• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 14
  • 8
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 95
  • 23
  • 22
  • 20
  • 17
  • 17
  • 17
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etude numérique de l’impact de la géométrie de la buse de l’injecteur sur l’écoulement à l’intérieur de la buse et l’atomisation primaire / Numerical study of nozzle geometry impact on in-nozzle flow and primary breakup

Aguado, Pablo 22 May 2017 (has links)
Une étude numérique de l’écoulement dans la buse et de l’atomisation primaire en injection Diesel est conduite afin de comprendre le lien entre la géométrie interne de l’injecteur et l’atomisation du carburant. En raison de la complexité des phénomènes impliqués, les effets de compressibilité sont étudiés séparément de ceux liés à la turbulence et à la dynamique tourbillonnaire.Dans une première partie, un modèle à 5 équations pour des écoulements diphasiques à deux espèces est développé et implémenté dans le code IFP-C3D pour analyser les effets de compressibilité sur l’écoulement. Il décrit des mélanges gaz-liquide dont la phase gazeuse est composée de deux espèces : vapeur et gaz non condensable. Le modèle est validé à l’aide de trois cas test très répandus et est appliqué à un injecteur monotrou. Les résultats sont comparés à des données expérimentales, confirmant que le modèle est capable de reproduire la formation de vapeur et la détente de l’air. Dans une seconde partie, l’impact de la géométrie de la buse sur la génération de turbulence, sur la dynamique tourbillonnaire et sur l’atomisation primaire est étudié sous l’hypothèse d’un écoulement incompressible. Large-Eddy Simulation est employée pour simuler l’écoulement dans la buse et proche de sa sortie.La méthodologie employée consiste à comparer des géométries de buse se distinguant par des paramètres de conception très tranchés. Les résultats montrent que l’atomisation du carburant dans la zone d’atomisation primaire est le résultat de un phénomène de haute fréquence engendré par des tourbillons détachés, et un phénomène de basse fréquence causé par filaments tourbillonnaires. Les interactions complexes entre ces tourbillons impactent le type d’atomisation, la stabilité du spray et la taille des gouttes. Il est conclu qu’en agissant sur ces deux types de tourbillons, il est envisageable de contrôler dans certaines limites la dynamique du spray. / Numerical study of nozzle flow and primary breakup in Diesel injection is conducted in order to understand the link between injector geometry and fuel atomization. Owing to the complex physical processes involved, flow compressibility effects are studied separately from turbulence and vortex dynamics.In a first part, a 5-Equation model for two-phase, two-species flows is developed and implemented in the IFP-C3D code to analyze the flow behavior under compressibility effects. It is intended for liquid-gas mixtures where the gas phase is composed of two species, vapor and noncondensable gas. The model is validated against three well-known test cases and is applied to a single hole injector. The results are compared with available experimental and numerical data, showing that it is able to successfully predict vapor formation and air expansion. In a second part, the impact of nozzle geometry on turbulence generation, vortex dynamics and primary breakup is studied assuming incompressible flow. Large-Eddy Simulation is used to simulate the flow inside the nozzle and close to its exit.The investigation strategy consists of comparing different geometries with contrasting design parameters. The results show that fuel atomization in the primary breakup region is driven by a high frequency event triggered by shed vortices, and a low frequency event caused by large string vortices. The complex interaction between them determines the breakup pattern, the spray stability and the size of ligaments and droplets. In view of the results, it is concluded that acting on these two structures makes it possible to control the dynamics of the spray to some extent.
22

Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

Gardner, William Geoffrety January 2011 (has links)
<p>Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. </p><p>This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.</p> / Dissertation
23

Numerical Simulations Of Axisymmetric Near Wakes At High Reynolds Numbers

Devi, Ravindra G 08 1900 (has links)
The flow past the needle of a Pelton turbine injector is an axisymmetric wake embedded in a round jet. The wake does not fully relax to yield a uniform velocity jet due to the short distance between injector and the Pelton wheel buckets and this non-uniformity affects the turbine efficiency. To minimize the non-uniformity, it is essential to predict the near wake accurately. While far-field wakes are well described by analytical expressions and also well predicted by CFD codes, the quality of the prediction of axisymmetric near wakes is not known. It is of practical interest to establish the applicability bounds of the Reynolds Averaged Navier-Stokes (RANS) models, which are commonly used in industry, for axisymmetric near wakes, for this specific problem, as well as, in general. Understanding of the near wake is crucial considering various aerospace applications. For example the details of the aerodynamics of the near wake are crucial for stabilization of a flame. The size of recirculation zone affects the rate of production of hot burnt products, and the mixing between the products and reactants is governed by the turbulence in the free shear layers. Wakes from two-dimensional bodies such as a wedge, circular and square cylinder have been extensively studied at different Reynolds number (Re); however, this is not the case with three-dimensional axisymmetric bodies such as spheres, ellipsoids, disks etc. Most common axisymmetric body investigated is a sphere. The flow past sphere is typically characterized in three regions: sub critical, critical and supercritical. In sub critical region, Re<3x105 the boundary layer separation is laminar. Critical region, Re≈3x105, is where the boundary layer transitions to turbulent and then separates resulting in sudden drag reduction. The critical Re may vary depending on flow conditions such as turbulent intensities, sphere surface variations etc. In the supercritical region, Re > 3x105, the boundary layer is turbulent before separation and the drag starts increasing beyond critical drag. Though the geometry and the flow conditions are simple the flow features involved are complex especially laminar to turbulent boundary layer transition and high speed transient vortex shedding. Experimentally it has been observed that the vortex shedding location changes randomly and perhaps rotates. All these features pose a significant challenge for experimental measurements and as well as numerical modeling. Thus most experimental measurements have been done below Re=103. Also the data is measured over the sphere surface, for eg: skin friction, pressure, but almost no data is available in the near wake. Similarly numerical investigations are primarily in subcritical region. DNS has been used for low Re, up to 800. RANS has been used in the subcritical region at Re=104. For higher Re, LES and DES have been used however they are computationally intensive. No numerical work has been reported for an ellipsoid at zero angle of attack. Chevray (1968) has done measurements in the near wake of ellipsoid at Re=2.75x105. Most experimental and numerical investigations of an ellipsoid are at an angle of attack. Given the extensive usage of RANS in the industry due to its economy, the focus of this work is to investigate the applicability of these models for flow prediction in the near wake in the supercritical region. Simulations are performed using commercial code CFX. The code is validated against well-established results for laminar and turbulent boundary layer flow over flat plate. Sufficient agreement has been obtained for laminar flow past sphere, against measured quantities such as separation location, separation bubble length and drag coefficient. The changes in wake structure, as a function of Re, are validated against experimental observations. The wake is steady and axisymmetric up to Re=200, from Re=200 to 270 it remains steady, loses axisymmetry but retains planar symmetry. Beyond Re=290 the wake becomes unsteady due to unstable recirculation bubble which leads to vortex shedding, while still retaining planar symmetry. The formation of typical horseshoe vortices is observed. Before the simulations in the supercritical region the low-Re k- model is validated in the subcritical region at Re=104 against measurements of skin friction, pressure coefficient and average drag coefficient. Very distinct wake fluctuations are observed and low-mode Strouhal number (St) agrees with the past measurements. Vortex sheet fluctuations are observed but the high-mode St calculation is based on crude measurement of the fluctuations. At Re=7.8x104 the trends in the drag, skin friction coefficient and pressure coefficient are in logical direction when compared with data at Re=104. However the near wake velocity data does not match with measurements qualitatively as well as quantitatively. The velocities in the present work are qualitatively justified based on the flow directions in the recirculation bubble. Various RANS models such as k-, k- and Reynolds stress model are used to predict flow past a sphere and an ellipsoid in the supercritical region. The results for sphere are compared against the measurements from Achenbach at Re=1.14x106 and that for ellipsoid are compared against the measurements from Chevray at Re=2.75x106. Four different turbulence models namely: high-Re k-, high-Re k-, low-Re k- and low-Re RSM. All the models over predict skin friction, which is due to simplistic treatment of boundary layer. The boundary layer is treated as fully turbulent as against the experiments where it transitions from laminar to turbulent. The k- model, being high-Re model, did not capture near wall flow and hence predicts an almost steady wake. It over predicts the drag, skin friction and results in delayed separation. However it did show the vortex sheet roll-up and release mechanism prominently which agreed with the experiments by Taneda. In all other models this mechanism is seen but intermittently and the wake is unsteady. Due to highly random wake orientation the low-mode St number is not calculated. RSM model shows certain consistency and St based on that is 0.24. All models show vortex sheet fluctuations with almost equal magnitude and frequency. The high-mode St is about 20 based on this. There is a need to have better understanding both experimentally and numerically about validity of this number. High frequency fluctuations are displayed in the time history of streamwise drag force for all the four models. The St based on this frequency is 4.32. Origin of these fluctuations needs investigation. The RSM model predicts the most accurate skin friction coefficient, pressure coefficient and the drag. For an ellipsoid, two cases are computed, one without blockage (referred to as base case) and another with 25% blockage (referred to as blockage case) to represent the typical blockage due to Pelton injector needle. Same models that were used for sphere are evaluated. Similar to the results for the sphere the maximum drag is predicted by k- model and the least by RSM model. Similarly the skin friction is high and the separation is delayed hence k-w model always predicts a smallest recirculation bubble. The differences in the form drag predictions are a direct result of the differences in upstream stagnation pressures, as there is no significant difference in the pressure curves obtained from different models including the rear stagnation pressure. The form drag is highest in k- model and lowest in RSM and so are the upstream stagnation pressures. The velocities in the near wake are predicted well by all the models. Pressure is predicted accurately before separation at x/D=-0.25. However it is significantly over-predicted after separation. To validate the pressure prediction independent simulation is done for an ellipsoid at an angle of attack of 100. The pressures on the windward and leeward side are in agreement with the measurements by Chesnakes et al. Similar to pressure prediction the turbulent intensity was predicted correctly before separation. After separation the trends agree but the intensities are higher than the measurements by about 10%. The results are not sensitivity to the inlet intensity levels except in the far field. The dissipation of the intensities is under predicted in simulations. The results from blockage case show similar trends as the base case. In the near wake the generation of turbulent kinetic energy is higher and the decay is slower in k- and RSM model compared to k-. This in turn results in higher eddy viscosity and higher velocities in the near wake for these models. Considering overall prediction accuracies RSM model predicts the drag, St and the separation location most accurately. It is important to predict the separation accurately for valid downstream results. For the cases with mild separation such as ellipsoid there is no significant difference in the velocities, however the pressure and drag prediction from RSM are closer to the experiments. The RSM model is more suitable both for sphere and ellipsoid at high Re. Validation of mean velocities and intensities in the near wake are needed to further support the choice of model. (for symbols pl see the original document)
24

Measurement of the muon neutrino inclusive charged current cross section on iron using the MINOS detector

Loiacono, Laura Jean 07 January 2011 (has links)
The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment [nu]-A, (MINER[nu]A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via [mathematical equation], where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the [nu subscript mu] inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current [nu subscript mu] interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux. / text
25

Pressure transients in wellbores : water hammer effects and implications for fracture diagnostics

Mondal, Somnath 17 February 2011 (has links)
A pressure transient is generated when a sudden change in injection rate occurs due to a valve closure or injector shutdown. This pressure transient, referred to as a water hammer, travels down the wellbore, is reflected back and induces a series of pressure pulses on the sand face. This study presents a semi-analytical model to simulate the magnitude, frequency and duration of water hammer in wellbores. An impedance model has been suggested that can describe the interface, between the wellbore and the formation. Pressure transients measured in five wells in an offshore field are history matched to validate the model. It is shown that the amplitude of the pressure waves may be up to an order of magnitude smaller at the sand face when compared with surface measurements. Finally, a model has been proposed to estimate fracture dimensions from water hammer data. / text
26

Design and Development of an Experimental Apparatus to Study Jet Fuel Coking in Small Gas Turbine Fuel Nozzles

Liang, Jason Jian 04 December 2013 (has links)
An experimental apparatus was designed and built to study the thermal autoxidative carbon deposition, or coking, in the fuel injection nozzles of small gas turbine engines. The apparatus is a simplified representation of an aircraft fuel system, consisting of a preheating section and a test section, which is a passage that simulates the geometry, temperatures, pressures and flow rates seen by the fuel injection nozzles. Preliminary experiments were performed to verify the functionality of the apparatus. Pressure drop across the test section was measured throughout the experiments to monitor deposit buildup, and an effective reduction in test section diameter due to deposit blockage was calculated. The preliminary experiments showed that the pressure drop increased more significantly for higher test section temperatures, and that pressure drop measurement is an effective method of monitoring and quantifying deposit buildup.
27

Design and Development of an Experimental Apparatus to Study Jet Fuel Coking in Small Gas Turbine Fuel Nozzles

Liang, Jason Jian 04 December 2013 (has links)
An experimental apparatus was designed and built to study the thermal autoxidative carbon deposition, or coking, in the fuel injection nozzles of small gas turbine engines. The apparatus is a simplified representation of an aircraft fuel system, consisting of a preheating section and a test section, which is a passage that simulates the geometry, temperatures, pressures and flow rates seen by the fuel injection nozzles. Preliminary experiments were performed to verify the functionality of the apparatus. Pressure drop across the test section was measured throughout the experiments to monitor deposit buildup, and an effective reduction in test section diameter due to deposit blockage was calculated. The preliminary experiments showed that the pressure drop increased more significantly for higher test section temperatures, and that pressure drop measurement is an effective method of monitoring and quantifying deposit buildup.
28

Fuel injector spray diagnostic development

Slator, Duncan January 2015 (has links)
New technologies are constantly developing towards the goal of increasing the performance of gas turbine engines while reducing pollutant emissions. The design of the combustion system is vital in the drive to reduce pollutants in order to meet legislative targets. As part of this, the fuel injector is crucial in preparing the fuel for combustion through atomization and correct mixing with the air flow. Thus, it is desirable to develop techniques to allow the analysis of performance in these key criteria and improve the understanding of both fuel injector aerodynamics and fuel atomisation. Particle Image Velocimetry (PIV) allows for spatially resolved velocity data of flow fields to be recorded and therefore enables the inspection of flow behaviour.
29

The effects of the compiler optimizations in embedded processors reliability

Lins, Filipe Maciel January 2017 (has links)
O recente avanço tecnológico dos processadores embarcados aumentou a complexidade dos compiladores e o uso de recursos heterogêneos, como Arranjo de Portas Programáveis em Campo (Field Programmable Gate Array - FPGA) e Unidade de Processamento Gráfico (Graphics Processing Unit - GPU), integrado aos processadores. Além disso, aumentou-se o uso de componentes de prateleira (Commercial off-the-shelf - COTS) em aplicações críticas, ao invés de chips tolerantes a radiação, pois os COTS podem ser mais baratos, flexíveis, terem uma rápida colocação no mercado e um menor consumo de energia. No entanto, mesmo com essas vantagens, os COTS são suscetíveis a falha sendo necessário garantir uma alta confiabilidade nos sistemas utilizados. Assim como, no caso de aplicações em tempo real, também se precisa respeitar os requisitos determinísticos. Como caso de estudo, este trabalho utiliza a Zynq que é um dispositivo COTS do tipo Sistema em Chip Totalmente Programável (All Programmable System on Chip - APSoC) no qual possui um processador ARM Cortex-A9 embarcado. Nesta pesquisa, investigou-se o impacto das falhas que afetam o arquivo de registradores na confiabilidade dos processadores embarcados. Para tanto, experimentos de injeção de falhas e de radiação de íons pesados foram realizados. Além do mais, avaliou-se como os diferentes níveis de otimização do compilador modificam o uso e a probabilidade de falha do arquivo de registradores do processador. Selecionou-se seis benchmarks representativos, cada um compilado com três níveis diferentes de otimização. Realizamos campanhas exaustivas de injeção de falhas para medir o Fator de Vulnerabilidade Arquitetural (Architectural Vulnerability Factor - AVF) de cada código e configuração, identificando os registradores que são mais propensos a gerar uma corrupção de dados silenciosos (Silent Data Corruption - SDC) ou uma interrupção funcional de evento único (Single Event Functional Interruption - SEFI). Também foram correlacionadas as variações de confiabilidade observadas com a utilização do arquivo de registradores. Finalmente, irradiamos com íons pesados dois dos benchmarks selecionados compilados com dois níveis de otimização. Os resultados mostram que mesmo com o melhor desempenho, o menor uso do arquivo de registradores ou o menor AVF não é garantido que as aplicações irão alcançar a maior Carga de Trabalho Média Entre Falhas (Mean Workload Between Failure - MWBF). Por exemplo, os resultados mostram que o melhor desempenho da aplicação Multiplicação de Matrizes (Matrix Multiplication - MxM) é alcançado no nível de otimização mais alta. No entanto, nos resultados dos experimentos de injeção de falhas, a maior confiabilidade é alcançada no menor nível de otimização que possuem os menores AVFs e o menor uso do arquivo de registradores. Os resultados também mostram que o impacto das otimizações está fortemente relacionado com o algoritmo executado e como o compilador faz esta otimização. / The recent advances in the embedded processors increase the compilers complexity, and the usage of heterogeneous resources such as Field Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU) integrated with the processors. Additionally, the increase in the usage of Commercial off-the-shelf (COTS) instead of radiation hardened chips in safety critical applications occurs because the COTS can be more flexible, inexpensive, have a fast time-to market and a lower power consumption. However, even with these advantages, it is still necessary to guarantee a high reliability in a system that uses a COTS for safety critical applications because they are susceptible to failures. Additionally, in the case of real time applications, the time requirements also need to be respected. As a case of study, this work uses the Zynq which is a COTS device classified as an All Programmable System-on-Chip (APSOC) and has an ARM Cortex-A9 as the embedded processor. In this research, the impact of faults that affect the register file in the embedded processors reliability was investigated. For that, fault-injection and heavy-ion radiation experiments were performed. Moreover, an evaluation of how the different levels of compiler optimization modify the usage and the failure probability of a processor register file. A set of six representative benchmarks, each one compiled with three different levels of compiler optimization. Exhaustive fault injection campaigns were performed to measure the registers Architectural Vulnerability Factor (AVF) of each code and configuration, identifying the registers that are more likely to generate Silent Data Corruption (SDC) or Single Event Functional Interruption (SEFI). Moreover, the observed reliability variations with register file utilization were correlated. Finally, two of the selected benchmarks, each one compiled with two different levels of optimization were irradiated in the heavy ions experiments. The results show that the best performance, the minor register file usage, or the lowest AVF does not always bring the highest Mean Workload Between Failures (MWBF). As an example, in the Matrix Multiplication (MxM) application, the best performance is achieved in the highest compiler optimization. However, in the fault injection, the higher reliability is obtained in the lower compiler optimization which has, the lower AVFs and the lower register file usage. Results also show that the impact of optimizations is strongly related to the executed algorithm and how the compiler optimizes them.
30

Sample Injector Fabrication and Delivery Method Development for Serial Crystallography using Synchrotrons and X-ray Free Electron Lasers

January 2015 (has links)
abstract: Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been determined otherwise (Appendix A). In this thesis I describe new sample delivery developments that are paramount to advancing this field beyond what has been accomplished to date. Soft Lithography was used to implement sample conservation in the Gas Dynamic Virtual Nozzle (GDVN). A PDMS/glass composite microfluidic injector was created and given the capability of millisecond fluidic switching of a GDVN liquid jet within the divergent section of a 2D Laval-like GDVN nozzle, providing a means of collecting sample between the pulses of current XFELs. An oil/water droplet immersion jet was prototyped that suspends small sample droplets within an oil jet such that the sample droplet frequency may match the XFEL pulse repetition rate. A similar device was designed to use gas bubbles for synchronized “on/off” jet behavior and for active micromixing. 3D printing based on 2-Photon Polymerization (2PP) was used to directly fabricate reproducible GDVN injectors at high resolution, introducing the possibility of systematic nozzle research and highly complex GDVN injectors. Viscous sample delivery using the “LCP injector” was improved with a method for dealing with poorly extruding sample mediums when using full beam transmission from the Linac Coherent Light Source (LCLS), and a new viscous crystal-carrying medium was characterized for use in both vacuum and atmospheric environments: high molecular weight Polyethylene Glycol. / Dissertation/Thesis / Doctoral Dissertation Physics 2015

Page generated in 0.0681 seconds