• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 32
  • 31
  • 18
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 197
  • 75
  • 68
  • 62
  • 60
  • 49
  • 49
  • 44
  • 40
  • 31
  • 28
  • 26
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes / Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries

Montagnier, Julien 01 July 2010 (has links)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (“ Computational Fluid Dynamics ”) plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème. / The prevention of industrial risks requires simulating turbulent dispersion of pollutants. However, the tools mostly used so far do not allow near fields treated in the case of complex geometries, and it is necessary to utilize the tools of CFD (Computational Fluid Dynamics ") more suitable but more expensive. To simulate atmospheric flows with dispersion of pollutants, the CFD models must correctly model the one hand, the effects of buoyancy, and secondly the effects of turbulence. Several approaches exist, including taking into account the effects of buoyancy and turbulence modeling, and require numerical methods adapted to the specific mathematics of each, and accurate numerical schemes to avoid pollution modeling. A formulation of high order finite volume on unstructured meshes, parallelized, is proposed to simulate the atmospheric flows with dispersion of pollutants. The use of high order schemes allow one hand to reduce the number of cells and decrease the simulation time to achieve a given accuracy, and secondly to better control the viscosity numerical schemes for simulation LES (Large Eddy Simulation), for which the numerical viscosity patterns may mask the effects of modeling. Two high-order schemes have been studied and implemented in a 3D Navier Stokes solver on unstructured mesh finite volume. We developed the first high-order scheme, corresponding to a Padé finite volume scheme, and we have extended the scheme of reconstruction polynomial Carpentier (2000) for incompressible flows. The numerical properties of the various schemes implemented in the same computer code are studied different two-dimensional test cases (calculation of diffusive and convective flow on a solution a priori, a task Gaussian convection, decay of a vortex of Taylor and driven cavity) and tri-dimensional (flow past an obstacle cubic). Particular attention has been paid to the study of the accuracy and treatment of boundary conditions. The implementation of the polynomial allows to obtain quasi identical simulation time compared to a classical upwind scheme of order 2, but with higher accuracy. The compact layout gives the best accuracy. Using a Jacobi method without calculation implied matrix to calculate the gradient, the simulation time becomes interesting only when the required accuracy is important. An alternative is the resolution of linear system by an algebraic multigrid method. This method significantly reduces the computation time of the gradient and the Padé scheme is effective even for coarse meshes. Finally, to reduce simulation time, the parallelization schemes of high order is achieved by a decomposition into subdomains. The assembly flow occurs naturally and different solvers provided by PETSc libraries and HYORE (algebraic multigrid solver and preconditioned Krylov method) used to solve linear systems from our problem. The work was to identify and determine the parameters that lead to lowest time resolution simulation. Various tests of speed-up and scale-up were used to determine the most effective and optimal parameters for solving linear systems in parallel from our problem. The results of this work have been the subject of a communication in an international conference "Parallel CFD 2008" and an article submitted to "International Journal for Numerical Methods in Fluids" (Analysis of high-order finite volume schemes for the incompressible Navier Stokes equations)
82

Un nouveau modèle SPH incompressible : vers l’application à des cas industriels / A new incompressible SPH model : towards industrial applications

Leroy, Agnes 17 November 2014 (has links)
Cette thèse a pour objet le développement d'un modèle numérique de simulation des fluides fondé sur la méthode Smoothed Particle Hydrodynamics (SPH). SPH est une méthode de simulation numérique sans maillage présentant un certain nombre d'avantages par rapport aux méthodes Eulériennes. Elle permet notamment de modéliser des écoulements à surface libre ou interfaces fortement déformées. Ce travail s'adresse principalement à quatre problématiques liées aux fondements de la méthode SPH : l'imposition des conditions aux limites, la prédiction précise des champs de pression, l'implémentation d'un modèle thermique et la réduction des temps de calcul. L'objectif est de modéliser des écoulements industriels complexes par la méthode SPH, en complément de ce qui peut se faire avec des méthodes à maillage. Typiquement, les problèmes visés sont des écoulements 3-D à surface libre ou confinés, pouvant interagir avec des structures mobiles et/ou transporter des scalaires, notamment des scalaires actifs (e.g. température). Dans ce but, on propose ici un modèle SPH incompressible (ISPH) basé sur une représentation semi-analytique des conditions aux limites. La technique des conditions aux limites semi-analytiques permet d'imposer des conditions sur la pression de manière précise et physique, contrairement à ce qui se fait avec des conditions aux limites classiques en SPH. Un modèle k-epsilon a été incorporé à ce nouveau modèle ISPH, à partir des travaux de Ferrand et al. (2013). Un modèle de flottabilité a également été ajouté, reposant sur l'approximation de Boussinesq. Les interactions entre flottabilité et turbulence sont prises en compte. Enfin, une formulation pour les frontières ouvertes dans le nouveau modèle est établie. La validation du modèle en 2-D a été réalisée sur un ensemble de cas-tests permettant d'estimer les capacités de prédiction du nouveau modèle en ce qui concerne les écoulements isothermes et non-isothermes, laminaires ou turbulents. Des cas confinés sont présentés, ainsi que des écoulements à surface libre (l'un d'eux incluant un corps solide mobile dans l'écoulement). La formulation pour les frontières ouvertes a été testée sur un canal de Poiseuille plan laminaire et sur deux cas de propagation d'une onde solitaire. Des comparaisons sont présentées avec des méthodes à maillage, ainsi qu'avec un modèle SPH quasi-incompressible (WCSPH) avec le même type de conditions aux limites. Les résultats montrent que le modèle permet de représenter des écoulements dans des domaines à géométrie complexe, tout en améliorant la prédiction des champs de pression par rapport à la méthode WCSPH. L'extension du modèle en trois dimensions a été réalisée dans un code massivement parallèle fonctionnant sur carte graphique (GPU). Deux cas de validation en 3-D sont proposés, ainsi que des résultats sur un cas simple d'application en 3-D / In this work a numerical model for fluid flow simulation was developed, based on the Smoothed Particle Hydrodynamics (SPH) method. SPH is a meshless Lagrangian Computational Fluid Dynamics (CFD) method that offers some advantages compared to mesh-based Eulerian methods. In particular, it is able to model flows presenting highly distorted free-surfaces or interfaces. This work tackles four issues concerning the SPH method : the imposition of boundary conditions, the accuracy of the pressure prediction, the modelling of buoyancy effects and the reduction of computational time. The aim is to model complex industrial flows with the SPH method, as a complement of what can be done with mesh-based methods. Typically, the targetted problems are 3-D free-surface or confined flows that may interact with moving solids and/or transport scalars, in particular active scalars (e.g. the temperature). To achieve this goal, a new incompressible SPH (ISPH) model is proposed, based on semi-analytical boundary conditions. This technique for the representation of boundary conditions in SPH makes it possible to accurately prescribe consistent pressure boundary conditions, contrary to what is done with classical boundary conditions in SPH. A k-epsilon turbulence closure is included in the new ISPH model. A buoyancy model was also added, based on the Boussinesq approximation. The interactions between buoyancy and turbulence are modelled. Finally, a formulation for open boundary conditions is proposed in this framework. The 2-D validation was performed on a set of test-cases that made it possible to assess the prediction capabilities of the new model regarding isothermal and non-isothermal flows, in laminar or turbulent regime. Confined cases are presented, as well as free-surface flows (one of them including a moving body in the flow). The open boundary formulation was tested on a laminar plane Poiseuille flow and on two cases of propagation of a solitary wave. Comparisons with mesh-based methods are provided with, as well as comparisons with a weakly-compressible SPH (WCSPH) model using the same kind of boundary conditions. The results show that the model is able to represent flows in complex boundary geometries, while improving the pressure prediction compared to the WCSPH method. The extension of the model to 3-D was done in a massively parallel code running on a Graphic Processing Unit (GPU). Two validation cases in 3-D are presented, as well as preliminary results on a simple 3-D application case
83

Modelos de Lattice-Boltzmann Aplicados à Simulação Computacional do Escoamento de Fluidos Incompressíveis / Lattice-Boltzmann Models for the Computational Simulation of Incompressible Fluid Flows

Golbert, Daniel Reis 25 March 2009 (has links)
Made available in DSpace on 2015-03-04T18:51:07Z (GMT). No. of bitstreams: 1 DissertationDRGolbert_versao_final.pdf: 9706339 bytes, checksum: 45a86747e8469ad89e82dc19d8322037 (MD5) Previous issue date: 2009-03-25 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / The goal of this work is to study de modeling of incompressible fluid flows through the Lattice-Boltzmann method (LBM). In this class of methods the equations based on mesoscopic kinetics allow us to model the macro-continuum behavior of the fluid dynamics. Therefore, a theoretical study of the LBM is performed including the analyses of different equilibrium distributions, lattice models, its relationships with the Boltzmann equation as well as its asymptotic approximation to the Navier-Stokes equations. On the other hand, aspects related to the imposition of boundary conditions are also studied, identifying adequate procedures to the problems here presented. Posteriorly, a detailed study of numerical nature about the performance of the LBM in the computational simulation of fluid flows is developed, involving stationary and transient problems, for cases in 2D and 3D. Once we have insight on the main characteristics of the model, techniques for the tuning of LBM's parameters are introduced with the purpose of attaining consistent and reliable results, according to the physical conditions of the problems under consideration. These techniques are employed with emphasis in 3D time dependent problems, whose characteristics are similar to those found in the blood flow modeling in arteries. / O objetivo deste trabalho é estudar a modelagem do escoamento de fluidos incompressíveis mediante o método de Lattice-Boltzmann (LBM). Nesta classe de métodos as equações baseadas na cinética mesoscópica nos permitem modelar o comportamento macro-contínuo da dinâmica de fluidos. Desta forma, realiza-se um estudo teórico do LBM incluindo a análise de diferentes distribuições de equilíbrio, modelos de lattice, suas relações com a equação de Boltzmann assim como sua aproximação assintótica às equações de Navier-Stokes. Por outro lado, estudam-se os aspectos relacionados à imposição de condições de contorno identificando procedimentos adequados para os problemas aqui tratados. Posteriormente, realiza-se um estudo detalhado de caráter numérico sobre o desempenho do LBM na simulação computacional de escoamentos de fluidos, envolvendo problemas estacionários e transientes, para casos em 2D e 3D. A partir do conhecimento das características do modelo, desenvolvem-se técnicas para efetuar a calibração dos parâmetros do LBM visando à obtenção de resultados coerentes e confiáveis de acordo às condições físicas do problema. Estas técnicas são empregadas com ênfase em problemas 3D dependentes do tempo, e cujas características são similares às encontradas na modelagem do escoamento sanguíneo em artérias.
84

Simulação numérica de escoamentos incompressíveis através da análise isogeométrica

Tonon, Patrícia January 2016 (has links)
O presente trabalho tem por objetivo desenvolver uma formulação numérica baseada em Análise Isogeométrica para o estudo de escoamentos incompressíveis isotérmicos de fluidos newtonianos. Com o emprego desta metodologia, os procedimentos de pré-processamento e análise são unificados, melhorando as condições de continuidade das funções de base empregadas tanto na discretização espacial do problema como na aproximação das variáveis do sistema de equações. O sistema de equações fundamentais do escoamento é formado pelas equações de Navier-Stokes e pela equação de conservação de massa, descrita segundo a hipótese de pseudo-compressibilidade, além de uma equação constitutiva para fluidos viscosos de acordo com a hipótese de Stokes. Para problemas com escoamentos turbulentos emprega-se a Simulação de Grandes Escalas - LES (Large Eddy Simulation), na qual o modelo clássico de Smagorinsky é utilizado para a representação das escalas inferiores à resolução da malha. O esquema explícito de dois passos de Taylor-Galerkin é aplicado no contexto da Análise Isogeométrica para a discretização das equações governantes, sendo que a discretização espacial é realizada empregando-se funções NURBS (Non Uniform Rational Basis B-Splines). Essas funções base apresentam vantagens em relação às tradicionais funções utilizadas no MEF (Método dos Elementos Finitos), principalmente no que diz respeito à facilidade de obtenção de continuidade superior a C0 entre os elementos e representação precisa das geometrias. Propõe-se também o desenvolvimento de ferramentas de pré e pós-processamento baseadas na estrutura de dados da Análise Isogeométrica para a geração de malhas e visualização de resultados. Alguns problemas clássicos da Dinâmica dos Fluidos Computacional são analisados para a validação da metodologia apresentada. Os resultados apresentados demonstram boa aproximação da formulação em relação a dados de referência, além de maior versatilidade quanto à discretização espacial dos problemas em comparação com as tradicionais formulações baseadas em elementos finitos. / This work aims to develop a numerical formulation based on Isogeometric Analysis for the study of incompressible flows of Newtonian fluids under isothermal conditions. By using this methodology, pre-processing and analysis procedures are unified, improving the conditions of continuity of the basis functions utilized in the approximations of the equation variables and spatial discretization of the problem. The system of fundamental equations of the fluid flow is constituted by the Navier-Stokes equations and the mass conservation equation, which is described according to the pseudo-compressibility hypothesis. In addition, a constitutive equation for viscous fluids according to Stokes' hypothesis is also provided. Turbulent flows are analyzed using LES (Large Eddy Simulation), where the Smagorinsky’s model is adopted for sub-grid scales. The explicit two-step Taylor-Galerkin method is applied into the context of Isogeometric Analysis for the discretization of the flow equations, where spatial discretization is carried out taking into account Non Uniform Rational Basis B-Splines (NURBS) basis functions. These basis functions have advantages over traditional functions employed in the FEM (Finite Element Method). Particularly, it is easier to obtain continuity order higher than C0 between adjacent elements and geometry representation is more accurate. Pre and post-processing tools for mesh generation and results visualization are also proposed considering the data structure inherent to Isogeometric Analysis. Some classic problems of Computational Fluid Dynamics are analyzed in order to validate the proposed methodology. Results obtained here show that the present formulation has good approximation when compared with predictions obtained by reference authors. Moreover, Isogeometric Analysis is more versatile than traditional finite element formulations when spatial discretization procedures are considered.
85

Méthodes Level Set pour des problèmes d'interface en microfluidique

Vigneaux, Paul 12 July 2007 (has links) (PDF)
Ce travail est consacré à la modélisation d'écoulements de deux fluides immiscibles et son application en microfluidique. Pour cela, nous mettons en oeuvre des méthodes Level Set actuelles permettant un suivi précis de l'interface, dont le mouvement est induit par des champs de vitesse vérifiant les équations de Stokes ou de Navier-Stokes munies d'un terme de tension de surface.<br />Dans une première partie, nous abordons la problématique du suivi d'interface et présentons en détail les composantes de la méthode Level Set. En particulier, nous détaillons les approches ENO et WENO pour discrétiser les équations de Hamilton-Jacobi ainsi que les diverses méthodes existantes de redistanciation.<br />Dans la deuxième partie, nous traitons de l'analyse et de la résolution numérique des écoulements bifluides incompressibles pilotés par la tension de surface. Après avoir décrit les modèles mathématiques ainsi que leurs discrétisations et solveurs, nous apportons une contribution nouvelle en dérivant théoriquement une condition de stabilité valable pour les nombres de Reynolds faibles à modérés, caractéristiques des configurations microfluidiques. De plus, on introduit une méthode de décomposition de l'écoulement qui permet de diminuer les temps de simulation.<br />Enfin, la troisième partie est consacrée à l'application des outils évoqués précédemment pour simuler la dynamique de gouttes dans des microcanaux. Nous présentons les résultats numériques obtenus avec d'une part, un code bidimensionnel cartésien et d'autre part, avec un code tridimensionnel axisymétrique que nous avons entièrement développés. Une bonne adéquation est obtenue relativement aux expériences microfluidiques du laboratoire LOF (Rhodia - CNRS). En particulier, avec nos simulations, nous mettons à jour différentes dynamiques de mélange au sein des gouttes.
86

METHODE NUMERIQUE HYBRIDE POUR L'ETUDE DU RAYONNEMENT ACOUSTIQUE D'ECOULEMENTS TURBULENTS PARIETAUX

Margnat, Florent 21 November 2005 (has links) (PDF)
Cette thèse propose une méthode hybride pour la prédiction du rayonnement acoustique d'écoulements pariétaux instationnaires, et son application au cas de la plaque plane épaisse. Les données aérodynamiques sont obtenues par simulation numérique directe incompressible. L'originalité est ici de modéliser la condition d'adhérence aux parois par un terme de forçage volumique en utilisant la méthode des frontières virtuelles, spécialement adaptée aux géométries complexes. L'analyse de leur fonctionnement comme système d'asservissement de la vitesse à la valeur nulle a permis de réduire leur contrainte sur le pas de temps. Le comportement de la méthode en présence d'une arête vive a également été étudié. La simulation de l'écoulement en canal plan 3D turbulent a été réalisé pour la validation, et des comparaisons avec la littérature montrent un bon accord. L'accent est également mis sur la procédure d'obtention de la pression hydrodynamique afin de valider les champs de pression fluctuante utilisés comme données d'entrée du calcul acoustique. L'application à la plaque épaisse a fait apparaître qu'il est difficile d'obtenir un écoulement parfaitement établi. Les mouvements tourbillonnaires générés par la couche cisaillée issue du coin, ainsi que les propriétés statistiques de la turbulence, sont analysés. Le rayonnement acoustique est calculé à l'aide de l'analogie de Curle, programmée avec un algorithme en temps avancés. On observe une prépondérance du rayonnement des termes sources volumiques sur celui des termes sources surfaciques. Dans l'hypothèse d'une source compacte, la direction d'intensité maximale est observée autour de 60 degrés vers l'aval, due à l'effet conjugué du terme volumique associé à la tension de cisaillement et du terme volumique longitudinal. Dans le cas d'une source non-compacte, une influence importante de la prise en compte des temps de retards est observée à travers l'accentuation du rayonnement du terme volumique longitudinal vers l'aval.
87

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations : DNS and LES approaches

Cocle, Roger 24 August 2007 (has links)
This thesis is concerned with the numerical simulation of high Reynolds number, three-dimensional, incompressible flows in open domains. Many problems treated in Computational Fluid Dynamics (CFD) occur in free space: e.g., external aerodynamics past vehicles, bluff bodies or aircraft; shear flows such as shear layers or jets. In observing all these flows, we can remark that they are often unsteady, appear chaotic with the presence of a large range of eddies, and are mainly dominated by convection. For years, it was shown that Lagrangian Vortex Element Methods (VEM) are particularly well appropriate for simulating such flows. In VEM, two approaches are classically used for solving the Poisson equation. The first one is the Biot-Savart approach where the Poisson equation is solved using the Green's function approach. The unbounded domain is thus implicitly taken into account. In that case, Parallel Fast Multipole (PFM) solvers are usually used. The second approach is the Vortex-In-Cell (VIC) method where the Poisson equation is solved on a grid using fast grid solvers. This requires to impose boundary conditions or to assume periodicity. An important difference is that fast grid solvers are much faster than fast multipole solvers. We here combine these two approaches by taking the advantages of each one and, eventually, we obtain an efficient VIC-PFM method to solve incompressible flows in open domain. The major interest of this combination is its computational efficiency: compared to the PFM solver used alone, the VIC-PFM combination is 15 to 20 times faster. The second major advantage is the possibility to run Large Eddy Simulations (LES) at high Reynolds number. Indeed, as a part of the operations are done in an Eulerian way (i.e. on the VIC grid), all the existing subgrid scale (SGS) models used in classical Eulerian codes, including the recent "multiscale" models, can be easily implemented.
88

Lagrangian Coherent Structures and Transport in Two-Dimensional Incompressible Flows with Oceanographic and Atmospheric Applications

Rypina, Irina I. 20 December 2007 (has links)
The Lagrangian dynamics of two-dimensional incompressible fluid flows is considered, with emphasis on transport processes in atmospheric and oceanic flows. The dynamical-systems-based approach is adopted; the Lagrangian motion in such systems is studied with the aid of Kolmogorov-Arnold-Moser (KAM) theory, and results relating to stable and unstable manifolds and lobe dynamics. Some nontrivial extensions of well-known results are discussed, and some extensions of the theory are developed. In problems for which the flow field consists of a steady background on which a time-dependent perturbation is superimposed, it is shown that transport barriers arise naturally and play a critical role in transport processes. Theoretical results are applied to the study of transport in measured and simulated oceanographic and atmospheric flows. Two particular problems are considered. First, we study the Lagrangian dynamics of the zonal jet at the perimeter of the Antarctic Stratospheric Polar Vortex during late winter/early spring within which lies the "ozone hole". In this system, a robust transport barrier is found near the core of a zonal jet under typical conditions, which is responsible for trapping of the ozone-depleted air within the ozone hole. The existence of such a barrier is predicted theoretically and tested numerically with use of a dynamically-motivated analytically-prescribed model. The second, oceanographic, application considered is the study of the surface transport in the Adriatic Sea. The surface flow in the Adriatic is characterized by a robust threegyre background circulation pattern. Motivated by this observation, the Lagrangian dynamics of a perturbed three-gyre system is studied, with emphasis on intergyre transport and the role of transport barriers. It is shown that a qualitative change in transport properties, accompanied by a qualitative change in the structure of stable and unstable manifolds occurs in the perturbed three-gyre system when the perturbation strength exceeds a certain threshold. This behavior is predicted theoretically, simulated numerically with use of an analytically prescribed model, and shown to be consistent with a fully observationally-based model.
89

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations : DNS and LES approaches

Cocle, Roger 24 August 2007 (has links)
This thesis is concerned with the numerical simulation of high Reynolds number, three-dimensional, incompressible flows in open domains. Many problems treated in Computational Fluid Dynamics (CFD) occur in free space: e.g., external aerodynamics past vehicles, bluff bodies or aircraft; shear flows such as shear layers or jets. In observing all these flows, we can remark that they are often unsteady, appear chaotic with the presence of a large range of eddies, and are mainly dominated by convection. For years, it was shown that Lagrangian Vortex Element Methods (VEM) are particularly well appropriate for simulating such flows. In VEM, two approaches are classically used for solving the Poisson equation. The first one is the Biot-Savart approach where the Poisson equation is solved using the Green's function approach. The unbounded domain is thus implicitly taken into account. In that case, Parallel Fast Multipole (PFM) solvers are usually used. The second approach is the Vortex-In-Cell (VIC) method where the Poisson equation is solved on a grid using fast grid solvers. This requires to impose boundary conditions or to assume periodicity. An important difference is that fast grid solvers are much faster than fast multipole solvers. We here combine these two approaches by taking the advantages of each one and, eventually, we obtain an efficient VIC-PFM method to solve incompressible flows in open domain. The major interest of this combination is its computational efficiency: compared to the PFM solver used alone, the VIC-PFM combination is 15 to 20 times faster. The second major advantage is the possibility to run Large Eddy Simulations (LES) at high Reynolds number. Indeed, as a part of the operations are done in an Eulerian way (i.e. on the VIC grid), all the existing subgrid scale (SGS) models used in classical Eulerian codes, including the recent "multiscale" models, can be easily implemented.
90

Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure

El Feghali, Stéphanie 28 September 2012 (has links) (PDF)
L'Interaction Fluide-Structure (IFS) décrit une classe très générale de problème physique, ce qui explique la nécessité de développer une méthode numérique capable de simuler le problème FSI. Pour cette raison, un solveur IFS est développé qui peut traiter un écoulement de fluide incompressible en interaction avec des structures différente: élastique ou rigide. Dans cet aspect, le solveur peut couvrir une large gamme d'applications.La méthode proposée est développée dans le cadre d'une formulation monolithique dans un contexte Eulérien. Cette méthode consiste à considérer un seul maillage et résoudre un seul système d'équations avec des propriétés matérielles différentes. La fonction distance permet de définir la position et l'interface de tous les objets à l'intérieur du domaine et de fournir les propriétés physiques pour chaque sous-domaine. L'adaptation de maillage anisotrope basé sur la variation de la fonction distance est ensuite appliquée pour assurer une capture précise des discontinuités à l'interface fluide-solide.La formulation monolithique est assurée par l'ajout d'un tenseur supplémentaire dans les équations de Navier-Stokes. Ce tenseur provient de la présence de la structure dans le fluide. Le système est résolu en utilisant une méthode élément fini et stabilisé suivant la formulation variationnelle multiéchelle. Cette formulation consiste à décomposer les champs de vitesse et pression en grande et petite échelles. La particularité de l'approche proposée réside dans l'enrichissement du tenseur de l'extra contraint.La première application est la simulation IFS avec un corps rigide. Le corps rigide est décrit en imposant une valeur nul du tenseur des déformations, et le mouvement est obtenu par la résolution du mouvement de corps rigide. Nous évaluons le comportement et la précision de la formulation proposée dans la simulation des exemples 2D et 3D. Les résultats sont comparés avec la littérature et montrent que la méthode développée est stable et précise.La seconde application est la simulation IFS avec un corps élastique. Dans ce cas, une équation supplémentaire est ajoutée au système précédent qui permet de résoudre le champ de déplacement. Et la contrainte de rigidité est remplacée par la loi de comportement du corps élastique. La déformation et le mouvement du corps élastique sont réalisés en résolvant l'équation de convection de la Level-Set. Nous illustrons la flexibilité de la formulation proposée par des exemples 2D.

Page generated in 0.0809 seconds