• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 14
  • 8
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 95
  • 23
  • 22
  • 20
  • 17
  • 17
  • 17
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Estudo do acoplamento do po?o injetor nas simula??es de inje??o c?clica de vapor

Souza J?nior, Jos? Cleodon de 20 February 2013 (has links)
Made available in DSpace on 2014-12-17T14:09:16Z (GMT). No. of bitstreams: 1 JoseCSJ_TESE_PARCIAL.pdf: 3198681 bytes, checksum: 3124bf4fcf475e3c972bb5266fef2405 (MD5) Previous issue date: 2013-02-20 / Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way / A inje??o de vapor ? um m?todo aplicado geralmente em ?leos muito viscosos e consiste em injetar calor para reduzir a viscosidade e, portanto, aumentar a mobilidade do ?leo, resultando em incremento na produ??o dos po?os. Para o planejamento de um projeto de inje??o de vapor ? necess?rio efetuar um estudo de reservat?rio com o objetivo de se definir os v?rios par?metros necess?rios para um eficiente gerenciamento de calor no meio poroso e, com isto, melhorar o fator de recupera??o do reservat?rio. Neste estudo, para o sistema de inje??o, representado pelo po?o injetor, ? normalmente adotado um modelo padr?o em todos os casos estudados, sendo desta forma, a integra??o entre o po?o injetor e o reservat?rio, realizada de forma bastante simplificada. Este trabalho tem como objetivo mostrar a influ?ncia do acoplamento do po?o injetor nas simula??es t?rmicas de reservat?rios submetidos ? inje??o c?clica de vapor. Neste estudo, a metodologia utilizada na solu??o do problema envolveu o desenvolvimento de um modelo de po?o para a integra??o do modelo de escoamento de vapor em po?os de petr?leo, VapMec, e o modelo de reservat?rio tipo beta para a inje??o c?clica de vapor em reservat?rios de petr?leo. Assim, desenvolveram-se estudos de caso para reservat?rios rasos e profundos, considerando as principais configura??es de po?o injetor existentes na ind?stria de petr?leo, ou seja, coluna convencional sem packer, coluna convencional com packer e coluna isolada com packer. Foi realizado um estudo comparativo dos par?metros de inje??o e produ??o obtidos na simula??o, considerando sempre as mesmas condi??es de opera??o, para os dois modelos de simula??o, sendo um modelo n?o acoplado e o outro modelo acoplado. Observou-se que os resultados entre os modelos s?o bastante similares para a situa??o de vaz?o de inje??o igual ? vaz?o especificada, tendo sido encontrado diferen?as significativas na situa??o em que a press?o de inje??o ? igual ? press?o especificada. Finalmente, com base nos experimentos computacionais, foi poss?vel concluir que a influ?ncia do acoplamento do po?o injetor nos estudos de reservat?rios que utilizam a inje??o c?clica de vapor como m?todo especial de recupera??o ? maior para a condi??o de press?o especificada, sendo que para a condi??o de vaz?o especificada, o modelo de escoamento no po?o injetor e o modelo do reservat?rio podem ser simulados de forma n?o integrada
52

Desenvolvimento de instrumentação dedicada a cromatografia líquida capilar (cLC) / Development of dedicated instrumentation to capillary liquid chromatography (cLC)

Lincoln Figueira Marins Coutinho 05 September 2008 (has links)
Desde que foi introduzida por Tswett no começo do século XX, a cromatografia vem sofrendo contínuos avanços. Entretanto, a miniaturização da cromatografia líquida, apesar de seu inicio promissor, ainda continua bastante lenta e até o presente não alcançou ampla difusão, sendo que o número de grupos trabalhando nesta área é ainda bastante restrito. O motivo deste lento avanço se encontrava na dificuldade em se desenvolver equipamentos adequados, colunas apropriadas e sistemas de tratamento de dados suficientemente rápidos para os sistemas miniaturizados. Apesar de muitos desses problemas atualmente serem de fácil resolução, ainda não se dispõe de equipamentos comercialmente disponíveis que supram satisfatoriamente às condições impostas pelas micro-colunas. Tal carência deve ser suprida antes de nos beneficiarmos de todas as vantagens intrínsecas à miniaturização da cromatografia líquida. Deste modo, o presente projeto visa o desenvolvimento de instrumentação totalmente dedicada aos sistemas miniaturizados de cromatografia líquida incluindo o desenvolvimento de uma bomba de alta pressão, um sistema de injeção a base de tempo, um forno capaz de realizar programação de temperatura e o software de controle dos mesmos. Os equipamentos desenvolvidos foram então aplicados em separações de estatinas demonstrando um excelente desempenho. / Since the chromatography was introduced by Tswett, in the beginning of the 20th century, the technique has suffered a constant progress. However, the miniaturization of liquid chromatography, instead of its promising start, it is still too slow and this technique has not reached a wide divulgation so far. It is important to mention that the number of groups working in this area is very limited yet. The reason of this slow progress was due to the difficulty in developing suitable equipments, appropriated columns and data treatment systems that are quick enough for the miniaturized systems. Currently, many of these problems are easy to be solved, however, there are no equipments available commercially that supply the conditions imposed by microcolumns satisfactorily. Such lack should be filled before benefiting from all the advantages concerned to the miniaturization of liquid chromatography. In this way, this study aims at the development of instrumentation totally dedicated to the miniaturized systems of liquid chromatography, including the development of a high pressure pump, an time-based injector, an oven that sets the temperature programming and the software that can control all these devices. The developed equipments were then applied in the separation of statins, demonstrating an excellent performance.
53

Instalace vstřikovacího systému na traktorový motor / Injection System Build-in on Tractor Engine

Svršek, Michal January 2014 (has links)
The aim of this work is to design the installation of a new injection system to the existing tractor engines and construct new components necessary for proper function of the injection. In the following section is suggesting the location of other accessories for engine control. This is an injection system with a pressure reservoir "Common Rail" and all its components are created in modeling environment PTC Creo 2.0. Designed components are tested for strength and they are subjected to modal analysis.
54

Contribution à l'étude de l'impact de la cavitation sur les processus physiques de l'atomisation primaire des jets d'injecteurs essence / Contribution to the cavitation impact study on the physical processes of jet primary atomization for gasoline direct injection

Makhlouf, Samir 20 May 2015 (has links)
Afin de se rapprocher des conditions du mélange homogène du moteur essence, plusieurs fluides sont injectés dans l'atmosphère à une pression amont et une température variées. Cinq prototypes d'injecteurs réels trois-trous de Continental ont été utilisés. En augmentant la pression d'injection, l'écoulement passe par quatre régimes où le niveau de développement de cavitation varie. Le coefficient de décharge Cd dépend essentiellement du nombre de cavitation. Au point critique de cavitation, deux corrélations ont été obtenues reliant respectivement Cd et le nombre de cavitation critique au nombre de Reynolds correspondant. Le jet en champ proche est gouverné par trois nombres sans dimensions : celui de Weber, de Reynolds et de cavitation. L'effet de chacun d'eux sur l'angle du jet à la sortie a été obtenu. La comparaison des résultats entre deux injecteurs a montré que le rapport entre la longueur et le diamètre de l'orifice est d'une influence d'ordre 1 sur l'angle du jet. / In order to get closer to the homogeneous mixture conditions of a gasoline engine, different fluids are injected into the atmosphere at varying upstream pressure and temperature. Five three-hole real injector prototypes from Continental were used. When injection pressure is increased, the internal flow goes through four regimes where the cavitation development level varies from one to another. The discharge coefficient Cd was found mainly dependent on the cavitation number. At the cavitation critical point, two correlations between Cd and the critical cavitation number on one side respectively, and the correspondent Reynolds number on the other side were found. The near field jet is ruled by three dimensionless numbers : Weber, Reynolds and cavitation. The effect of each one of them on the jet angle at the orifice outlet was obtained. By comparing the results of two injectors, it was found that the length over diameter ratio has a first order influence on the jet angle.
55

Accélérateur linéaire d'électrons à fort gradient en bande S pour ThomX / High-gradient S-band electron Linac for ThomX

Garolfi, Luca 12 January 2018 (has links)
ThomX, un démonstrateur de source Compton compacte de rayons X d’énergie réglable entre 45 et 90 keV, est en construction sur le campus de l'Université Paris-Saclay à Orsay. La thèse s’inscrit dans le cadre de l’upgrade du linac de ThomX qui consiste à réaliser une section accélératrice compacte à fort gradient en bande S (3 GHz) pour porter les faisceaux de ThomX de 50 MeV à 70 MeV. Un accord de collaboration R&D est signé entre LAL et PMB-Alcen pour développer une structure accélératrice en cuivre (OFHC) compacte en bande S à fort gradient. Une étude électromagnétique, thermique et dynamique de faisceau a été effectuée au LAL pour proposer une géométrie optimale de la section accélératrice pour atteindre des gradients accélérateurs très élevés. PMB est en charge d’améliorer les processus de fabrication en commençant par la réalisation des prototypes pour valider les choix technologiques et ensuite fabriquer la section finale pour répondre aux spécifications demandées. Dans un premier temps une étude couplée électromagnétique-thermique-structurelle du canon HF a été effectuée en utilisant le Logiciel d'analyse des éléments finis 3D (ANSYS). Ensuite l’étude électromagnétique et l’optimisation de la géométrie des cellules accélératrices ainsi que la conception des coupleurs de puissance pour constituer les prototypes à impédance constante avec un certain nombre de cellules réduit et la section accélératrice compacte à gradient constant ont été effectuées en utilisant les logiciels CST MWS et HFSS. Puis une étude thermomécanique de la structure accélératrice a été réalisée avec ANSYS pour concevoir et optimiser le circuit de refroidissement pour extraire la chaleur générée par la puissance HF dissipée dans les parois de la structure et garantir une répartition uniforme de la température au long de la structure. Les simulations du vide ont été également réalisées avec le code Monte Carlo pour envisager la meilleure solution de pompage pour le prototype de cuivre et la section finale. En outre, les principales étapes suivies dans la fabrication du Canon HF au LAL et le prototype en aluminium à 7 cellules chez PMB-Alcen ont été présentées. Des tests HF bas niveau du prototype ont été effectués afin de valider la géométrie « processus d’usinage ». Compte tenu des résultats expérimentaux, des problèmes techniques et des contraintes technologiques ont été abordées et certaines solutions ont été proposées pour la fabrication des prototypes en cuivre et de la section finale. Les simulations de la dynamique des faisceaux du Linac de ThomX ont été effectuées en utilisant le code ASTRA. Le but est de réduire autant que possible la dispersion en énergie et l’emittance transverse du paquet d’électrons au point d’interaction avec les impulsions laser, pour préserver la pureté spectrale de rayons X produits. Un modèle aussi proche que possible des caractéristiques des composants réels, tels que le canon HF, la section accélératrice à onde progressive (OP) et les solénoïdes a été pris en compte dans les simulations. Des résultats importants ressortent de ces simulations concernant les paramètres du laser (taille et durée du spot), le champ magnétique maximal des solénoïdes pour la compensation de l'effet de charge espace, le déphasage entre l’onde RF et le laser et l'effet du champ électromagnétique sur la dynamique des électrons. Différentes options pour les paramètres de fonctionnement de la machine et une nouvelle configuration de la position des solénoïdes ont été proposées. L’optimisation des caractéristiques du paquet d’électrons a été obtenue en utilisant un algorithme génétique et les performances finales du faisceau d’électrons ont été mises en évidence. / The ThomX source should provide quasi-monochromatic high-quality X-rays (range 45-90 keV). The framework of the thesis is the electron beam linac energy upgrade from 50 MeV to 70 MeV necessary to achieve X-rays of 90 keV. For this purpose, the development of a compact high-gradient S-band electron accelerating structure is needed. It implies a research and development (R&D) activity at LAL in partnership with a French company (PMB-Alcen) in the High-Gradient (HG) technology of accelerating structures. The LAL-PMB-Alcen collaboration aims at the fabrication of a normal-conducting HG S-band structure by tackling the technological aspects that limit the achievement of high-gradient acceleration mostly due to vacuum RF breakdown and pulsed heating fatigue. Basically, the electromagnetic and thermal design of the HG S-band accelerating section has been performed at LAL. Meanwhile, PMB-Alcen was in charge to perform the fabrication, tuning and low power tests of prototypes and the final accelerating section. In this work, a fully coupled electromagnetic-thermal-structural finite element analysis on the THOMX RF gun has been performed with Ansys workbench. The HG accelerating section final regular cell dimensions and the power coupler design have been optimized. In particular, the electromagnetic simulation techniques and outcomes have been applied to constant impedance (CI) TW prototypes and also to a constant gradient (CG) final accelerating section. This allowed to verify the geometry choice, validate the fabrication procedure and check the fulfilment of the normal operating conditions. Moreover, a coupled thermo-mechanical study on a CI copper prototype has been performed. The water cooling system has been simulated to validate the capability to extract the heat generated by the dissipated power on the walls of the structure and guarantee a uniform temperature distribution along the section. Also, vacuum simulations have been performed on a 16-cells CI copper prototype and also on the final CG accelerating section. In addition, the main steps for the fabrication of the RF gun at LAL and a 7-cells aluminium prototype at PMB-Alcen have been presented. RF low power tests on the prototype have been performed in order to validate the 3D geometry design and the machining process. Taking into account the experimental results, mechanical problems and technological constraints have been tackled and some solutions have been proposed for the future copper prototype fabrication. Finally, beam dynamics simulations of the ThomX linac has been carried out by ASTRA code. The aim is to reduce as much as possible the energy spread and the transverse emittance to preserve the spectral purity of the produced X-rays, at the electron-photon interaction point. A model as close as possible to the characteristics of the real components, such as RF gun, TW section and solenoids has been considered. Important results came out from these simulations regarding laser parameters (spot size and duration), the maximum magnetic field of solenoids for high space charge effect compensation, dephasing between the RF and laser in the gun and effect of the travelling wave electromagnetic field on the particle dynamics. Different options for the parameter settings of machine operation and a new configuration of the solenoids position have been proposed. An optimization of the beam dynamics properties has been obtained by using a genetic algorithm and the ultimate performances of the electron beam have been highlighted.
56

Emittance Compensation for SRF Photoinjectors

Vennekate, Hannes January 2017 (has links)
The advantages of contemporary particle injectors are high bunch charges and good beam quality in the case of normal conducting RF guns and increased repetition rates in the one of DC injectors. The technological edge of the concept of superconducting radio frequency injectors is to combine the strengths of both these sides. As many future accelerator concepts, such as energy recovery linacs, high power free electron lasers and certain collider designs, demand particle sources with high bunch charges and high repetition rates combined, applying the superconductivity of the accelerator modules to the injector itself is the next logical step. However, emittance compensation — the cornerstone for high beam quality — in case of a superconducting injector is much more challenging than in the normal conducting one. The use of simple electromagnets generating a solenoid field around the gun’s resonator interferes with its superconducting state. Hence, it requires novel and sophisticated techniques to maintain the high energy gain inside the gun cavity, while at the same time alleviating the detrimental fast transverse emittance growth of the bunch. In the case of the ELBE accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, a superconducting electron accelerator provides beam for several independent beamlines in continuous wave mode. The applications include IR to THz free electron lasers, neutron and positron generation, to Thompson backscattering with an inhouse TW laser, and hence, call for a flexible CW injector. Therefore, the development of a 3.5 cell superconducting electron gun was initiated in 1997. The focus of this thesis lies on three approaches of transverse emittance compensation for this photoinjector: RF focusing, the installation of a superconducting solenoid close to the cavity’s exit, and the introduction of a transverse electrical mode of the RF field in the resonator. All three methods are described in theory, examined by numerical simulation, and experimentally reviewed in the particular case of the ELBE SRF Gun II at HZDR and a copy of its niobium resonator at Thomas Jefferson National Laboratory, Newport News, VA, USA.
57

Advancing the Limits of Dual Fuel Combustion

Königsson, Fredrik January 2012 (has links)
There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NOx and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of diesel flow through the nozzle is largely removed. Through investigation and modeling it is shown that the cooling effect of the diesel fuel occurs as the fuel resides injector between injections and not during the actual injection event. For this reason; fuel residing close to the tip absorbs more heat and as a result the dependence of tip temperature on diesel substitution rate is highly non-linear. The problem can be reduced greatly by improved cooling around the diesel injector. Knock and preignitions are limiting the performance of the engine and the behavior of each and how they are affected by gas quality needs to be determined. Based on experiences from this project where pure methane has been used as fuel; preignitions impose a stricter limit on engine operation than knock. / QC 20120626 / Diesel Dual Fuel
58

Emittance Compensation for SRF Photoinjectors

Vennekate, Hannes 20 September 2017 (has links)
The advantages of contemporary particle injectors are high bunch charges and good beam quality in the case of normal conducting RF guns and increased repetition rates in the one of DC injectors. The technological edge of the concept of superconducting radio frequency injectors is to combine the strengths of both these sides. As many future accelerator concepts, such as energy recovery linacs, high power free electron lasers and certain collider designs, demand particle sources with high bunch charges and high repetition rates combined, applying the superconductivity of the accelerator modules to the injector itself is the next logical step. However, emittance compensation — the cornerstone for high beam quality — in case of a superconducting injector is much more challenging than in the normal conducting one. The use of simple electromagnets generating a solenoid field around the gun’s resonator interferes with its superconducting state. Hence, it requires novel and sophisticated techniques to maintain the high energy gain inside the gun cavity, while at the same time alleviating the detrimental fast transverse emittance growth of the bunch. In the case of the ELBE accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, a superconducting electron accelerator provides beam for several independent beamlines in continuous wave mode. The applications include IR to THz free electron lasers, neutron and positron generation, to Thompson backscattering with an inhouse TW laser, and hence, call for a flexible CW injector. Therefore, the development of a 3.5 cell superconducting electron gun was initiated in 1997. The focus of this thesis lies on three approaches of transverse emittance compensation for this photoinjector: RF focusing, the installation of a superconducting solenoid close to the cavity’s exit, and the introduction of a transverse electrical mode of the RF field in the resonator. All three methods are described in theory, examined by numerical simulation, and experimentally reviewed in the particular case of the ELBE SRF Gun II at HZDR and a copy of its niobium resonator at Thomas Jefferson National Laboratory, Newport News, VA, USA.
59

Characteristics of Periodic Self-sustained Detonation Generation in an RDE Analogue

Kyle S Schwinn (11199204) 28 July 2021 (has links)
<div>Rotating detonation engines (RDEs) are one of the most promising options for improving combustor efficiency through a constant-volume combustion process. RDEs are characterized by continuous detonation propagation in an annular combustion chamber with an implicitly dynamic injection response. An additional benefit is the similarity of these devices to existing engine architectures. However, RDEs have yet to realize their thermodynamic and systemic advantages due the non-ideal physics of detonation in practical devices and the complex interactions between the detonations and the hydrodynamics of the reactants. The design of RDEs is heavily informed by experimental and simulation efforts, but simulations are expensive and often limited by the assumptions of the solver. Experiments have their own challenges; the dynamic reaction zone processes are difficult to examine experimentally in annular combustor geometry. Therefore, an RDE analogue, operating at near-atmospheric conditions with natural gas and oxygen, was developed that emulates the combustor geometry of an RDE in a linear channel that facilitates optical diagnostic capabilities. The experiment permits detailed characterization of the injection, mixing, and ignition processes in an RDE and provides a cross-platform comparison with simulation results, which are often two-dimensional or linear, 3-D domains.</div><div> </div><div>A unique phenomenon was discovered in this experiment, wherein a transverse combustion instability developed periodic, kilohertz-rate detonations through a non-linear amplification process. The behavior was highly repeatable and produced dominant cycle frequencies in two distinct regimes: 6-8 kHz and 10-11 kHz. An investigation of this phenomenon found that these cycle frequencies corresponded to natural dynamics in the oxidizer and fuel manifolds, respectively, and that the transition between regimes was facilitated by the injection pressure ratio between the oxidizer and fuel. This indicated that the injection hydrodynamics were being influenced by the manifold dynamics, and that the hydrodynamics played a key role in the amplification of the instability.</div><div> </div><div>The kinetic characteristics of the reactants were examined independently of the injection hydrodynamics as the second key component of the amplification process by altering the reactant chemistry. The combustion morphology was characterized against performance criteria to examine successful behavior. Results showed that cycle frequency and kinetic rates were directly proportional, and that non-linear growth of the flame was possible when the cycle frequency matched the dynamics supplied by the manifolds. When the cycle frequency exceeded the limits of the manifold dynamics, failure of the detonation behavior would occur. A computational analysis of the reactants was used to examine kinetic rate trends with variations in equivalence ratio, oxidizer dilution, and product gas recirculation.</div><div> </div><div>Particle image velocimetry (PIV) was performed on the experiment to study the flow structure of the injection process and the interactions with the detonation process. Time-averaged statistics showed that the detonation induced transverse perturbation to the flow, with varying strength and directionality with respect to the axial location of the shock. A correlation between this behavior and a reactivity gradient, linked to the local product gas residence time, was found. Analysis of the PIV images produced time-resolved measurements of the reactant fill, from which hydrodynamic timescales of the injection process could be obtained. Comparisons between the hydrodynamic and kinetic timescales created an operability map for the test condition which narrows the prediction of the product gas recirculation that occurs in the combustor.</div><div> </div><div>The experiments performed in this work has improved understanding of the dynamic injection that occurs during RDE operation. The self-excited generation of detonations through non-linear processes in this experiment brings to light important interactions between the combustor, injector, and manifolds that can improve, or hinder, the performance of RDEs.</div>
60

Proposed Improvements to the Neutral Beam Injector Power Supply System

Jiang, Zhen 11 August 2017 (has links)
No description available.

Page generated in 0.0372 seconds