• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 36
  • 13
  • 1
  • 1
  • Tagged with
  • 185
  • 67
  • 40
  • 39
  • 31
  • 24
  • 23
  • 22
  • 22
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Contribution aux méthodes numériques pour la simulation d'écoulements de fluides, d'électromagnétisme et de physique des plasmas

Salmon, Stéphanie 26 November 2008 (has links) (PDF)
Ce manuscrit comporte trois parties distinctes, la première concerne la simulation numérique d'écoulements de fluides. La deuxième partie porte sur les équations de l'électromagnétisme et leur couplage avec les équations cinétiques de Vlasov dans le cadre de simulations numériques en physique des plasmas. La dernière partie évoque rapidement des travaux qui ont donné lieu à des publications mais qui ne rentrent pas complètement dans un des deux cadres abordés précédemment. Dans la première partie, l'objectif est d'étendre aux maillages triangulaires non structurés une méthode numérique éprouvée pour résoudre les équations de Stokes bidimensionnelles : la méthode Marker And Cell qui a été développée sur des maillages en quadrilatères quasi-réguliers dans les années 60. L'idée proposée pour cela est de résoudre le problème de Stokes avec pour variables le tourbillon, la vitesse et la pression. Alors que les résultats numériques obtenus sur des maillages réguliers sont satisfaisants, ceux sur des maillages non structurés ne le sont pas. Il s'est avéré lors de l'étude théorique que ce problème est un problème de stabilité. On montre théoriquement et numériquement que la formulation tourbillon-vitesse-pression est une généralisation de la formulation fonction courant-tourbillon permettant la prise en compte de conditions limites plus générales. L'instabilité, due à des fonctions harmoniques discrètes, peut être levée en utilisant de véritables fonctions harmoniques, calculées à l'aide de leur représentation intégrale, dans le schéma numérique. On résout ainsi l'instabilité de la formulation fonction courant-tourbillon et on améliore les précédents résultats de convergence connus de cette formulation. En particulier, on démontre alors une convergence en moyenne quadratique du tourbillon de l'ordre de 3/2 à 2 dans les cas les plus réguliers (contre un-demi avant). Puis on utilise le fait que la formulation tourbillon-vitesse-pression est équivalente à la formulation fonction courant-tourbillon pour redéfinir une nouvelle formulation tourbillon-vitesse-pression. En effet, il est bien connu que la formulation classique en fonction courant-tourbillon (n'utilisée qu'en deux dimensions d'espace) est mal posée lorsque l'on cherche le tourbillon dans l'espace de Sobolev H1 car son gradient n'est alors pas contrôlé, mais bien posée dans un autre espace de fonctions moins régulières. On étend alors ce résultat au cas tri-dimensionnel et l'on obtient une nouvelle formulation en tourbillon-vitesse-pression bien posée dans un nouvel espace. On démontre aussi théoriquement que ce nouvel espace est bien celui introduit en 2D, ce qu'on confirme par des résultats numériques. La deuxième partie concerne la résolution d'équations cinétiques intervenant dans la simulation directe des plasmas et des faisceaux de particules chargées (modèles de Vlasov-Poisson ou Vlasov-Maxwell). Grâce à l'augmentation de la puissance de calculs des ordinateurs, la simulation de l'évolution des plasmas et des faisceaux de particules basée sur une résolution directe de l'équation de Vlasov sur un maillage de l'espace des phases devient une alternative aux méthodes particulaires (Particle In Cell) habituellement employées. La force de ces simulations directes réside dans le fait qu'elles ne sont pas bruitées (contrairement aux méthodes PIC) et que l'approximation est de même résolution sur tout l'espace des phases, en particulier dans les régions à faible densité de particules où des phénomènes physiques importants ont lieu. L'inconvénient principal est que beaucoup de points sont inutiles car la fonction de distribution des particules y est nulle, ce qui rend ces méthodes directes coûteuses en temps de calcul. On introduit alors une méthode de résolution directe de l'équation de Vlasov sur un maillage {\bf{mobile}} de l'espace des phases. Ce qui permet de ne mailler que la partie de l'espace des phases sur laquelle la fonction de distribution des particules est {\emph{a priori}} non nulle. Nous avons utilisé avec succès cette méthode de maillage mobile en 1D afin de simuler un problème d'interaction laser-plasma. Nous introduisons donc un maillage mobile de l'espace des phases qui suit parfaitement le développement des instabilités et permet de réduire drastiquement le temps de calcul. Nous avons aussi obtenu les premiers résultats d'une méthode de maillage mobile en 4D en couplant le maillage mobile et une méthode de décomposition de domaines. \\ En ce qui concerne la résolution des équations de Vlasov-Maxwell : nous travaillons sur le développement d'un solveur Maxwell éléments finis d'arêtes d'ordre élevé couplé à un code PIC en trois dimensions d'espaces (6D de l'espace des phases). Un point important afin que le couplage fonctionne est que l'équation de conservation de la charge doit être vérifiée au niveau numérique à chaque pas de temps. Ce qui implique que le courant obtenu à partir de l'évolution de l'équation de Vlasov doit être calculé d'une façon bien particulière. Les premiers résultats obtenus en 2D confirment que la méthode de calcul du courant proposée conserve bien la charge comme attendu.
92

Aspects semi-classiques de la quantification géométrique

CHARLES, Laurent 15 December 2000 (has links) (PDF)
Dans cette thèse, nous étudions les opérateurs de Berezin-Toeplitz sur les variétés kähleriennes et leur généralisation aux variétés symplectiques compactes. Le premier chapitre porte sur l'intégrale de Feynman : nous exprimons le noyau du propagateur quantique à l'aide d'une intégrale de Wiener en fonction de l'action classique. Dans le second chapitre, nous proposons un ansatz pour le noyau des opérateurs de Berezin-Toeplitz, grâce auquel on donne une preuve directe des résultats connus sur ces opérateurs et l'on décrit le calcul des symboles covariants et contravariants en fonction de la métrique kählerienne. Ceci mène à la définition de plusieurs star-produits sur les variétés kähleriennes par une formule universelle. Dans le troisième chapitre, nous généralisons l'ansatz précédent afin de quantifier les sous-variétés lagrangiennes des variétés kähleriennes. Nous appliquons ceci de diverses manières : construction de quasi-modes, énoncé des conditions de Bohr-Sommerfeld, quantification des symplectomorphismes, réalisation d'équivalence microlocale. En comparaison avec la théorie des opérateurs pseudodifférentiels, les invariants de la géométrie des cotangents sont remplacés par des invariants de la géométrie kählerienne. Dans le dernier chapitre, nous entreprenons la généralisation des résultats précédents aux variétés symplectiques compactes, notamment nous quantifions les sous-variétés lagrangiennes et décrivons le calcul symbolique des opérateurs de Berezin-Toeplitz.
93

Approximation et indépendance algébrique de quasi-périodes de variétés abéliennes

Grinspan, Pierre 15 September 2000 (has links) (PDF)
Périodes et ``quasi-périodes'' (aussi appelées, resp., périodes de première et deuxième espèce) d'une variété abélienne $A$ définie sur un sous-corps de $\CC$ s'obtiennent par intégration, le long des chemins fermés sur $A(\CC)$, des différentielles rationnelles sur $A$, méromorphes et sans résidus de sorte que ces intégrales soient bien définies; les premières sont obtenues en se restreignant aux différentielles régulières. Au premier chapitre de la thèse, la ``méthode modulaire'' de Barré, Diaz, Gramain, Philibert et Nesterenko est utilisée et quelque peu raffinée pour obtenir notamment une mesure d'approximation algébrique du quotient d'une période d'une courbe elliptique définie sur $\bar\QQ$ par sa quasi-période associée; ceci améliore un résultat récent de N. Saradha, en lui faisant presque contenir celui obtenu en 1980 par Reyssat avec la ``méthode elliptique''. Puis, dans la deuxième partie, nous étudions diverses extensions possibles des théorèmes de Chudnovsky (des années 70) sur l'indépendance algébrique de quasi-périodes de courbes elliptiques; ceci inclut des extensions aux variétés abéliennes de dimension quelconque, ainsi que des résultats d'approximation (algébrique) simultanée précisant les assertions d'indépendance algébrique. Au coeur des deux parties, bien que celles-ci soient par ailleurs très différentes, se trouve une astuce suggérée par Chudnovsky au début des années 80, consistant à faire apparaître et exploiter des propriétés de ``G-fonctions'' (ou ``condition d'Eisenstein'' de Polya et Szegö) dans les estimations arithmétiques de la preuve de transcendance; pour ce faire on utilise, dans la deuxième partie, des généralisations en plusieurs variables du théorème d'Eisenstein et de la fonction sigma de Weierstrass qui avaient servi à Chudnovsky, et dans la première, les liens entre les fonctions modulaires (thêta notamment) et hypergéométriques.
94

Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus

Helluy, Philippe 18 January 1994 (has links) (PDF)
Cette thèse porte sur la résolution théorique et numérique des équations de Maxwell dans le domaine temporel ou fréquentiel. Dans une première partie, on démontre l'existence et l'unicité mathématique de la solution du problème d'évolution. On s'intéresse également au comportement asymptotique en temps de cette solution lorsque le second membre des équations est sinusoïdal en temps. L'approche utilisée fait appel à la théorie des systèmes hyperboliques linéaires du premier ordre, au théorème de Hille-Yosida, aux principes d'amplitude-limite et d'absorption-limite, ainsi qu'à des théorèmes de traces (dans le cas du problème aux limites). Dans un second temps, on développe une approximation par éléments finis discontinus du problème fréquentiel, basée sur une décomposition de la matrice des flux en partie positive et négative (méthode de flux-splitting). Cette approche autorise l'utilisation de maillages totalement déstructurés. Une étude d'erreur lorsque le pas h du maillage tend vers zéro est proposée. Un algorithme itératif de résolution du problème discret, basé sur une décomposition de domaine sans recouvrement, est ensuite décrit. On démontre sa convergence vers l'unique solution discrète. L'implémentation sur un ordinateur à architecture massivement parallèle (IPSC 860) a été réalisée. Enfin, on construit une équation intégrale adaptée à la méthode, pour la résolution des problèmes en domaine non borné. Des expériences numériques sont décrites dans le cas d'éléments finis de type P0 (approximation constante par élément).
95

Imagerie de Réflecteurs Electromagnétiques en Régime Diffusif : Méthode et Applications en Géophysique

Tournerie, Benoît 01 December 1995 (has links) (PDF)
L'imagerie électromagnétique basses fréquences développée actuellement essaie de reconstruire, à partir de données de terrain, la loi de conductivité s(r) de la zone étudiée. On montre que cette approche est similaire à l'imagerie des vitesses sismiques. Ces méthodes n'offrent généralement pas la possibilité de cartographier précisément les limites des objets étudiés. L'objet de cette étude a été de développer une méthode d'imagerie permettant de visualiser des interfaces séparant deux milieux de conductivité différente. Afin de benéficier des connaissances du domaine sismique, nous avons abordé le problème par l'étude de la transformation d'un champ diffusif en un dual propagatif. Ce lien est réalisé via une équation intégrale de Fredholm de première espèce que l'on doit inverser. Deux approches ont été suivies. La première consiste à trouver une solution à cette équation par décomposition en fonctions et valeurs propres de l'opérateur d'intégration. Celle-ci nous ci permis de rendre compte du caractère mal posé de l'inversion face à des données bruitées et/ou incomplètes,et ainsi, de préciser l'importance d'introduire des informations a priori sur le modele pour régulariser le problème inverse. Dans la seconde approche, nous avons développé une inversion numérique de l'équation intégrale. Nous avons utilisé un algorithme de recuit simulé couplé avec la méthode de descente du simplexe. La réunion de ces deux méthodes nous permet d'explorer le domaine continu des solutions. Des données synthétiques 10 et 20 ont été traitées (l'inversion 20 se fait par juxtaposition d'inversions 10). Les résultats de ces inversions montrent que la position des réflecteurs est résolue correctement (tout du moins pour les premiers d'entre eux). Ceci est très important pour le développement futur d'une migration des images obtenues. La loi de conductivité s(r) peut être estimée approximativement à partir des amplitudes des réflecteurs. Une application de cette méthode d'imagerie a été réalisée sur des données enregistrées au Canada (données Coprod2 fournies par A. Jones (Geological Survey of Canada)). L'inversion séparée des données des deux modes de polarisations TE et TM nous montre la présence d'un premier réflecteur s'interprétant comme la limite entre le Paléozoïque supérieur et inférieur, et d'un second, plus profond, représentant le sommet d'un bloc conducteur sans doute à l'origine de l'anomalie de conductivité NACP (North American Central Plain) préalablement identifiée par des données GDS (Geomagnetic Oeep Sounding). Une seconde application traite des données que nous avons recueillies sur le terrain le long d'un profil de sismique réflexion en Bretagne (France). Les résultats préliminaires de l'analyse des résistivités apparentes et des phases de la partie nord du profil met en évidence deux zones situées de part et d'autre du contact de la Baie de la Fresnaye avec des contrastes en conductivité opposés: Résistant sur Conducteur (R/C) au nord du contact et Conducteur sur Résistant (C/R) au sud.
96

Analyse idempotente en dimension infinie : le rôle des ensembles ordonnés continus

Poncet, Paul 14 November 2011 (has links) (PDF)
L'analyse idempotente étudie les espaces linéaires de dimension infinie dans lesquels l'opération maximum se substitue à l'addition habituelle. Nous démontrons un ensemble de résultats dans ce cadre, en soulignant l'intérêt des outils d'approximation fournis par la théorie des domaines et des treillis continus. Deux champs d'étude sont considérés : l'intégration et la convexité. En intégration idempotente, les propriétés des mesures maxitives à valeurs dans un domaine, telles que la régularité au sens topologique, sont revues et complétées ; nous élaborons une réciproque au théorème de Radon-Nikodym idempotent ; avec la généralisation Z de la théorie des domaines nous dépassons différents travaux liés aux représentations de type Riesz des formes linéaires continues sur un module idempotent. En convexité tropicale, nous obtenons un théorème de type Krein-Milman dans différentes structures algébriques ordonnées, dont les semitreillis et les modules idempotents topologiques localement convexes ; pour cette dernière structure nous prouvons un théorème de représentation intégrale de type Choquet : tout élément d'un compact convexe K peut être représenté par une mesure de possibilité supportée par les points extrêmes de K. Des réflexions sont finalement abordées sur l'unification de l'analyse classique et de l'analyse idempotente. La principale piste envisagée vient de la notion de semigroupe inverse, qui généralise de façon satisfaisante à la fois les groupes et les semitreillis. Dans cette perspective nous examinons les propriétés "miroir" entre semigroupes inverses et semitreillis, dont la continuité fait partie. Nous élargissons ce point de vue en conclusion.
97

Invariants des hypermatrices

Luque, Jean-Gabriel 12 December 2008 (has links) (PDF)
Ce mémoire est consacré à la théorie des invariants des hypermatrices. <br />L'origine de la théorie des invariants date du milieu du XIX ième siècle. Le problème général, tel qu'il fut énoncé par Cayley en 1843, consiste à trouver une description de l'algèbre des polynômes invariants dans le but d'automatiser le raisonnement géométrique. <br />Assez rapidement de fortes limitations dues à la taille des calculs se manifestèrent et cette discipline se trouva de moins en moins étudiées jusque dans les années 1950 lorsque fut développée la théorie géométrique des invariants. De nos jours, l'accroissement de la puissance de calcul permet de compléter d'anciens travaux qui n'avaient pu aboutir faute de moyen informatique ainsi que de traiter de nouveaux cas. L'intérêt de cette discipline s'est accru depuis peu grâce à la découverte d'un lien avec une notion issue de la mécanique quantique et qui est à la base de l'informatique quantique: l'intrication. Le phénomène d'intrication est apparu en 1937, sous la plume sceptique de trois physiciens, Einstein , Podolsky et Rozen qui voyaient en lui une preuve de la non consistance de la théorie quantique, et est connu depuis sous le nom de paradoxe EPR. Depuis, de nombreuses expériences, dont la célèbre expérience d'Alain Aspect, ont confirmé l'existence des états intriqués.<br />Ce mémoire se décompose en deux parties. Dans la première, nous exposons les techniques fondamentales de la théorie des invariants ainsi que le lien avec l'intrication tel qu'il a été proposé par A. Klyachko. Nous montrons que l'implémentation de l'algorithme de Gordan sur un système de calcul formel permet de calculer des ensembles fondamentaux d'invariants et de covariants de certaines formes multilinéaires. En particulier, nous illustrons ce type de calcul en donnant un système complet de générateurs de l'algèbre des covariants pour une forme quadrilinéaire (système de 4-qubits). Nous montrons aussi les limites de cette approche : en donnant des éléments de calcul de la forme quintilinéaire (système de 5-qubits), nous voyons que la complexités sur-exponentielle des algèbres d'invariants interdit la généralisation de cette méthode. Pire, même si la description de ces algèbres en terme de générateurs et relations pouvait être obtenue, celle-ci serait humainement inexploitable. Nous proposons alors des pistes consistant à ne considérer que certains invariants ayant des propriétés remarquables (par exemple en étudiant la structure de Cohen-Macaulay de ces algèbres). La seconde partie est consacrée à un invariant particulier, l'hyperdéterminant. Ce polynôme généralise le déterminant de la façon la plus simple possible : il s'agit d'une somme multi-alternée sur le produit de plusieurs groupes symétriques. Après avoir donné quelques propriétés générales, nous étudions certains cas particuliers comme les hyperdéterminants de Hankel, ou les hyperdéterminants de tenseurs dont les entrées ne dépendent que du pgcd des indices etc... De nombreux résultats de cette partie sont appliqués au calcul d'intégrales itérés. En particulier, nous donnons une généralisation du théorème de Heine, une preuve alternative de l'intégrale de Selberg et des généralisations des intégrales de de Bruijn.
98

Conception d'un système d'aide à l'ordonnancement tenant<br />compte des impératifs économiques

Ihsen, Saad 12 July 2007 (has links) (PDF)
Nos travaux concernent la mise en œuvre de méthodologies pour la résolution et l'optimisation de la production en tenant compte des impératifs économiques, jouant aujourd'hui un rôle déterminant dans la conduite de la production industrielle. Pour le problème du job-shop flexible dans lequel les interactions entre les critères sont supposées disponibles, cinq critères ont été retenus : le Makespan, la charge critique, la charge totale, la pénalité de retards/avance et le coût de la production. Dans ce sens, nous avons, d'abord, traité le problème de décision et d'évaluation d'une solution et introduit ensuite trois approches intégrées, basées sur les algorithmes génétiques, améliorant les approches évolutionnistes existant dans la littérature : la méthode statique basée sur l'intégrale de Choquet, la méthode approchée basée sur le concept Paréto-optimalité ainsi que la méthode basée sur le concept de ε-dominance Paréto-optimalité. Les approches adoptées consistent à générer une variété de solutions optimales diversifiées dans l'espace de recherche de solutions, et d'aider le décideur, quand il ne peut pas donner une préférence particulière à l'une des fonctions objectif. Les résultats proposés, obtenus globalement pour l'ensemble des critères, ont été comparés, avec succès, avec ceux obtenus par d'autres approches existantes sur plusieurs benchmarks de complexités distinctes.
99

Méthodes Spinorielles et géométrie para-complexe et para-quaternionique en théorie des sous-variétés.

Lawn-Paillusseau, Marie-Amelie 14 December 2006 (has links) (PDF)
Ce travail est relatif à la théorie des immersions et utilise des méthodes issues de la géométrie spinorielle, para-complexe et para-quaternionique. Les deux premières parties sont consacrées aux immersions conformes de surfaces pseudo-Riemanniennes. D'une part, nous étudions ce type d'immersions dans l'espace pseudo-Euclidien de dimension trois. Avec des méthodes de géométrie para-complexe et des représentations spinorielles réelles, l'équivalence entre les données d'une immersion conforme d'une surface de Lorentz dans $\mathbb{R}^{2,1}$ et de spineurs satisfaisant une équation de type Dirac est prouvée. D'autre part nous considérons des surfaces de Lorentz dans la pseudo-sphère $\mathbb{S}^{2,2}$: une bijection entre ces immersions et des sous-fibrés en droite para-quaternioniques du fibré $M\times\mathbb{H}^2$ est établie. Considérant une structure (para-)complexe particulière de ce fibré, la congruence pseudo-sphérique, et les champs de Hopf para-quaternioniques, nous définissons la fonctionnelle de Willmore de la surface et exprimons son énergie comme la somme de cette fonctionnelle et d'un invariant topologique. La dernière partie, plus générale, traite des fibrés vectoriels et immersions affines para-complexes. Nous introduisons la notion de fibré vectoriel para-holomorphe, et les sous-fibrés para-holomorphes et de type $(1,1)$ en termes de connections associées induites et de secondes formes fondamentales. Les équations fondamentales pour des décompositions générales de fibrés vectoriels munis d'une connexion sont étudiées dans le cas où certains des fibrés sont para-holomorphes afin d'obtenir des théorèmes d'existence et d'unicité pour des immersions affines para-complexes.
100

Optimisation de forme des structures électromagnétiques

Vasconcelos, Joao 04 July 1994 (has links) (PDF)
Ce travail présente des méthodes d'optimisation de forme associées à un programme de calcul de champ dans des structures électrostatiques bidimensionnelles ou axisymétriques. Dans un premier chapitre, la méthode numérique utilisée pour le calcul du champ ; à savoir la méthode des équations intégrales de frontières ; est exposée en détail. Quelques améliorations, en particulier une technique efficace d'intégration adaptative, sont présentées. Le second chapitre est consacré au calcul numérique de la sensibilité des solutions aux paramètres géométriques ayant servi à décrire la structure. Les deux chapitres suivants sont consacrés aux méthodes d'optimisation, déterministes (s'appuyant sur le calcul des gradients) ou aléatoires (recuit simulé, génétique) Les variantes choisies sont testées sur des fonctions analytiques. Le dernier chapitre montre l'application des méthodes d'optimisation sur des structures électrostatiques réelles (forme d'électrodes, profils diélectriques), et démontre leur efficacité en particulier par des comparaisons avec des résultats trouvés dans la littérature.

Page generated in 0.0356 seconds