• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 9
  • Tagged with
  • 73
  • 73
  • 73
  • 73
  • 13
  • 13
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The key aspects during departmental technology transfer : A case study at a biopharmaceutical company

Sonesson, William, Sandström Parke, Hilding January 2018 (has links)
In this case study the authors have tried to fill the gap of technology transferliterature focused on the biopharmaceutical industry. The technology transferliterature displays a clear industry-specific gap, mostly focused on heavy- andpharmaceutical industries. The authors have tried to find the key aspects of asuccessful technology transfer from the literature on the subject from alldifferent industries. The authors have then used these aspects to create atheoretical framework of the aspects that are possibly applicable in thebiopharmaceutical industry. A case study has been conducted at The Company which has a long pedigreeas one of the most innovative companies within the biopharmaceuticalindustry. The Company both develops and manufactures diagnostic tests forantibodies in animals, and their products are today widely known within theindustry. The authors have conducted a series of interviews, a non-participantobservation and also reviewed documentation of previous productsdevelopment processes. These qualitative methods have provided bothempirical evidence of similarities between the technology transfer literatureand a biopharmaceutical technology transfer process, as well as evidence ofwhat aspects are of importance in the biopharmaceutical industry. Using thisabductive research strategy, the authors have determined the key aspects thatare conceivably applicable in the biopharmaceutical industry. These are Goalcombability, Communication and documentation, Transfer plan andInterdepartmental collaboration. These aspects have not been implementedand therefore not been tested at The Company.
22

Torrötning och våtrötning av avvattnad gödsel : Biogasproduktion i labskala och systemanalys av en torrötningsanläggning / Dry and wet fermentation of dewatered manure : Biogas production in lab scale and a system analysis of a dry fermentation plant

Gustavsson, Malin, Wasell, Ellen January 2017 (has links)
Den dominerande tekniken vid framställning av biogas från organiskt avfall är idag att använda kontinuerlig våtrötning. Utöver våtrötning finns också ett fåtal torrötningsanläggningar i Sverige. Torrötning skapar möjlighet att införa fler substrat på marknaden, substrat som annars kan vara problematiskt att röta i en våt process. Jordbrukssektorn har stor potential att bidra med organiskt avfall som kan nyttjas som substrat vid biogasproduktion. Förutom att öka den totala användningen av torra substrat från jordbrukssektorn är en möjlig åtgärd att öka biogasproduktion från gödsel, varför en lösning är avvattning. Efter separation erhålls en fast fraktion som kan spädas in i en våt process, eller användas som substrat vid en ny central torrötningsanläggning. Som slutprodukt erhålls biogas och biogödsel. Att avvattna gödseln innan rötning ger en annan gödselhantering än den konventionella. Detta eftersom att lägre volymer kan transporteras vid varje tillfälle jämfört med transport av flytgödsel som innehåller mycket vatten.  Syftet med examensarbetet var att analysera avvattnad gödsel som substrat till produktion av biogas, samt att studera effekten av att lägga till avvattning som ett alternativ till hanteringen av gödsel. För att klargöra hur mycket metangas som kunde bildas från avvattnad gödsel utfördes experiment i labskala med kontinuerlig våtrötning och satsvis torrötning. Parallellt med laborationsförsöken genomfördes en teoribaserad systemstudie med syfte att utreda central storskalig produktion med avvattnad gödsel som substrat. Utöver biogasproduktion analyserades gödselhantering med ett livscykelperspektiv där de olika systemalternativens direkta utsläpp av växthusgaser studerades. Systemmodellen innehöll tre scenarier vilka involverade olika system för att hantera gödseln (konventionell gödselhantering, våtrötning av flytgödsel samt våtrötning och torrötning med avvattnad gödsel som substrat). Laborationsförsöket visade att avvattnad gödsel är lämpligt som substrat vid biogasproduktion. Kontinuerlig våtrötning kunde genomföras med stabil process och liknade storskalig produktion. De kemiska analyser som utfördes under försöksperioden (pH, alkalinitet, VFA och kväve) uppvisade alla stabila värden utan processtörningar. Efter tre uppehållstider hade i medeltal 246 Nml CH4 per/g VS producerats från avvattnad gödsel vilket var i nivå med uppgifter från litteratur (200-300 Nml CH4/g VS). Vidare visade det satsvisa torrötningsförsöket varierande resultat beroende på val av ymp, samt hur stor mängd ymp som blandades in i testflaskorna. Vid inblandning av ymp från Tekniska verkens samrötningsanläggning i Linköping bildades i genomsnitt 222±8,6 Nml CH4/g VS (5 % VS ymp) respektive 236±10,8 Nml CH4/g VS (10 % VS ymp). Bildad metan 3 var inom rimligt intervall för välfungerande process, om än med lång uppehållstid (83 dagar). Försöksuppställningen för satsvis torrötning utformades så att laborationsförsöket skulle simulera så kallad garagerötning. Dock saknades utrustning för recirkulering av vätska, istället vändes testflaskorna dagligen. Då recirkulering av vätska ofta förekommer i storskaliga torrötningsanläggningar som drivs enligt garage-koncept är det önskvärt att utveckla laborationsförsöket vidare, med målet att bättre efterlikna en verklig process. I förhållande till konventionell hantering av gödsel visade systemstudien miljöfördelar för central torrötningsanläggning som använder avvattnad gödsel som substrat vid biogasproduktion. Miljönyttan var dels i händelse av att den bildade biogasen uppgraderas till fordonsbränsle och används som substitut till fossila drivmedel, men också om hantering av vätskefasen kan förbättras. Avvattnad gödsel ger en vätskefas som vid spridning och lagring ger upphov till emissioner av växthusgaser (lustgas, metan och koldioxid) som har negativ påverkan på miljön. Att skapa lösning för hantering av vätskefasen som reducerar emissioner innebär att biogassystem med avvattnad gödsel som substrat kan vara fördelaktigt ur ett miljöperspektiv jämfört med våtrötning av flytgödsel. Systemstudien inkluderade även en osäkerhetsanalys som visade att resultatet varierade beroende på vilket antagande som valdes för systemets parametrar. Den parameter som påverkade resultatet i störst utsträckning var antaganden kring metankonverteringsfaktorn (MCF). Sammanfattningsvis visade systemmodellen att det saknas tillräckligt underlag för att avgöra vilken rötningsteknik som är mest gynnsam vid produktion av biogas från avvattnad gödsel, varför fler studier är att rekommendera.
23

Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs)

Lunnbäck, Johan January 2016 (has links)
To increase profitability for biogas production, new innovative substrates and condition of operations needs to be implemented. At the current state, fats, oils and greases (FOGs) represent a promising substrate even though it brings operational challenges to the anaerobic digestion process. By utilizing hydrodynamic cavitation (HC) as a pre-treatment of the FOGs, the efficiency of FOGs’ co-digestion with wastewater sludge can be significantly improved. Preliminary experiments conducted on oil and water demonstrates that the HC pre-treatment improves the oil solubilisation as well as forms stable oil and water emulsion that last for several hours. The pre-treatment also improved the soluble chemical oxygen demand (COD) of biosludge (BiSl) by up to 115% and the initial degradation rate by up to 35%. In a semi-continues system, this allowed a significant increment in the specific methane yield depending on the organic loading rate (OLR) applied1. With sufficient process optimization, the HC-pre-treatment may prove to be an energy efficient and effective pre-treatment of FOGs.
24

Valorization Of Whole Stillage With Filamentous Fungi Cultivation Using Membrane Bioreactors

Bulkan, Gülru January 2018 (has links)
A significant by-product of bioethanol plants is whole stillage, commonly used to produce animal feed due to its nutritious value, has a potential to be used to produce various value-added products while eliminating a costly process step is an alternative approach. In this study, production and separation of additional ethanol, fungal biomass and enzyme were successfully achieved with the cultivation in membrane bioreactors in batch process condition. Process optimization studies regarding fermentation and filtration conditions were carried out. Up to 10.4 g/l ethanol per litre of used whole stillage can be produced in simultaneous saccharification and fermentation (SSF) condition without any pH adjustment and additional pretreatment step. Also, 50% diluted whole stillage provided 87% higher ethanol production comparing to non-diluted medium. Moreover, 71 % higher biomass production was obtained with the filtrate of 50% diluted whole stillage comparing to 25% diluted one. Considering the achieved results, a two-stage cultivation using SHF (Separate Hydrolysis and Fermentation) strategy in membrane bioreactors for separation of ethanol, lignin-rich stream, protein-rich fungal biomass and enzymes was proposed. The present thesis showed that the integration of filamentous fungi with membrane bioreactors can increase the range of products that can be produced from whole stillage.
25

Production and harvesting of volatile jet fuel precursors from Synechocystis sp. PCC 6803

Sjölander, Johan January 2019 (has links)
The world is currently faced with the enormous challenge of slowing down human triggered global warming. As the global energy demand increases, there is an urgent need for renewable and carbon-neutral fuel-sources. Isoprene and isobutene are crude-oil derived, short, volatile and reactive hydrocarbons that can be polymerised into longer chains to be used as jet fuel. Isoprene has previously been produced from the cyanobacterial strain Synechocystis sp. PCC 6803 but there has been no reported isobutene synthesis from any photosynthetic organism. This work aimed to synthesise isobutene in Synechocystis using a cytochrome P450 from Cystobasidium minutum with reported isobutene production capability. Substrate availability was to be provided through the insertion of two heterologous enzymes, IpdC from Salmonella typhimurium and PadA from Escherichia coli. Both IpdC and PadA were successfully expressed in Synechocystis but the functional activities of IpdC, PadA and the cytochrome P450 in Synechocystis remains undetermined. This project also had the aim to design and construct a photo-bioreactor and gas collection system capable of producing and harvesting isoprene directly from an engineered Synechocystis strain. Herein lies a description of a closed system photobioreactor connected to a cold-trap that was able to concentrate isoprene produced from Synechocystis to measurable amounts.
26

ASSESSMENT OF MACROALGAE HARVESTING FROM THE BALTIC SEA FROM AN ENERGY BALANCE PERSPECTIVE

Tatarchenko, Olena January 2011 (has links)
Energy balance of large-scale and small-scale scenarios of macroalgae harvesting for biogas production was assessed from the energy balance perspective. Evaluation was based on primary energy Input Output (IO) ratio where all primary energy inputs into the stages of the process life-cycle were summarized and divided by the final energy output from the system. Estimations were made for three cases of possible methane yield from macroalgae as well as for different scenarios of macroalgae co-digestion with other feedstock. Anaerobic digestion of macroalgae as a single substrate both on a small- and large-scale is energy efficient only in case when their methane potential is at the average or high level with the IO ratio of 0.47 and 0.32 correspondently. In general co-digestion with other substrates is more preferable with respect to process condition and energy balance. Large-scale scenario is more stable and efficient than small-scale with the lowest IO ratio for co-digestion with crops. This is explained by the fact that biogas plant operation is among the most energy demanding stages which on the small-scale requires about 65 % of the input energy when this number for large-scale plant does not exceed 28 %. Energy inputs into digestate handling, feedstock pre-treatment and biogas upgrading, that are next most energy consuming stages, is greatly affected by the assumptions made about amount of substrate, produced biogas and transportation distance. When considering the maximal distance between macroalgae harvesting point and biogas production site and to which at which the energy balance remains positive then digestate handling becomes the most energy demanding process stage.
27

Cellulose Biosynthesis in Oomycetes

Fugelstad, Johanna January 2008 (has links)
Oomycetes have long been considered as a separate class within the kingdom Fungi, but they are in fact closer to brown algae. They are currently classified in the Stramenopile eukaryotic kingdom, which includes heterokont algae and water molds. The major cell wall polysaccharides in Oomycetes are b-(1à3) and b-(1à6)-glucans, as well as cellulose, which has never been reported in any fungal species. Chitin - the major cell wall polysaccharide in fungi - occurs in minor amounts in the walls of some Oomycetes. Some Oomycete species are pathogens of great economical importance. For example, species of the genus Phytophthora are well studied plant pathogens that cause considerable economical losses in agriculture. Saprolegniosis, a fish disease caused by species from the genus Saprolegnia, is a major problem in the aquaculture industry and represents a threat to populations of salmonids in natural habitats. Currently, there are no chemicals available that are at the same time efficient Oomycete inhibitors, environmentally friendly and safe for human consumption of treated fishes. The biosynthesis of cellulose in Oomycetes is poorly understood, even though this biochemical pathway represents a potential target for new Oomycete inhibitors. In this work, cellulose biosynthesis was investigated in two selected Oomycetes, the plant pathogen Phytophthora infestans and the fish pathogen Saprolegnia monoica. A new Oomycete CesA gene family was identified. It contains four homologues designated as CesA1, CesA2, CesA3 and CesA4. The gene products of CesA1, 2 and 4 contain Pleckstrin Homology domains located at the N-terminus. This represents a novel feature, unique to the Oomycete CesA genes. CesA3 is the dominantly expressed CesA homologue in the mycelium of both S. monoica and P. infestans, while CesA1 and CesA2 are up-regulated in virulent life stages of P. infestans. CesA4 was expressed only in minute amounts in all investigated types of cells. Gene silencing by RNA interference of the whole CesA gene family in P. infestans lead to decreased amounts of cellulose in the cell wall. The inhibitors of cellulose synthesis DCB and Congo Red had an up-regulating effect on SmCesA gene expression, which was accompanied by an increased b-glucan synthase activity in vitro. In addition, these inhibitors slowed down the growth of the mycelium from S. monoica. Zoospores from P. infestans treated with DCB were unable to infect potato leaves and showed aberrant cell wall morphologies similar to those obtained by silencing the CesA gene family. Altogether these results show that at least some of the CesA1-4 genes are involved in cellulose biosynthesis and that the synthesis of cellulose is crucial for infection of potato by P. infestans. / QC 20101110
28

Analysis of domestic dog mitochondrial DNA sequence variation for forensic investigations

Angleby, Helen January 2005 (has links)
The first method for DNA analysis in forensics was presented in 1985. Since then, the introduction of the polymerase chain reaction (PCR) has rendered possible the analysis of small amounts of DNA and automated sequencing and fragment analysis techniques have facilitated the analyses. In most cases short tandemly repeated regions (STRs) of nuclear DNA are analysed in forensic investigations, but all samples cannot be successfully analysed using this method. For samples containing minute amounts of DNA or degraded DNA, such as shed hairs, analysis of mitochondrial DNA (mtDNA) is generally more successful due to the presence of thousands of copies of mtDNA molecules per cell. In Sweden, ~40 % of all households have cats or dogs. With ~9 million humans shedding ~100 scalp hairs per day, and ~1.6 million cats and ~1 million dogs shedding hairs it is not surprising that shed hairs are one of the most common biological evidence found at crime scenes. However, the match probability for domestic dog mtDNA analysis has only been investigated in a few minor studies. Furthermore, although breed –sequence correlations of the noncoding mtDNA control region (CR) have been analysed in a few studies, showing limited correlations, no largescale studies have been performed previously. Thus, there have not been any comprehensive studies of forensic informativity of dog mtDNA. In the two papers presented in this thesis we have tried to lay a foundation for forensic use of analysis of domestic dog mtDNA. In the first paper, CR sequences were analysed and the exclusion capacity was investigated for a number of different populations. This is also the first comprehensive study of the correlation between mtDNA CR type and breed, type, and geographic origin of domestic dogs. Since the exclusion capacity for analysis of domestic dog CR sequences is relatively low, it was investigated in the second paper to what extent the discrimination power is improved by analysis of coding sequence. The exclusion capacity improved considerably when 3,000 base pairs of coding sequences where analysed in addition to CR sequences. This study will hopefully work as a basis for future development of analysis of dog mtDNA for forensic purposes. / QC 20101123
29

Advances in DNA Detection on Paper Chips

Song, Yajing January 2013 (has links)
DNA detection has an increasing importance in our everyday lives, with applications ranging from microbial diagnostics to forensic analysis. Currently, as the associated costs decrease, DNA diagnostic techniques are routinely used not only in research laboratories, but also in clinical and forensic practice. The present thesis aims to unravel the potential of cellulose filter paper to be a viable candidate for DNA array support. There are two papers in this study. In Paper I, we studied the method of functionalizing the surface of filter paper and the possibility to detect DNA on acitve paper using fluorescence. In Paper II, we investigated visualization and throughput of DNA detection with magnetic beads on active filter papers, an assay which requires no instrumentation (scanner). The findings in Paper I show that XG-NH2 and PDITC can functionalize the cellulose filter paper and that the activated filter papers can covalently bind oligonucleotides modified with amino groups to detect DNA. The detection limit of the assay is approximately 0.2 pmol. In Paper II, visualization of DNA detection on active paper is achieved without instrumentation, based on the natural color of magnetic beads. Furthermore, successful multiplex detection supports the potential to increase the throughput of DNA detection on active papers. In summary, these studies show that active cellulose filter paper is a good DNA array support candidate as it provides a user-friendly and cost-efficient DNA detection assay. The methods described in Paper I and II are possible sources of development to a point-of-care device for on-site analysis of DNA contents in a sample. / <p>QC 20131111</p>
30

Evaluation of Cellruptor pre-treatment on biogas yield from various substrates

Thiruvenkadam, Selvakumar January 2011 (has links)
In this thesis work, Cellruptor pre-treatment was evaluated in order to increase biogas yield. Initially, the effects of residence time (30, 60, 90, 120 and 180 min) and substrate release (rapid/non-rapid) from the draining port of Cellruptor on biosludges were investigated to find the optimum operating conditions of Cellruptor. Under these optimum operating conditions, the effect of Cellruptor pre-treatment on batch reactors of various substrates and semi-continuous digester of biosludge were investigated at mesophil biosludge, dewatered sludge, digested sludge, fibre sludge, hay, maize silage, minced meat, orange peel, seaweed and yeast. From the initial study, 90 min residence time and rapid release of pre-treated substrate from draining port were found to be optimum operating conditions of Cellruptor. From the batch experiments, Cellruptor pretreatment showed maximum and minimum increase of methane yield in hay (32%) and dewatered sludge (2%) respectively. The semi-continuous digester experimental results showed increase in biogas production by 22.4% from Cellruptor pre-treatment of biosludge at HRT of 15 days and OLR of 2.0 g VS/L/day. With further studies, Cellruptor pre-treatment may be deployed in large-scale biogas plants to improve biogas yield.

Page generated in 0.0907 seconds