Spelling suggestions: "subject:"intégrale"" "subject:"intégrales""
121 |
Cohomology groups on hypercomplex manifolds and Seiberg-Witten equations on Riemannian foliationsWeber, Patrick 23 June 2017 (has links) (PDF)
The thesis comprises two parts. In the first part, we investigate various cohomological aspects of hypercomplex manifolds and analyse the existence of special metrics. In the second part, we define Seiberg-Witten equations on the leaf space of manifolds which admit a Riemannian foliation of codimension four. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
122 |
Méthodes d'intégration produit pour les équations de Fredholm de deuxième espèce : cas linéaire et non linéaire / Product integration methods for Fredholm integral equations of the second kind : linear case and nonlinear caseKaboul, Hanane 20 June 2016 (has links)
La méthode d'intégration produit a été proposée pour résoudre des équations linéaires de Fredholm de deuxième espèce singulières dont la solution exacte est régulière, au moins continue. Dans ce travail on adapte cette méthode à des équations dont la solution est juste intégrable. On étudie également son extension au cas non linéaire posé dans l'espace des fonctions intégrables. Ensuite, on propose une autre manière de mettre en oeuvre la méthode d'intégration produit : on commence par linéariser l'équation par une méthode de type Newton puis on discrétise les itérations de Newton par la méthode d'intégration produit / The product integration method has been proposed for solving singular linear Fredholm equations of the second kind whose exact solution is smooth, at least continuous. In this work, we adapt this method to the case where the solution is only integrable. We also study the nonlinear case in the space of integrable functions. Then, we propose a new version of the method in the nonlinear framework : we first linearize the eqaution by a Newton type method and then discretize the Newton iterations by the product integration method
|
123 |
Un cadre possibiliste pour l'aide à la décision multicritère et multi-acteurs - Application au marketing et au benchmarking de sites e-commerceDenguir, Afef 12 March 2007 (has links) (PDF)
Cette thèse se situe dans le cadre d'un processus d'aide à la décision multicritère et multi-acteurs. Elle porte sur la gestion de certains aspects de l'incertitude inhérente à l'évaluation multicritère dans un tel processus. Nous proposons à cet égard une modélisation et une formalisation mathématique de ce processus via une représentation possibiliste des évaluations. Nous avons également proposé de caractériser les distributions de possibilité relatives aux évaluations des différents critères par un ensemble d'indicateurs de description tels que l'imprécision, la divergence, etc., permettant ainsi une interprétation quantitative plus aisée pour le décideur. Nous avons considéré des opérateurs d'agrégation de la famille de l'intégrale de Choquet pour propager les distributions d'évaluations de critère ainsi que les indicateurs de description de distribution, en raison de leur capacité à prendre en compte des interactions entre les critères tout en gardant un caractère de moyenne “généralisée” aisément compréhensible par le décideur. Concernant la propagation des indicateurs, nous avons établi deux théorèmes clés, l'un portant sur l'union des valeurs supérieures et inférieures de l'intervalle moyen d'une distribution de possibilité et l'autre sur l'imprécision moyenne d'une distribution de possibilité la définissant comme la somme des imprécisions moyennes de distributions partielles adjacentes dont elle est l'union. Par ailleurs, Le concept d'explication de la décision a particulièrement constitué le noyau de notre modèle de processus d'aide à la décision. Ainsi à partir des théorèmes établis, nous avons proposé des fonctionnalités explicatives basées sur une quantification de la contribution d'indicateurs décisionnels des évaluations de critères à l'évaluation globale. Nous avons ainsi montré que chaque indicateur relatif à la distribution de l'évaluation globale s'écrit simplement comme une somme pondérée de contributions de critères. Sur le plan applicatif, nous nous sommes intéressés à la formalisation du processus de gestion de mesures de satisfaction de clients dans le contexte de la e-recommandation pour le e-commerce. Nous avons présenté une méthode d'évaluation multicritère des sites de e-commerce par une communauté d'internautes qui permet à la fois de prendre en compte l'importance relative des critères d'évaluation et les interactions entre ceux-ci, mais aussi de gérer différents aspects de l'incertitude inhérents à ce processus d'évaluation. Nous avons développé un prototype logiciel servant de support d'aide à la décision. Cet outil labellisé “Feedback Based Recommendation System” (FBRS) permet de fournir aux managers d'un site de e-commerce, en particulier les équipes marketing et benchmarking, des éléments qui leur permettent de comprendre les scores qui ont été attribués à leur site lors de l'évaluation par les clients. Nous avons montré comment il est alors possible d'identifier les critères les plus influents dans cette évaluation et comment utiliser cette analyse de contributions à des fins de suivi et de management des performances par les responsables marketing et benchmarking. Ces fonctionnalités sont ainsi une base de travail pour ces derniers pour améliorer les stratégies existantes.
|
124 |
Certain problems concerning polynomials and transcendental entire functions of exponential typeHachani, Mohamed Amine 06 1900 (has links)
Soit P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré n et M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$
D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions. / Let P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ a polynomial of degree n and M:=\sup_{|z|=1}|P(z)|$. Without any additional restriction, we know that $|P '(z) | \leq Mn$ for $| z | \leq 1$ (Bernstein's inequality). Now if we assume that the zeros of the polynomial $P$ are outside the circle $| z | = k$, which improvement could be made to the Bernstein inequality? It is already known [{\bf \ref{Mal1}}] that in the case where $k \geq 1$, one has$$ (*) \qquad | P '(z) | \leq \frac{n}{1 + k} M \qquad (| z | \leq 1),$$ what would it be in the case where $k < 1$? What is the analogous inequality for an entire function of exponential type $\tau$? On the other hand, if we assume that $P$ has all its zeros in $| z | \geq k \, \, (k \geq 1),$ which is the estimate of $| P '(z) |$ on the unit circle, in terms of the first four terms of its Maclaurin series expansion. This thesis comprises a contribution to the analytic theory of polynomials in the light of these problems.
|
125 |
Dispositif didactique pour l'étude de pratiques culturelles à l'aide du roman migrant, Passages, d'Émile Ollivier : une recherche-développementFévrier, Gilberte January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
126 |
Études de l’effet tunnel des spins quantiques macroscopiquesOwerre, Solomon Akaraka 10 1900 (has links)
Dans cette thèse, nous présentons quelques analyses théoriques récentes ainsi que des observations expérimentales de l’effet tunnel quantique macroscopique et des tran- sitions de phase classique-quantique dans le taux d’échappement des systèmes de spins élevés. Nous considérons les systèmes de spin biaxial et ferromagnétiques. Grâce à l’approche de l’intégral de chemin utilisant les états cohérents de spin exprimés dans le système de coordonnées, nous calculons l’interférence des phases quantiques et leur distribution énergétique. Nous présentons une exposition claire de l’effet tunnel dans les systèmes antiferromagnétiques en présence d’un couplage d’échange dimère et d’une anisotropie le long de l’axe de magnétisation aisé. Nous obtenons l’énergie et la fonc- tion d’onde de l’état fondamentale ainsi que le premier état excité pour les systèmes de spins entiers et demi-entiers impairs. Nos résultats sont confirmés par un calcul utilisant la théorie des perturbations à grand ordre et avec la méthode de l’intégral de chemin qui est indépendant du système de coordonnées. Nous présentons aussi une explica- tion claire de la méthode du potentiel effectif, qui nous laisse faire une application d’un système de spin quantique vers un problème de mécanique quantique d’une particule. Nous utilisons cette méthode pour analyser nos modèles, mais avec la contrainte d’un champ magnétique externe ajouté. La méthode nous permet de considérer les transitions classiques-quantique dans le taux d’échappement dans ces systèmes. Nous obtenons le diagramme de phases ainsi que les températures critiques du passage entre les deux régimes. Nous étendons notre analyse à une chaine de spins d’Heisenberg antiferro- magnétique avec une anisotropie le long d’un axe pour N sites, prenant des conditions frontière périodiques. Pour N paire, nous montrons que l’état fondamental est non- dégénéré et donné par la superposition des deux états de Néel. Pour N impair, l’état de Néel contient un soliton, et, car la position du soliton est indéterminée, l’état fondamen- tal est N fois dégénéré. Dans la limite perturbative pour l’interaction d’Heisenberg, les fluctuations quantiques lèvent la dégénérescence et les N états se réorganisent dans une
bande. Nous montrons qu’à l’ordre 2s, où s est la valeur de chaque spin dans la théorie des perturbations dégénérées, la bande est formée. L’état fondamental est dégénéré pour s entier, mais deux fois dégénéré pour s un demi-entier impair, comme prévu par le théorème de Kramer / This thesis presents recent theoretical analyses together with experimental observa- tions on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. We consider biaxial ferromagnetic spin systems. Using the coordinate dependent spin coherent state path integral, we obtain the quantum phase interference and the energy splitting of these systems. We also present a lucid exposition of tunneling in antiferromagnetic exchange-coupled dimer, with easy-axis anisotropy. Indeed, we obtain the ground state, the first excited state, and the energy splitting, for both integer and half-odd integer spins. These results are then corroborated using per- turbation theory and the coordinate independent spin coherent state path integral. We further present a lucid explication of the effective potential method, which enables one to map a spin Hamiltonian onto a particle Hamiltonian; we employ this method to our models, however, in the presence of an applied magnetic field. This method enables us to investigate quantum-classical phase transitions of the escape rate of these systems. We obtain the phase boundaries, as well as the crossover temperatures of these phase transi- tions. Furthermore, we extend our analysis to one-dimensional anisotropic Heisenberg antiferromagnet, with N periodic sites. For even N, we show that the ground state is non-degenerate and given by the coherent superposition of the two Neél states. For odd N, however, the Neél state contains a soliton; as the soliton can be placed anywhere along the ring, the ground state is, indeed, N-fold degenerate. In the perturbative limit (weak exchange interaction), quantum fluctuation stemming from the interaction term lifts this degeneracy and reorganizes the states into a band. We show that this occurs at order 2s in (degenerate) perturbation theory. The ground state is non-degenerate for inte- ger spin, but degenerate for half-odd integer spin, in accordance with Kramers’ theorem
|
127 |
Fixed point results for multivalued contractions on graphs and their applicationsDinevari, Toktam 06 1900 (has links)
Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions
multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis
d’un graphe. Nous illustrons également les applications de ces résultats à des
inclusions intégrales et à la théorie des fractales.
Cette thèse est composée de quatre articles qui sont présentés dans quatre
chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour
des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des
points connexes dans des points connexes et contractent la longueur des chemins.
Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique
d’existence d’un point fixe est également établie pour une famille de Gcontractions
multivoques faibles. Dans le chapitre 2, nous établissons l’existence
de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des
conditions de type de monotonie mixte. L’existence de solutions pour des systèmes
d’inclusions différentielles avec conditions initiales ou conditions aux limites
périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes
de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes
de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous
construisons un espace métrique muni d’un graphe G et une G-contraction appropriés.
En utilisant les points fixes de cette G-contraction, nous obtenons plus
d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le
chapitre 4, nous considérons des contractions multivoques définies sur un espace
de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des
fonctions multivoques qui envoient des points connexes dans des points connexes
et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions
des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS).
Nous donnons des conditions assurant l’existence d’un attracteur unique à un
H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions
multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons
un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que
ses points fixes sont des sous-attracteurs du H-IIFS. / In this thesis, we present fixed point theorems for multivalued contractions defined
on metric spaces, and, on gauge spaces endowed with directed graphs. We also
illustrate the applications of these results to integral inclusions and to the theory
of fractals. chapters. In Chapter 1, we establish fixed point results for the maps, called multivalued
weak G-contractions, which send connected points to connected points
and contract the length of paths. The fixed point sets are studied. The homotopical
invariance property of having a fixed point is also established for a
family of weak G-contractions. In Chapter 2, we establish the existence of solutions
of systems of Hammerstein integral inclusions under mixed monotonicity
type conditions. Existence of solutions to systems of differential inclusions with
initial value condition or periodic boundary value condition are also obtained.
Our results rely on our fixed point theorems for multivalued weak G-contractions
established in Chapter 1. In Chapter 3, those fixed point results for multivalued
G-contractions are applied to graph-directed iterated function systems. More
precisely, we construct a suitable metric space endowed with a graph G and an
appropriate G-contraction. Using the fixed points of this G-contraction, we obtain
more information on the attractors of graph-directed iterated function systems. In Chapter 4, we consider multivalued maps defined on a complete gauge space
endowed with a directed graph. We establish a fixed point result for maps which
send connected points into connected points and satisfy a generalized contraction
condition. Then, we study infinite graph-directed iterated function systems
(H-IIFS). We give conditions insuring the existence of a unique attractor to an
H-IIFS. Finally, we apply our fixed point result for multivalued contractions on
gauge spaces endowed with a graph to obtain more information on the attractor
of an H-IIFS. More precisely, we construct a suitable gauge space endowed with
a graph G and a suitable multivalued G-contraction such that its fixed points are
sub-attractors of the H-IIFS.
|
128 |
Computational strategies for impedance boundary condition integral equations in frequency and time domains / Stratégies computationelles pour des équations intégrales avec conditions d'impédance aux frontières en domaines fréquentiel et temporelDély, Alexandre 15 March 2019 (has links)
L'équation intégrale du champ électrique (EFIE) est très utilisée pour résoudre des problèmes de diffusion d'ondes électromagnétiques grâce à la méthode aux éléments de frontière (BEM). En domaine fréquentiel, les systèmes matriciels émergeant de la BEM souffrent, entre autres, de deux problèmes de mauvais conditionnement : l'augmentation du nombre d'inconnues et la diminution de la fréquence entrainent l'accroissement du nombre de conditionnement. En conséquence, les solveurs itératifs requièrent plus d'itérations pour converger vers la solution, voire ne convergent pas du tout. En domaine temporel, ces problèmes sont également présents, en plus de l'instabilité DC qui entraine une solution erronée en fin de simulation. La discrétisation en temps est obtenue grâce à une quadrature de convolution basée sur les méthodes de Runge-Kutta implicites.Dans cette thèse, diverses formulations d'équations intégrales utilisant notamment des conditions d'impédance aux frontières (IBC) sont étudiées et préconditionnées. Dans une première partie en domaine fréquentiel, l'IBC-EFIE est stabilisée pour les basses fréquences et les maillages denses grâce aux projecteurs quasi-Helmholtz et à un préconditionnement de type Calderón. Puis une nouvelle forme d'IBC est introduite, ce qui permet la construction d'un préconditionneur multiplicatif. Dans la seconde partie en domaine temporel, l'EFIE est d'abord régularisée pour le cas d'un conducteur électrique parfait (PEC), la rendant stable pour les pas de temps larges et immunisée à l'instabilité DC. Enfin, unerésolution efficace de l'IBC-EFIE est recherchée, avant de stabiliser l'équation pour les pas de temps larges et les maillages denses. / The Electric Field Integral Equation (EFIE) is widely used to solve wave scattering problems in electromagnetics using the Boundary Element Method (BEM). In frequency domain, the linear systems stemming from the BEM suffer, amongst others, from two ill-conditioning problems: the low frequency breakdown and the dense mesh breakdown. Consequently, the iterative solvers require more iterations to converge to the solution, or they do not converge at all in the worst cases. These breakdowns are also present in time domain, in addition to the DC instability which causes the solution to be completely wrong in the late time steps of the simulations. The time discretization is achieved using a convolution quadrature based on Implicit Runge-Kutta (IRK) methods, which yields a system that is solved by Marching-On-in-Time (MOT). In this thesis, several integral equations formulations, involving Impedance Boundary Conditions (IBC) for most of them, are derived and subsequently preconditioned. In a first part dedicated to the frequency domain, the IBC-EFIE is stabilized for the low frequency and dense meshes by leveraging the quasi-Helmholtz projectors and a Calderón-like preconditioning. Then, a new IBC is introduced to enable the development of a multiplicative preconditioner for the new IBC-EFIE. In the second part on time domain,the EFIE is regularized for the Perfect Electric Conductor (PEC) case, to make it stable in the large time step regime and immune to the DC instability. Finally, the solution of the time domain IBC-EFIE is investigated by developing an efficient solution scheme and by stabilizing the equation for large time steps and dense meshes.
|
129 |
Contribution à la formalition de bilans/états de santé multi-niveaux d'un système pour aider à la prise de décision en maintenance : agrégation d'indicateurs par l'intégrale de Choquet / Contribution to the formalization of health assessment for a multi-layers system to aid maintenance decision making : Choquet integral-based aggregation of heterogeneous indicatorsAbichou, Bouthaïna 18 April 2013 (has links)
Dans cette thèse est défendu l'intérêt d'évaluer la santé d'un système/objet industriel multi-composants à travers un bilan de santé multi-niveaux hiérarchiques. Elle a donc pour objet principal de justifier les éléments essentiels du concept de bilan de santé générique qui représente l'état réel d'un système sous la forme d'un vecteur d'indicateurs de différentes natures. Vis-à-vis de ce fondement, la thèse se focalise plus spécifiquement sur les fonctions de détection des anomalies-normalisation et agrégation d'indicateurs pour élaborer un index synthétique représentatif de l'état de santé global pour chaque élément du système. Il est ainsi proposé, une nouvelle approche de détection conditionnelle des anomalies. Cette approche a pour intérêt de quantifier la déviation pour chaque indicateur par rapport à son mode de comportement nominal tout en prenant en compte le contexte dans lequel évolue le système. Une extension à l'exploitation de l'intégrale de Choquet en tant qu'opérateur d'agrégation des indicateurs est aussi proposée. Cette extension concerne, d'une part, un processus d'apprentissage non supervisé des capacités pour le niveau le plus inférieur dans l'abstraction, à savoir celui des composants, et d'autre part, une approche de mise en oeuvre de leur inférence d'un niveau à l'autre. Ces propositions sont appliquées sur un moteur diesel de navire, système essentiel du projet BMCI du pôle MER-PACA dans lequel s'inscrit cette thèse / This work is addressing the health assessment of a multi-component system by means of multi-levels health check-up. Thus scientific Ph. D. objective aims to establish items of a generic health check-up concept. It focuses specifically on the functions of anomaly detection, normalization and aggregation of different indicators to develop a synthetic index representing the overall health status for each element within the system. In that way, it is proposed a new approach for detecting conditional anomalies. This approach has the advantage of quantifying the deviation for each indicator compared to its nominal behavior while taking into account the context in which the system operates. An extension of the Choquet integral used as an operator aggregating indicators is also proposed. This extension regards on the one hand, a process of an unsupervised learning of the capacity coefficients for the lowest level of abstraction, namely components level, and on the other hand, an approach to inference them from one level to another. These contributions are implemented on a ship diesel engine which is the most critical system for the BMCI project of the MER-PACA pole to which this thesis is attached
|
130 |
Techniques non-additives d'estimation de la densité de probabilité / Non-additive techniques for probability density estimationNehme, Bilal 20 December 2010 (has links)
Dans cette thèse, nous proposons une nouvelle méthode d'estimation non-paramétrique de la densité de probabi lité. Cette méthode d'estimation imprécise combine la théorie de distribution de Schwartz et la théorie de possibilité. La méthode d'estimation que nous proposons est une extension de la méthode d'estimation à noyau. Cette extension est basée sur une nouvelle méthode de représentation de la notion de voisinage sur laquelle s'appuie l'estimation à noyau. Cette représentation porte le nom de noyau maxitif. L'estimation produite est de nature intervalliste. Elle est une enveloppe convexe d'un ensemble d'estimation de Parzen-Rosenblatt obtenus avec un ensemble de noyaux contenus dans une famille particulière. Nous étudions un certain nombre des propriétés théoriques liées à cette nouvelle méthode d'estimation. Parmi ces propriétés, nous montrons un certain type de convergence de cet estimateur. Nous montrons aussi une aptitude particulière de ce type d'estimation à quantifier l'erreur d'estimation liée à l'aspect aléatoire de la distribution des observations. Nous proposons un certain nombre d'algorithmes de faible complexité permettant de programmer facilement les méthodes que nous proposons / This manuscript, proposes a new nonparametric method for estimating the probability density function. This estimation method combines the Schwartz distribution theory and the possibility theory. It is an extension of the kernel density estimator that leads to imprecise estimation. It is based on a new method for modeling neighborhood. The interval valued estimate it produces is a convex envelope of the Parzen-Rosenblatt estimates obtained with kernels belonging to a coherent convex family. We propose some theoretical properties of this new method. Among these properties, we have shown a kind of convergence of this estimator. We also shown a particular aptitude of this estimator to quantify the error due to random variation in observation. We also propose very low complexity algorithms to compute the proposed methods.
|
Page generated in 0.0588 seconds