Spelling suggestions: "subject:"incompressible"" "subject:"uncompressible""
41 |
Etude de l'asymptotique du phénomène d'augmentation de diffusivité dans des flots à grande vitesse / The asymptotic of the phenomenon of enhancement of diffusivity in high speed flowNguyen, Thi-Hien 29 September 2017 (has links)
En application, on souhaite générer des nombres aléatoires avec une loi précise (méthode de Monte Carlo par chaines de Markov - MCMC (Markov Chaine Monte Carlo)). La méthode consiste à trouver une diffusion qui a la loi invariante souhaitée et à montrer la convergence de cette diffusion vers son équilibre avec une vitesse exponentielle. L’exposant de cette convergence est le trou spectral du générateur. Il a été montré par Chii-Ruey Hwang, Shu-Yin Hwang-Ma, et Shuenn-Jyi Sheu qu’on peut agrandir le trou spectral, en rajoutant un terme non-symétrique au générateur auto-adjoint (souvent utilisé en MCMC). Ceci correspond à passer d’une diffusion réversible (en detailed balance) à une diffusion non réversible. Un moyen de construire une diffusion non-réversible avec la même mesure invariante est de rajouter un flot incompressible à la dynamique de la diffusion réversible.Dans cette thèse, nous étudions le comportement de la diffusion lorsqu’on accélère le flot sous-jacent en multipliant le champ des vecteurs qui le décrit par une grande constante. P. Constantin, A.Kisekev, L.Ryzhik et A.Zlatoš (2008) ont montré que si le flot était faiblement mélangeant alors l’accélération du flot suffisait pour faire converger la diffusion vers son équilibre en un temps fini. Dans ce travail, on explicite la vitesse de ce phénomène sous une condition de corrélation du flot. L’article de B. Franke, C.-R.Hwang, H.-M. Pai et S.-J. Sheu (2010) donne l’expression asymptotique du trou spectral lorsque le flot sous-jacent est accéléré vers l’infini. Ici aussi, on s’intéresse à la vitesse avec laquelle le phénomène se manifeste. Dans un premier temps, nous étudions le cas particulier d’une diffusion du type Ornstein-Uhlenbeck qui est perturbée par un flot préservant la mesure gaussienne. Dans ce cas, grâce à un résultat de G. Metafune, D. Pallara et E. Priola (2002), nous pouvons réduire l’étude du spectre du générateur à des valeurs propres d’une famille de matrices. Nous étudions ce problème avec des méthodes de développement limité des valeurs propres. Ce problème est résolu explicitement dans cette thèse et nous donnons aussi une borne pour le rayon de convergence du développement. Nous généralisons ensuite cette méthode dans le cas d’une diffusion générale de façon formelle. Ces résultats peuvent être utiles pour avoir une première idée sur les vitesses de convergence du trou spectral décrites dans l’article de Franke et al. (2010). / In application, we would like to generate random numbers with a precise law MCMC (Markov Chaine Monte Carlo). The method consists in finding a diffusion which has the desired invariant law and in showing the convergence of this diffusion towards its equilibrium with an exponential rate. The exponent of this convergence is the spectral gap of the generator. It was shown by C.-R. Hwang, S.-Y. Hwang-Ma and S.-J. Sheu that the spectral gap can grow up by adding a non-symmetric term to the self-adjoint generator.This corresponds to passing from a reversible diffusion to a non-reversible diffusion. A means of constructing a non-reversible diffusion with the same invariant measure is to add an incompressible flow to the dynamics of the reversible diffusion.In this thesis, we study the behavior of diffusion when the flow is accelerated by multiplying the field of the vectors which describes it by a large constant. In 2008, P. Constantin, A. Kisekev, L. Ryzhik and A. Zlatoˇs have shown that if the flow was weakly mixing then the acceleration of the flow was sufficient to converge the diffusion towards its equilibrium after finite time. In this work, the speed of this phenomenon is explained under a condition of correlation of the flow. The article by B. Franke, C.-R.Hwang, H.-M. Pai and S.-J.Sheu (2010) gives the asymptotic expression of the spectral gap when the large constant goes to infinity. Here we are also interested in the speed with which the phenomenon manifests itself. First, we study the special case of an Ornstein-Uhlenbeck diffusion which is perturbed by a flow preserving the Gaussian measure. In this case, thanks to a result of G. Metafune, D. Pallara and E. Priola (2002), we can reduce the study of the generator spectrum to eigenvalues of a family of matrices. We study this problem with methods of limited development of eigenvalues. This problem is solved explicitly in this thesis and we also give a boundary for the convergence radius of the development. We then generalize this method in the case of a general diffusion in a formal way. These results may be useful to have a first idea on the speeds of convergence of the spectral gap described in the article by Franke et al. (2010).
|
42 |
Convergence du schéma Marker-and-Cell pour les équations de Navier-Stokes incompressible / Convergence of the mac scheme for the incompressible navier-stokes equationsMallem, Khadidja 14 December 2015 (has links)
Le schéma Marker-And-Cell (MAC) est un schéma de discrétisation des équations aux dérivées partielles sur maillages cartésiens, très connu en mécanique des fluides. Nous nous intéressons ici à son analyse mathématique dans le cadre des écoulements incompressibles sur des maillages cartésiens non-uniformes en dimension 2 ou 3. Dans un premier temps nous discrétisons les équations de Navier-Stokes pour un écoulement incompressible stationnaire; nous établissons des estimations a priori sur les suites de vitesses et pressions approchées qui permettent d’une part d'établir l’existence d’une solution au schéma, et d’obtenir la compacité de ces suites lorsque le pas d’espace tend vers 0. Nous montrons alors la convergence de ces suites (à une sous-suite près) vers une solution faible du problème continu, ce qui nécessite une analyse fine du terme de convection non linéaire. Nous nous intéressons ensuite aux équations de Navier-Stokes en régime instationnaire avec une discrétisation en temps implicite. Nous démontrons que le schéma préserve les propriétés de stabilité du problème continu et obtenons ainsi l’existence d’une solution au schéma. Puis, grâce à des techniques de compacité et en passant à la limite dans le schéma, nous démontrons qu’une suite de vitesses approchées converge. Si l’on se restreint au problème de Stokes, et en supposant de plus que la condition initiale de la vitesse est dans H 1 , nous obtenons une estimation sur la pression qui permet de montrer la convergence forte des pressions approchées. Enfin nous étendons l’analyse aux écoulements incompressibles à masse volumique variable. On montre la convergence du schéma. / The Marker-And-Cell (MAC) scheme is a discretization scheme for partial derivative equations on Cartesian meshes, which is very well known in fluid mechanics. Here we are concerned with its mathematical analysis in the case of incompressible flows on two or three dimensional non-uniform Cartesian grids. We first discretize the steady-state incompressible Navier-Stokes equations. We show somea priori estimates that allow to show the existence of a solution to the scheme and some compactness and consistency results. By a passage to the limit on the scheme, we show that the approximate solutions obtained with the MAC scheme converge (up to a subsequence) to a weak solution of the Navier-Stokes equations, thanks to a careful analysis of the nonlinear convection term. Then, we analyze the convergence of the unsteady-case Navier-Stokes equations. The algorithm is implicit in time. We first show that the scheme preserves the stability properties of the continuous problem, which yields, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. If we restrict ourselves to the Stokes equations and assume that the initial velocity belongs to H 1, then we obtain estimates on the pressure and prove the convergence of the sequences of approximate pressures. Finally, we extend the analysis of the scheme to incompressible variable density flows. we show the convergence of the scheme.
|
43 |
La méthode IIM pour une membrane immergée dans un fluide incompressibleMorin-Drouin, Jérôme 02 1900 (has links)
La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur. / The Immersed Interface Method allows us to extend the scope of some numerical methods to discontinuous problems. Here we use it in the case of an incompressible fluid governed by the Navier-Stokes equations, in which a membrane is immersed, inducing a singular force. We use a
projection method and staggered (MAC-type) finite difference approximations. A very complete derivation for the jump conditions is presented in the Appendix, for the case where the viscosity is continuous. Two numerical examples are shown : one without a membrane, and the other where the membrane is motionless. The general case of a moving membrane is also thoroughly studied.
|
44 |
Computational fluid-structure interaction with the moving immersed boundary method / Résolution de l’interaction fluide-structure par la méthode des frontières immergées mobilesCai, Shang-Gui 30 May 2016 (has links)
Dans cette thèse, une nouvelle méthode de frontières immergées a été développée pour la simulation d'interaction fluide-structure, appelée la méthode de frontières immergées mobiles (en langage anglo-saxon: MIBM). L'objectif principal de cette nouvelle méthode est de déplacer arbitrairement les solides à géométrie complexe dans un fluide visqueux incompressible, sans remailler le domaine fluide. Cette nouvelle méthode a l'avantage d'imposer la condition de non-glissement à l'interface d'une manière exacte via une force sans introduire des constantes artificielles modélisant la structure rigide. Cet avantage conduit également à la satisfaction de la condition CFL avec un pas de temps plus grand. Pour un calcul précis de la force induite par les frontières mobiles, un système linéaire a été introduit et résolu par la méthode de gradient conjugué. La méthode proposée peut être intégrée facilement dans des solveurs résolvant les équations de Navier-Stokes. Dans ce travail la MIBM a été mise en œuvre en couplage avec un solveur fluide utilisant une méthode de projection adaptée pour obtenir des solutions d'ordre deux en temps et en espace. Le champ de pression a été obtenu par l'équation de Poisson qui a été résolue à l'aide de la méthode du gradient conjugué préconditionné par la méthode multi-grille. La combinaison de ces deux méthodes a permis un gain de temps considérable par rapport aux méthodes classiques de la résolution des systèmes linéaires. De plus le code de calcul développé a été parallélisé sur l'unité graphique GPU équipée de la bibliothèque CUDA pour aboutir à des hautes performances de calcul. Enfin, comme application de nos travaux sur la MIBM, nous avons étudié le couplage "fort" d'interaction fluide-structure (IFS). Pour ce type de couplage, un schéma implicite partitionné a été adopté dans lequel les conditions à l'interface sont satisfaites via un schéma de type "point fixe". Pour réduire le temps de calcul inhérent à cette application, un nouveau schéma de couplage a été proposé pour éviter la résolution de l'équation de Poisson durant les itérations du "point fixe". Cette nouvelle façon de résoudre les problèmes IFS a montré des performances prometteuses pour des systèmes en IFS complexe. / In this thesis a novel non-body conforming mesh formulation is developed, called the moving immersed boundary method (MIBM), for the numerical simulation of fluid-structure interaction (FSI). The primary goal is to enable solids of complex shape to move arbitrarily in an incompressible viscous fluid, without fitting the solid boundary motion with dynamic meshes. This novel method enforces the no-slip boundary condition exactly at the fluid-solid interface with a boundary force, without introducing any artificial constants to the rigid body formulation. As a result, large time step can be used in current method. To determine the boundary force more efficiently in case of moving boundaries, an additional moving force equation is derived and the resulting system is solved by the conjugate gradient method. The proposed method is highly portable and can be integrated into any fluid solver as a plug-in. In the present thesis, the MIBM is implemented in the fluid solver based on the projection method. In order to obtain results of high accuracy, the rotational incremental pressure correction projection method is adopted, which is free of numerical boundary layer and is second order accurate. To accelerate the calculation of the pressure Poisson equation, the multi-grid method is employed as a preconditioner together with the conjugate gradient method as a solver. The code is further parallelized on the graphics processing unit (GPU) with the CUDA library to enjoy high performance computing. At last, the proposed MIBM is applied to the study of two-way FSI problem. For stability and modularity reasons, a partitioned implicit scheme is selected for this strongly coupled problem. The interface matching of fluid and solid variables is realized through a fixed point iteration. To reduce the computational cost, a novel efficient coupling scheme is proposed by removing the time-consuming pressure Poisson equation from this fixed point interaction. The proposed method has shown a promising performance in modeling complex FSI system.
|
45 |
Etudes mathématiques de fluides à frontières libres en dynamique incompressible / Mathematical study of free surface flows in incompressible dynamicsKazerani, Dena 29 November 2016 (has links)
Cette thèse est consacrée à l’étude théorique ainsi qu’au traitement numérique de fluides incompressibles à surface libre. La première partie concerne un système d’équations appelé le système de Green–Naghdi. Comme le système de Saint-Venant, il s’agit d’une approximation d’eaux peu-profondes du problème de Zakharov. La différence est que le système de Green–Naghdi est d’un degré plus élevé en ordre d’approximation. C’est pourquoi il contient tous les termes du système de Saint-Venant plus de termes d’ordre trois non-linéairement dispersives. Autrement dit, le système de Green–Naghdi peut être vu comme une perturbation dispersive du système de Saint-Venant. Ce dernier système étant hyperbolique, il entre dans le cadre classique développé pour des systèmes hyperboliques. En particulier, il est entropique (au sense de Lax) et symétrique. On peut donc lui appliquer les résultats d’existence et d’unicité bien connus pour des systèmes hyperboliques. Dans la première partie de ce travail, on généralise la notion de symétrie à une classe plus générale de systèmes contenant le système de Green–Naghdi. Ceci nous permet de symétriser les équations de Green–Naghdi et d’utiliser la symétrie obtenue pour déduire un résultat d’existence globale après avoir ajouté un terme dissipative d’ordre 2 au système. Ceci est fait en adaptant l’approche utilisée dans la littérature pour des systèmes hyperboliques. La deuxième partie de ce travail concerne le traitement numérique des équations de Navier–Stokes à surface libre avec un terme de tension de surface. Ici, la surface libre est modélisée en utilisant la formulation des lignes de niveaux. C’est pourquoi la condition cinématique (condition de l’évolution de surface libre) s’écrit sous la forme d’une équation d’advection satisfaite par la fonction de ligne de niveaux. Cette équation est résolue sur une domaine de calcul contenant strictement le domaine de fluide, sur de petits sous-intervalles du temps. Chaque itération de l’algorithme global correspond donc à l’advection du domaine du fluide sur le sous-intervalle du temps associé et ensuite de résoudre le système de Navier–Stokes discrétisé en temps sur le domaine du fluide. Cette discrétisation en temps est faite par la méthode des caractéristiques. L’outil clé qui nous permet de résoudre ce système uniquement sur le domaine du fluide est l’adaptation de maillage anisotrope. Plus précisément, à chaque itération le maillage est adapté au domaine du fluide tel que l’erreur d’approximation et l’erreur géométrique soient raisonnablement petites au voisinage du domaine du fluide. La résolution du problème discrétisé en temps sur le domaine du fluide est faite par l’algorithme d’Uzawa utilisé dans la cadre de la méthode des éléments finis. Par ailleurs, la condition de glissement de Navier est traité ici en ajoutant un terme de pénalisation à la formulation variationnelle associée. / This thesis is about theoretical study and numerical treatment of some problems raised in incompressible free-surface fluid dynamics. The first part concerns a model called the Green–Naghdi (GN) equations. Similarly to the non linear shallow water system (called also Saint-Venant system), the Green–Naghdi equations is a shallow water approximation of water waves problem. Indeed, GN equation is one order higher in approximation compared to Saint-Venant system. For this reason, it contains all the terms of Saint-Venant system in addition to some non linear third order dispersive terms. In other words, the GN equations is a dispersive perturbation of the Saint-Venant system. The latter system is hyperbolic and fits the general framework developed in the literature for hyperbolic systems. Particularly, it is entropic (in the sense of Lax) and symmertizable. Therefore, we can apply the well-posedness results known for symmetric hyperbolic system. During the first part of this work, we generalize the notion of symmetry to a more general type of equations including the GN system. This lets us to symmetrize the GN equation. Then, we use the suggested symmetric structure to obtain a global existence result for the system with a second order dissipative term by adapting the approach classically used for hyperbolic systems. The second part of this thesis concerns the numerical treatment of the free surface incompressible Navier–Stokes equation with surface tension. We use the level set formulation to represent the fluid free-surface. Thanks to this formulation, the kinematic boundary condition is treated by solving an advection equation satisfied by the level set function. This equation is solved on a computational domain containing the fluid domain over small time subintervals. Each iteration of the algorithm corresponds to the adevction of the fluid domain on a small time subinterval and to solve the time-discretized Navier–Stokes equations only on the fluid domain. The time discretization of the Navier–Stokes equation is done by the characteristic method. Then, the key tool which lets us solve this equation on the fluid domain is the anisotropic mesh adaptation. Indeed, at each iteration the mesh is adapted to the fluid domain such that we get convenient approximation and geometric errors in the vicinity of the fluid domain. This resolution is done using the Uzawa algorithm for a convenient finite element method. The slip boundary conditions are considered by adding a penalization term to the variational formulation associated to the problem.
|
46 |
A solution adaptive grid (SAG) for incompressible flows simulations : an attempt towards enhancing SAG algorithm for large eddy simulation (LES)Kaennakham, S. January 2010 (has links)
A study of the use of solution adaptive grid (SAG) method for simulations of incompressible flows is carried out in this work. Both laminar and turbulent types of flows are chosen. Investigation on laminar flow simulation starts with mesh adaptation criteria that are based on strong changes of some selected flow parameters; pressure and velocity components. Three most common laminar types of flows are studied; flow in a circular pipe, flow in a channel with sudden expansion and flow in a cavity with a moving lid. It is found that with the use of SAG, a reduction in both computational grid nodes and CPU time can be obtained when compared to those of fixed grid while satisfactory solutions are also achievable. Nevertheless, the refinement criteria setup procedure reveals inconveniences and requirement for several judgments that have to be defined ‘ad hoc’. This hence, makes the refinement criteria dubious for real engineering applications. For the study of turbulent flows with large eddy simulation (LES) and implicit filtering, examination of literature reveals that the lack of connections between the filter width and a physical scale has made LES somewhat unclosed, i.e. in a physical sense. In addition, it is known that numerical and modelling errors are always combined and it is difficult to study each of them separately making the total error magnitude difficult to control. Since both error types are characterised by the grid size, LES users very often find cases where a finer mesh no longer provides better accuracy. An attempt to address this ‘physical’ enclosure property of LES and its complication to implement/setup in FLUENT begins with the construction of a new refinement variable as a function of the Taylor scale. Then a new SAG algorithm is formed. The requirement to satisfy a condition of the selected subgrid scale (SAG) model, the Smagorinsky model, is taken into consideration to minimize the modeling error. The construction of a new refinement algorithm is also aimed to be the key to studying the interaction between the two types of error and could lead to the means of controlling their total magnitude. The validation in terms of its effectiveness, efficiency and reliability of the algorithm are made based on several criteria corresponding to suitability for practical applications. This includes the simplicity to setup/employ, computational affordability, and the accuracy level. For this, two different turbulent flow types that represent different commonly found turbulent phenomena are chosen; plane free jet and the flow over a circular cylinder. The simulations of the two cases were carried out in two dimensions. It is found that there are two key factors that strongly determine the success of the algorithm. The first factor is the Taylor scale definition, with literature only available for the turbulent plane jet study, for which good level of accuracy is expected. Unfortunately, this is not true for the flow over a circular cylinder, indicating a need for further analytical work. The second encountered difficulty results from limited access to software codes, which makes it impossible to implement the proposed scheme. As a result, the algorithm formulation needs be modified with carful judgment. Nevertheless, overall results are in reasonably good agreement with their corresponding experimental data.
|
47 |
The Loop Theorem using hierarchiesClabes, Kris 2009 August 1900 (has links)
This report will build up the machinery of special hierarchies by discussing normal surfaces and boundary patterns. Then the report will use this construction to prove the Loop Theorem, following closely the proof presented by Marc Lackenby. / text
|
48 |
Eléments finis stabilisés pour des écoulements diphasiques compressible-incompressibleBillaud, Marie 27 November 2009 (has links)
Dans cette thèse, nous nous intéressons à la simulation numérique d'écoulements instationnaires de deux fluides visqueux non miscibles, séparés par une interface mobile. Plus particulièrement des écoulements sans choc constitués d'une phase gazeuse et d'une phase liquide sont considérés. Pour modéliser de tels écoulements, une approche dans laquelle le gaz est décrit par les équations de Navier-Stokes compressible et le liquide par les équations de Navier-Stokes incompressible est proposée. C'est le couplage de ces deux modèles qui constitue l'originalité et l'enjeu principal de de cette thèse. Pour traiter cette difficulté majeure, une méthode globale (i.e. la même dans chaque phase) et simple à mettre en oeuvre est élaborée. L'utilisation des équations de Navier-Stokes formulées de façon unifiée pour les inconnues primitives (pression, vitesse et température) constitue le point de départ pour la construction de notre méthode qui repose sur les composants suivants: une méthode d'éléments finis stabilisés pour la discrétisation spatiale des équations de Navier-Stokes; une approche Level Set pour représenter précisément l'interface dont l'équation de transport a été résolue par une méthode de type Galerkin Discontinu; et des grandeurs moyennes pour traiter les discontinuités à l'interface. Le bon comportement de notre approche est illustré sur différents tests mono et bi-dimensionnels. / In this work, we are interested in the numerical simulation of instationnary viscous flows of two immiscible fluids, separated by a mobile interface. In particular, flows without shock composed of a gas phase and a liquid phase are considered. In order to modelize such flows, an approach in which the gaz is described by compressible Navier-Stokes equations and the liquid by incompressible Navier-Stokes équations is proposed. The coupling between these two models is the originality and the stake of this thesis. To treat this important difficulty, a global (i.e. the same for each phase) and simple method is elaborated. In our procedure we propose, using the Navier-Stokes equations formulated in set of primitives unknowns (pressure, velocity and temperature), to elaborate a strategy that relies on the follow components: the stabilized finite element method to discretize spatially the Navier-Stokes equations; the Level Set method for tracking the interface precisely with a discontinuous Galerkin method to solve the associated transport equation; and some averaged quantities to treat the discontinuities at the interface. The good behaviour of this approach is performed on both one and two spatial dimensions.
|
49 |
Toros incompressíveis para ações Anosov de \'R POT. k\' sobre uma variedade de dimensão K+2 / Incompressible torus for Anosov actions of \'R POT. k\' on a manifold of dimension k+2Silva, Romenique da Rocha 01 September 2011 (has links)
Dentre todos os sistemas dinâmicos os sistemas Anosov têm atraído a atenção de muitos matemáticos. No caso de fluxo Anosov em uma variedade fechada M de dimensão três, Sérgio Fenley definiu o conceito de losangos no recobrimento universal de M e obteve resultados importantes envolvendo losangos e automorfismos do recobrimento universal. Seguindo o que foi feito por Fenley, e utilizando o conceito de losangos no espaço das órbitas do fluxo levantado (no recobrimento universal), Thierry Barbot obteve condições suficientes para que um toro incompressível numa 3-variedade fechada suportando um fluxo Anosov seja isotópico a um outro que é transverso ao fluxo. Neste trabalho consideramos ações Anosov de \'R POT. k\' sobre uma variedade fechada M de dimensão k + 2. Primeiramente, conseguimos resultados análogos aos de Fenley (sobre existência de losangos) para estas ações, e usando isso, finalmente obtemos condições suficientes para que um toro incompressível seja isotópico a um toro transverso à ação. Este último resultado é uma generalização de Barbot mencionado acima / Among all dynamical systems the Anosov systems has attracted the attention of many mathematicians. In the case of an Anosov flow in a closed manifold M of dimension three, Sérgio Fenley defined the concept of lozenges in the universal covering of M and obtained important results involving lozenges and covering automorphism. Following what was made by Fenley, and using the concept of lozenge on the orbit space of the lifted flow (in the universal covering). Thierry Barbot obtains sufficient conditions for an incompressible torus in a closed 3-manifold supporting an Anosov flow to be isotopic to another which is transverse to flow. If this work we considered Anosov of \'R POT. k\' on a closed manifold M of dimension k + 2. First, we obtain analogous results those of Fenley (about existence of lozenges) for this actions, and using this, finally we obtain sufficient conditions for an incompressible torus to be isotopic to another torus which is transverse to action. This last result is a generalization of Barbot\'s result mentioned above
|
50 |
Cálculo de sensibilidades geométricas e não-geométricas para escoamentos viscosos incompressíveis utilizando o método adjunto. / Computation of geometric and non-geometric sensitivities for viscous incompressible flows using the adjoint method.Lima, João de Sá Brasil 22 September 2017 (has links)
Problemas de otimização se fazem cada vez mais presentes nos mais diversos ramos da Engenharia. Encontrar configurações ótimas para um determinado problema significa, por exemplo, melhorar desempenho, reduzir custos entre outros ganhos. Existem hoje diversas maneiras de atacar um problema de otimização, cada qual com suas particularidades, vantagens e desvantagens. Dentre os métodos de otimização que utilizam gradientes de sensibilidade, o cálculo numérico dos mesmos consiste em uma importante etapa do projeto que, dependendo do problema, pode acarretar em custos computacionais muito elevados inviabilizando a abordagem escolhida. Este trabalho visa desenvolver e apresentar uma nova metodologia para o cálculo desses gradientes de sensibilidade, com base no Método Adjunto. O Método Adjunto é um método amplamente estudado e com diversas aplicações principalmente em Engenharia Aeronáutica. Nesse trabalho, todo o conhecimento prévio é utilizado para a derivação do método para aplicá-lo a escoamentos viscosos e incompressíveis. É desenvolvido também o cálculo do gradiente de sensibilidade com respeito a parâmetros geométricos e não geométricos. Para validar a metodologia proposta são feitas simulações numéricas das equações governantes do escoamento e adjuntas utilizando dois códigos computacionais distintos, SEMTEX e FreeFem++, o primeiro baseado no Método dos Elementos Espectrais e o segundo no Método dos Elementos Finitos, mostrando assim a independência do Método Adjunto na sua formulação contínua em relação a métodos computacionais. Para a validação são cujos gradientes possam ser calculados de outras formas permitindo comparações para calibrar e aperfeiçoar o cálculo do gradiente de sensibilidade. / Optimization problems are widely present in differents fields of Engineering. Finding optimal configurations in a problem means, for example, improving performance, reducing costs, among other achievements. There are several wellknown ways to tackle an optimization problem, each one has its own advantages and disadvantages. Considering the gradient-based optimization methods, the step of their numerical calculation is extremely important, as it may result in huge computational costs, thus making the chosen method impracticable. This work aims to develop and present a new methodology to compute these sensitivity gradients based on the Adjoint Method. The Adjoint Method is a widely studied method with several applications chiefly in A eronautical Engineering. In the present work, all the previous knowledge will be used to derive the equations of the method in order to apply them to viscous incompressible flows. The calculation of the sensitivity gradient, with respect to both geometric and non-geometric paramatersm will be developed as well. To validate the proposed methodology, numerical simulations of the governing and adjoint equations are carried out, using two computational codes called SEMTEX and FreeFem++, the former is based on the Spectral Element Method and the later, on the Finite Element Method, thus showing that the Adjoint Method, in its continuous formulation, is independent of the particular numerical method that is used. In order to validate the algorithm, simple problems are chosen, for which the gradients can be computed by other methods. This choice admits comparison between numerical values of gradients in order to calibrate and improve the methodology proposed.
|
Page generated in 0.0442 seconds