de l'appendice caudal laissent envisager un rôle de la sérotonine dans la maturation du réseau locomoteur appendiculaire ou dans la chronologie de la régression du réseau axial. / Plasticity of the central nervous system is fundamental to an animal's capacity to adapt to continually changing biomechanical and environmental demands. Although the neuronal mechanisms underlying such essential behaviours as locomotion must adapt to an organism's morphological modifications during growth and development, the associated changes that occur in central nervous function remain poorly understood. To address this issue, we have developed a new experimental model - the amphibian Xenopus laevis during its metamorphosis - in which the extreme biomechanical modifications occurring during this critical period necessitate a correspondingly extensive and long-term reorganisation of locomotor neural circuitry within the animal's spinal cord. During metamorphosis, the locomotory strategy of Xenopus shifts from undulatory swimming involving axial tail-based movements, to appendicular propulsion that uses the newly formed limbs. At intermediate metamorphic stages, moreover, the two locomotor strategies coexist within the same animal as the secondary limb-based motor circuitry is progressively replaces the primary axial network as the limbs are added and the tail regresses. By making extracellular recordings of spontaneous "fictive" locomotor patterns generated by isolated brainstem/spinal cord preparations, we have charted the temporal dynamics of the emergence of the appendicular neuronal network and determined its functional relationship with larval axial locomotor circuitry through the metamorphic period. Our results have shown that the limb circuitry is initially present but not functional, functional but subordinate to the embryonic axial network, functionally independent from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, the use of pharmacological approaches established that during the metamorphic transition, the coexisting spinal locomotory networks and their functional interactions are subject to glutamatergic and aminergic modulation in order to adapt locomotory performance to the immediate behavioural needs of the animal. Interestingly, the neuromodulators glutamate, serotonin and noradrenaline exert directly opposing influences on the larval and adult locomotor networks, while dopamine preserves a similar modulatory action on the two circuits in spite of their profound remodelling during metamorphic development. Finally, in addition to a short-term modulatory role, our immunocytochemical evidence suggested that descending aminergic systems may contribute to the long-term maturation of spinal locomotor circuitry during metamorphosis in parallel with their own developmental reconfiguration. Specifically, the appearance and disappearance of a population of intraspinal serotonergic neurons concomitant with hindlimb growth and preceding tail regression suggested a role of serotonin in the maturation of the appendicular locomotor network and/or in the chronology of axial network regression.
54

Non-invasive therapy of brain disorders with focused ultrasound : from animal experiments to clinical transfer / Thérapie non-invasive des pathologies cérébrales par ultrasons focalisés : de l'expérimentation animale au transfert clinique

Younan, Youliana 07 March 2014 (has links)
Ces travaux de thèse portent sur l'étude de nouvelles modalités de guidage de la thérapie transcrânienne par ultrasons focalisés, technique non invasive particulièrement prometteuse pour le traitement de troubles neurologiques tels que le tremblement essentiel ou le tremblement parkinsonien. Une nouvelle technique d'imagerie par résonance magnétique a tout d'abord été utilisée pour imager l'emplacement du faisceau ultrasonore produit par un prototype préclinique : les déplacements induits par les ultrasons dans une cervelle de veau ex vivo ont été imagés sans distorsion à l'aide d'une séquence d'écho de spin accélérée, avec un dépôt d'énergie jusqu'à quatre fois inférieur aux techniques existantes. Nous avons ensuite étudié les effets directs des ultrasons sur l'activité cérébrale par neuromodulation ultrasonore in vivo, de façon similaire à la stimulation magnétique transcrânienne, mais avec les capacités de ciblage millimétriques des ultrasons focalisés. Des expériences ont été tout d'abord menées sur un modèle de rat anesthésié afin d'étudier la pression seuil pouvant induire un effet moteur. Le champ acoustique simulé dans la tête de rat est fortement affectée par des réverbérations, ce qui doit être pris en compte pour l'évaluation in situ des paramètres acoustiques de neurostimulation, en particulier à basse fréquence et pour les petits animaux. Enfin, pour la première fois, nous avons montré que les ultrasons focalisés de faible intensité pouvaient moduler de façon causale le comportement d'un primate non humain éveillé : le temps de latence d'une tâche d'anti-saccade est retardé de façon significative par des ultrasons focalisés dans le champ visuel frontal. / The work presented in this thesis investigates novel modalities to guide Transcranial Magnetic Resonance guided Focused Ultrasound (TcMRgFUS). TcMRgFUS is an emerging and promising non-invasive technique for the treatment of neurological disorders, such as essential tremor or Parkinsonian tremor. A novel Magnetic Resonance Acoustic Radiation Force Imaging (MRARFI) has been used to image the location of the ultrasonic beam produced by a preclinical prototype: an accelerated 2D spin-echo MR ARFI pulse sequence has been introduced to generate undistorted ultrasound-induced displacement maps in ex vivo veal brains with minimum energy deposition. We then investigated direct effects of the ultrasonic beam on brain activity by conducting in vivo ultrasonic neuromodulation, similarly to what is currently achieved with transcranial magnetic stimulation (TMS) but with the millimetric targeting capabilities of the ultrasound. Experiments have been first conducted in an anesthetized rat model to investigate the motor threshold. Numerical simulations have shown that the acoustic pattern in the rat head is affected by reverberations and that special care must be taken when relating acoustic parameters to neurostimulation effects, especially at a low frequency and for small animals. Finally, for the first time, we used low intensity FUS stimulation to causally modulate behavior in an awake nonhuman primate brain. We showed that the latency of an anti-saccade task was delayed significantly in the presence of ultrasonic beam focused in the Frontal Eye Field. Sham experiments did not show any significant change in the latencies.
55

Optimal control of non-invasive neuromodulation for the treatment of sleep apnea syndromes / Contrôle optimal de la neuromodulation non-invasive pour le traitement des syndromes d'apnée du sommeil

Pérez Trenard, Diego Oswaldo 06 April 2018 (has links)
Le syndrome d'apnée du sommeil (SAS) est une maladie multifactorielle caractérisée par des épisodes récurrents de pauses respiratoires ou des réductions significatives de l'amplitude respiratoire pendant le sommeil. Ces épisodes peuvent provoquer des réactions cardiorespiratoires aiguës; délétères à long terme. Plusieurs thérapies ont été proposées, étant la pression positive continue des voies respiratoires (CPAP) le traitement de référence. Malgré ces excellents résultats chez les patients symptomatiques, le taux de refus initial est de 15% et une adhésion à long terme est difficile à atteindre. Par conséquent, le développement de méthodes de traitement non invasives, avec une meilleure acceptabilité, reste d’une importance majeure. Dans ce contexte, l’hypothèse qui sous-tend ce travail est qu’une stimulation kinesthésique contrôlée, délivrée au cours de la phase précoce de l’apnée, peut réduire la durée des événements respiratoires et, par la suite, limiter les désaturations d’oxygène associées, par une activation contrôlée du réflexe de sursaut. La première partie de ce manuscrit est consacrée à la description d'un nouveau système (PASITHEA) de surveillance en temps réel et de neuromodulation thérapeutique, qui fonctionne comme un dispositif polyvalent de diagnostic et de traitement de SAS par stimulation kinesthésique. Les principales contributions de cette thèse se concentrent sur les aspects du traitement du signal et du contrôle de ce système, ainsi que sur l'électronique associée. Une autre contribution est liée à l'évaluation de ces méthodes et dispositifs par des protocoles cliniques spécifiques. Dans une deuxième partie, nous proposons une première méthode de contrôle On/Off optimale pour délivrer la stimulation, en utilisant comme variable de contrôle la sortie d'un détecteur d'événements respiratoires en temps réel. Lors de la détection d'un événement, une stratégie de stimulation unique avec amplitude de stimulation constante est appliquée, cette dernière a été mise en œuvre dans le cadre d'un premier protocole clinique dédié à l'évaluation de la réponse du patient au traitement. Les résultats ont montré que 75% des patients répondaient correctement au traitement en termes de durées des épisodes respiratoires. De plus, des diminutions significatives de la variabilité du SaO2 ont également été constatées lors de la mise en œuvre d'une nouvelle méthode d'analyse aiguë. Puisque nous avons supposé qu'une sélection inappropriée des patients pourrait expliquer l'absence de réponse observée chez 25% des patients. Nous avons proposé une méthode pour différencier les patients qui pourraient bénéficier de cette thérapie, basée sur l'estimation d'indices de variabilité cardiaque. Les résultats de ces analyses ont montré que l'efficacité de cette thérapie semble corrélée à un système nerveux autonome fonctionnel. Enfin, une méthode améliorée de contrôle en boucle fermée, intégrant des correcteurs proportionnels-dérivés (PD) couplés et simultanés a été proposée afin de modifier de façon adaptative l’amplitude de stimulation kinesthésique délivrée au patient par le système thérapeutique, en utilisant comme variables de contrôle des signaux physiologiques enregistrés en temps réel. Un deuxième protocole clinique visant à valider l'algorithme de contrôle de la stimulation kinesthésique adaptative spécifique au patient a été initié. Plusieurs améliorations ont été effectuées à la première version du système afin de permettre l'intégration du contrôleur proposé. Les résultats préliminaires de cette étude ont validé le fonctionnement de notre contrôleur et ont montré que notre système était capable de fournir une stimulation kinesthésique adaptative en fonction des réponses propres au patient. Une autre phase de cette étude, mettant en œuvre le contrôleur avec un ensemble des paramètres de contrôle présélectionnés, est actuellement en cours. / Sleep apnea syndrome (SAS) is a multifactorial disease characterized by recurrent episodes of breathing pauses or significant reductions in respiratory amplitude during sleep. These episodes may provoke acute cardiorespiratory responses along with alterations of the sleep structure, which may be deleterious in the long term. Several therapies have been proposed for the treatment of SAS, being continuous positive airway pressure the gold standard treatment. Despite its excellent results in symptomatic patients, there is a 15% initial refusal rate and long term adherence is difficult to achieve in minimally symptomatic patients. Therefore, the development of non-invasive SAS treatment methods, with improved acceptability, is of major importance. The objective of this PhD thesis is to propose new signal processing and control methods of non-invasive neuromodulation for the treatment of SAS. The hypothesis underlying this work is that bursts of kinesthetic stimulation delivered during the early phase of apneas or hypopneas may elicit a controlled startle response that can activate sub-cortical centers controlling upper airways muscles and the autonomic nervous system, stopping respiratory events without generating a cortical arousal. In this context, the first part of this manuscript is dedicated to the description of a novel real-time monitoring and therapeutic neuromodulation system, which functions as a multi-purpose device for SAS diagnosis and treatment through kinesthetic stimulation. This system has been developed in the framework of an ANR TecSan project led by our laboratory, with the participation of Sorin CRM SAS. The main contributions in this thesis are focused on the signal processing and control aspects of this system, as well as the electronics associated. Another contribution is related to the evaluation of these methods and devices through specific clinical protocols. In a second part, we propose a first optimal On/Off control method for delivering kinesthetic stimulation, using as control variable the output of a real-time respiratory event detector. A unique stimulation strategy where a constant stimulation amplitude is applied upon event detention was implemented in a first clinical protocol, dedicated to assessing the patient response to therapy. Results showed that 75% of the patients responded correctly to therapy, showing statistically significant reductions in respiratory event durations. Also, significant decreases in the SaO2 variability were also found when implementing a novel acute analysis method. Since we hypothesized that inappropriate patient selection could explain the observed lack of response in 25% of patients, we proposed a method to differentiate patients who could benefit from this therapy based on the estimation of complexity-based indexes of heart rate variability. Results of these analyses showed that the effectiveness of this therapy seems correlated to a functional autonomic nervous system. Finally, an improved closed-loop control method integrating concurrent, coupled proportional-derivative (PD) controllers in order to adaptively change the kinesthetic stimulation was proposed. It uses as control variables three physiological signals recorded in real-time: Nasal pressure, oxygen saturation and the electrocardiogram signal. A second clinical protocol with the main objective of validating the control algorithm for patient-specific adaptive kinesthetic stimulation was launched. Several improvements to the first version of the system were developed to allow the integration of the proposed controller. Preliminary results from the first phase of this study validated the proposed controller operation and showed that the controller was able to provide adaptive kinesthetic stimulation in function of the patient-specific responses. A second phase of this study implementing the proposed controller and the set of the selected control parameters from the first phase is currently ongoing.
56

Evolving Neuromodulatory Topologies for Plasticity in Video Game Playing

Gustafsson, Jimmy January 2016 (has links)
In the last decades neural networks have become more frequent in video games. Neuroevolution helps us generate optimal network topologies for specific tasks, but there are still still unexplored areas of neuroevolution, and ways of improving the performance of neural networks, which we could utilize for video game playing. The aim of this thesis is to find a suitable fitness evaluation and improve the plasticity of evolved neural networks, as well as comparing the performance and general video game playing abilities of established neuroevolution methods. Using Analog Genetic Encoding we implement evolving neuromodulatory topologies in a typical two-dimensional platformer video game, and have it play against itself without neuromodulation, and against a popular genetic algorithm known as Neuroevolution of Augmenting Topologies. A suitable input and output structure is developed as well as an appropriate fitness evaluation for properly mating and mutating a population of neural networks. The benefits of neuromodulation are tested by running and completing a number of tile-based platformer video game levels. The results show an increased performance in networks influenced by neuromodulators, but no general video game playing abilities are obtained. This shows us that a more advanced general gameplay learning method with higher influence is required. / Neurala nätverk har blivit allt vanligare i tv-spel. Neuroevolution hjälper oss att utveckla optimala neurala topologier för specifika uppgifter, men det finns fortfarande outforskade områden i neuroevolution, och sätt att förbättra förmågan hos neurala nätverk som vi kan använda i spel. Målet är att hitta en lämplig fitnessbedömning och förbättra plasticiteten hos utvecklade neuralanätverk, samt jämföra deras utförande och förmåga att generellt spela videospel. Detta med hjälp av etablerade neuroevolutionmetoder. Genom Analog Genetisk Kodning implementeras utvecklande neuromodulatoriska topologier i ett typiskt tvådimensionellt platformer spel. Det används sedan för att spela mot en version av sig själv som inte har neuromodulatoriska egenskaper, samt mot en populär genetisk algoritm kallad Neuroevolution of Augmenting Topologies. Ett passande format för input och output, samt en fitnessbedömningsmetod för parande och muterande aven population av neurala nätverk utvecklas. Fördelarna med neuromodulation testas genom att låta nätverken spela ett antal tile-baserade platformerbanor. Resultaten visar en förbättring av utförandet hos nätverk som utvecklat neuromodulatorer, dock inga generella spelkunskaper kunde läras. Detta visar oss att en mer avancerad metod för generellt spelande krävs för att kunna få ett neuralt nätverk kunna spela och lösa mer generella problem.
57

The hippocampal mossy fiber synapse

Gundlfinger, Anja 19 June 2008 (has links)
Synapsen sind die spezialisierten subzellulären Kontaktstellen im Gehirn, die die Kommunikation zwischen einzelnen Nervenzellen, den Neuronen, auf elektrischem oder chemischem Weg ermöglichen. Anatomisch und physiologisch sind Synapsen jedoch erstaunlich divers, unter anderem abhängig von der untersuchten Hirnregion, der Identität der prä- und postsynaptischen Neurone, den präsynaptisch ausgeschütteten Neurotransmittern und postsynaptischen Rezeptorsystemen. Generell kann die Effektivität oder Stärke synaptischer Übertragung durch unterschiedliche Mechanismen beeinflusst werden. Hier werden nun Mechanismen, Ausprägung und funktionelle Relevanz von Neuromodulation, Kurzzeit- und Langzeit-Plastizität der Stärke der synaptischen Übertragung an der hippokampalen Moosfaser-Synapse erarbeitet. Die vorgestellten Daten konnten mit Hilfe von in vitro experimentellen Ansätzen an der hippokampalen Formation von Mäusen gewonnen werden und durch Analysen und Simulationen aus dem Bereich der theoretischen Biologie bestätigt und erweitert werden. / Chemical synapses are key elements for the communication between nerve cells. This communication can be regulated on various time scales and through different mechanisms affecting synaptic transmission. Amongst these are slow and long-lasting adjustments by endogenous neuromodulators, instantaneous and reversible activity-dependent regulation by short-term plasticity and persistent activity-dependent changes by long-term plasticity. Within this thesis, we have investigated several aspects of modulation of synaptic transmission and its functional relevance at the example of the hippocampal mossy fiber synapse. The presented results were acquired through electrophysiological and microfluorometric experiments at the hippocampal formation of mice and could be verified and substantiated through theoretical analyses, simulations and computational modelling.
58

Tomographie d’impédance électrique à l’aide d’une matrice de microélectrodes : vers l’imagerie des nerfs périphériques / Electrical impedance tomography using a microelectrode array : towards peripheral nerve imaging

Fouchard, Alexandre 06 November 2015 (has links)
La neuromodulation offre une possibilité de traitement pour des pathologies pharmoco-resistantes. Dans ce domaine, l'émergence de matrices d'électrodes à l'échelle microscopique ouvre la voie à des interfaces neurales sélectives. Cependant, leur fonctionnalité est réduite par le manque d'information sur l'anatomie fonctionnelle du nerf ciblé. L'objectif global de ce projet de thèse est d'explorer les possibilités d'imager un nerf de manière non-invasive par tomographie d'impédance électrique (EIT). Modalité d'imagerie des tissus mous, l'EIT déduit des cartes de conductivité à partir de mesures sur la frontière du domaine étudié. Une plateforme expérimentale a été mise en place et a permis de valider les développements des méthodes numériques effectués pour la prédiction des données et l'estimation des paramètres. Des tests in vivo ont été réalisés dans le contexte de la stimulation du nerf vague et du nerf sciatique. Des spécifications pour de futures expériences ont été déduites, avec l'utilisation d'électrodes plus robustes comprenant un plus grand nombre de contacts par section. / Neuromodulation offers treatments for drug resistant pathologies. In this field, the emergence of micro-scale multi-electrode arrays paves the way for selective neural interfaces. But they suffer from the lack of information on the nerve functional anatomy. The global aim of this PhD project is to explore the possibilities of imaging the inside of a nerve in a non-invasive way through electrical impedance tomography (EIT). As a soft-field imaging modality, EIT infers conductivity maps from boundary measurements. An experimental platform was built and allowed the validation of numerical methods developed for data prediction and parameter estimation. In vivo tests were performed in the context of vagus and sciatic nerve stimulation. Specifications were deduced for future experiments, with more reliable electrodes, embedding a higher number of contacts per cross-section.
59

Study of the Mechanisms Underlying Neurostimulation Induced by Low- Energy Pulsed Ultrasound : Towards Approaches for the Management of Cancer-Related Chronic Pain / Étude des mécanismes de neurostimulation par ultrasons pulsés de faible énergie et applications à la gestion des douleurs chroniques d’origine tumorale

Vion, Jérémy 27 March 2019 (has links)
Les applications thérapeutiques de la neurostimulation ultrasonore représentent un terrain de recherche très prometteur, auquel il fait défaut un modèle valide décrivant les biomécanismes sous-jacents. Le premier objectif de ce travail de thèse était de proposer un modèle nerveux propice à une étude mécanistique du phénomène de neurostimulation ultrasonore. L’objectif suivant était de prouver l’intérêt d’exploiter ce modèle pour recueillir des informations concernant les interactions biophysiques ayant lieu entre les ultrasons (US) focalisés et le système nerveux. La majorité des études réalisées a porté sur le système nerveux du ver de terre commun, Lumbricus terrestris. Elles ont consisté d’une part à comparer entre elles les caractéristiques temporelles des réponses nerveuses associées à différentes modalités de stimulation, et d’autre part à évaluer l’influence de chacun des paramètres acoustiques du stimulus ultrasonore sur le taux de succès de neurostimulation (NSR). Dans les deux cas, la méthodologie suivie reposait sur l’administration de différents stimuli aléatoirement alternés. Complémentairement, le rôle joué par la cavitation acoustique a été étudié. La faisabilité de la stimulation du système nerveux du ver de terre, au moyen d’US et dans des conditions in vivo, a été prouvée. Les aires sensorielles et la dynamique de réponses associées aux trois modalités de stimulation ont été caractérisées. Il a été conclu que, dans ce modèle nerveux invertébré, pendant le phénomène de neurostimulation ultrasonore, les structures nerveuses interagissant fonctionnellement avec les US sont les nerfs afférents segmentaux. Les résultats des études paramétriques ont indiqué que le NSR augmente avec l’intensité acoustique, la durée de pulse et la fréquence de répétition des pulses. Il a été proposé que la structure nerveuse visée est sensible à la « force de radiation moyenne » transportée par le stimulus US, indépendamment des paramètres menant à cette valeur / Ultrasound neurostimulation applied to therapy is a promising field of research but still lacks of a validated model explaining the biomechanisms underlying the phenomenon. The first objective of this PhD thesis was to propose a nervous model suited for a mechanistic study of the phenomenon of ultrasound neurostimulation. In a second time, it was intended to practically prove the interest of this model by using it to gain knowledge regarding the biophysical interactions between focused ultrasound and the nervous system. Studies were performed on the nervous system of the anesthetized earthworm, Lumbricus terrestris. They consisted in either comparing the timings of the nervous responses associated with different modalities of stimulation, or evaluating the influence of each acoustic parameter on the neurostimulation success rate (NSR). In both cases, the methodology followed was to administer randomly mixed sequences of different stimuli. The feasibility of the in vivo activation of the anesthetized earthworm’s nervous system was proven. The sensory fields and response dynamics associated with the three modalities of stimulation were characterized. The parametric studies indicated that the NSR increases with pulse amplitude, pulse duration, pulse repetition frequency, but is more weakly influenced by the harmonic content and number of pulses. By applying a causal approach to interpret the results, we concluded that, in this nervous model, during the phenomenon of ultrasound neurostimulation, the structures functionally responding to the ultrasound stimulus are the segmental afferent nerves. We hypothesize that the main interaction with the axonal regions is mediated by ultrasound radiation force, without excluding the involvement of other biomechanisms
60

Peripheral nerve field stimulation for trigeminal neuralgia, trigeminal neuropathic pain, and persistent idiopathic facial pain

Klein, Johann, Sandi-Gahun, Sahr, Schackert, Gabriele, Jratli, Tareq A 19 September 2019 (has links)
Objective: Peripheral nerve field stimulation (PNFS) is a promising modality for treatment of intractable facial pain. However, evidence is sparse. We are therefore presenting our experience with this technique in a small patient cohort. Methods: Records of 10 patients (five men, five women) with intractable facial pain who underwent implantation of one or several subcutaneous electrodes for trigeminal nerve field stimulation were retrospectively analyzed. Patients’ data, including pain location, etiology, duration, previous treatments, long-term effects and complications, were evaluated. Results: Four patients suffered from recurrent classical trigeminal neuralgia, one had classical trigeminal neuralgia and was medically unfit for microvascular decompression. Two patients suffered from trigeminal neuropathy attributed to multiple sclerosis, one from post-herpetic neuropathy, one from trigeminal neuropathy following radiation therapy and one from persistent idiopathic facial pain. Average patient age was 74.2 years (range 57–87), and average symptom duration was 10.6 years (range 2–17). Eight patients proceeded to implantation after successful trial. Average follow-up after implantation was 11.3 months (range 5–28). Using the visual analog scale, average pain intensity was 9.3 (range 7–10) preoperatively and 0.75 (range 0–3) postoperatively. Six patients reported absence of pain with stimulation; two had only slight constant pain without attacks. Conclusion: PNFS may be an effective treatment for refractory facial pain and yields high patient satisfaction.

Page generated in 0.0988 seconds