Spelling suggestions: "subject:"entegrated optics"" "subject:"antegrated optics""
131 |
Light propagation in integrated chains of metallic nanowires : towards a nano-sensing device / Propagation de la lumière dans des chaînes de nanofils métalliques intégrées : vers un nano-capteurTellez Limon, Ricardo 11 December 2014 (has links)
Les systèmes optiques intégrés ont été largement utilisés dans la détection et la caractérisation de substances biochimiques. Aussi, le développement de nouvelles technologies permettant la fabrication de structures intégrées à l’échelle nanométrique, ouvre un horizon dans la conception d'une nouvelle génération de capteurs biochimiques. Sur la base de plasmons de surface localisés, au cours des dernières années ont été proposés différentes configurations de systèmes optiques pour concentrer le champ électromagnétique dans une petite région de l'espace, ce qui favorise son interaction avec des substances biochimiques. En utilisant la méthode modale de Fourier, dans la présent thèse est présentée une analyse exhaustive de la propagation des modes dans un réseau périodique de nanoparticules métalliques intégrés avec une guide d'ondes diélectrique. Deux géométries des nanoparticules ont été étudiées: des réseaux périodiques de nanofils et de nanocônes métalliques. Il est démontré que pour les nanocônes métalliques le champ optique est fortement exalté au sommet des nanocônes quand ils sont excités à leur résonance LSP via une guide d'onde diélectrique. Pour valider les résultats numériques, on a fabriqué et caractérisé expérimentalement un réseau périodique de nanofils d’or placée sur une guide d’onde à échange d’ions. La caractérisation de l'échantillon a été réalisée dans le champ lointain en mesurant des spectres de transmission et dans le champ proche en utilisant la microscopie en champ proche optique de balayage (NSOM). Les résultats obtenus montrent que les dispositifs intégrés plasmoniques proposées peuvent être appliquées dans la détection de substances biochimiques / Localized surface plasmons (LSP) are used to control and concentrate the electromagnetic field in small volumes of matter. This is a very interesting property in the context of biophotonics. Indeed, it allows an enhancement of the light-matter interaction at the cell scale, or even at a single molecule scale. The technological challenge is to propose optical devices able to efficiently couple light into localized plasmonic modes and to improve the detection of signals resulting from the interaction between the confined light and the analyte under detection.In this thesis work, we theoretically and experimentally study the guiding and confinement properties of light in periodic arrays of metallic nanowires of rectangular and triangular (nanocones) cross section that support localized plasmons. These nanowires are integrated in a photonic circuit that enables an efficient light coupling. The extinction spectra of the plasmonic resonances are directly obtained by analyzing the transmitted light in the device. By making use of the Fourier modal method, we perform an exhaustive theoretical study of the plasmonic Bloch modes that propagate due to the near-field coupling of the localized plasmons resonances. It is demonstrated that for the metallic nanocones, the optical field can be strongly enhanced by a controllable tip effect and remarkably intense
|
132 |
Experimental Design and Implementation of Two Dimensional Transformations of Light in Waveguides and PolarizationRunyon, Matthew January 2017 (has links)
Photonics, the technological field that encompasses all aspects of light, has been rapidly growing and increasingly useful in uncovering fundamental truths about nature. It has helped detect gravitational waves, allowed for a direct measurement of the quantum wave function, and has helped realize the coldest temperatures in the universe. But photonics has also had an enormous impact on day-to-day life as well; it has enabled high capacity and/or high speed telecommunication, offered cancer treatment solutions, and has completely revolutionized display and scanning technology. All of these discoveries and applications have required a superb understanding of light, but also a high degree of control over the sometimes abstract properties of light.
The work contained in this thesis explores two novel means of controlling and manipulating two different abstract properties of light. In Part I, the property under investigation is the polarization state of light – a property that is paramount to all light-matter interactions, and even some light-light interactions such as interference. Here, a liquid crystal on silicon spatial light modulator (LCOS-SLM)’s capabilities in manipulating the polarization state of light is theoretically examined and experimentally exploited, tested, and reported on. It is found through experimentation that, for an appropriate range of beam sizes and input polarizations, a single LCOS-SLM can be used to produce any light field with an arbitrary, spatially varying polarization profile. In Part II, the property under investigation loosely corresponds to light’s spatial degree of freedom – how light can move from one spot in space to another in a non-trivial manner. Here, control over light’s position through a waveguide array through the use of quantum geometric phase is theoretically examined, simulated, and experimentally designed. It is found through simulation that a threewaveguide array is capable of implementing two dimensional unitary transformations. The common theme between Part I and Part II is manipulating these properties of light to realize classes of general transformations. Moreover, if the light field is treated as a quantum state in the basis of either property under investigation, a two dimensional computational basis ensues. This is precisely the right cardinality for applications in quantum information.
|
133 |
Non-Linear Dynamics in Semiconductor Nano-Structures for Signal Processing / Dynamique non-linéaire dans les nano-structures semi-conductrices pour le traitement du signalMoille, Grégory 04 July 2016 (has links)
Cette thèse porte sur la numérisation de signaux hyperfréquences en utilisant une horloge optique, possédant une gigue temporelle très faible en comparaison des horloges électroniques. Une faible gigue est un facteur clé de l’échantillonnage à haute performance, car l’horloge commande l’ouverture d’une “porte” qui extrait les échantillons du signal à intervalles réguliers. Cette thèse décrit deux approches originales : l’échantillonnage purement optique et l’échantillonnage électro-optique.Une porte électro-optique se constitue d’une ligne coplanaire transportant le signal électrique. Cette ligne présente une discontinuité qui devient conductrice sur commande optique grâce à un matériau photoconducteur. Les alliages semi-conducteurs du groupe III-V sont souvent utilisés car la mobilité de ces porteurs photo-générés est suffisamment élevée, ce qui est favorable à une bonne conductivité à l’état “on”. Le GaAs, en particulier, présente l’avantage d’une conductivité faible à l’état “off” du fait de la largeur de la bande interdite électronique. Cela explique l’intérêt de ce matériau, cependant, cela impose aussi une contrainte sur la longueur d’onde de la source laser, expliquant l’utilisation de sources autour 800 nm.Dans cette thèse l’utilisation de sources laser à verrouillage de modes à fibre, développées dans le domaine des Télécoms, donc plus facilement accessibles, tout en gardant le GaAs comme matériaux actif est explorée. Cela est possible en exaltant l’efficacité de l’absorption à deux photons, effet faible dans la plupart des structures. L’approche suivie porte sur l’utilisation d’une cavité à cristaux photoniques. Le très fort confinement et le très faible volume occupé par le mode optique se traduit en une très forte absorption non linéaire. De plus, la nano-structuration du semi-conducteur réduit de manière considérable le temps de vie des porteurs, ce qui permet un retour suffisamment rapide à l’état “off”. L’étude se conclut par la démonstration de la fonction d’échantillonnage.La même fonction a été étudiée dans le cas ou le signal hyperfréquence se trouve sur une porteuse optique. La fonction porte “tout optique” est réalisée par un résonateur à cristaux photoniques. La génération de porteurs par absorption à deux photons induit un déplacement spectral de la résonance, ce qui est exploité pour moduler la transmission du dispositif. Une porte optique rapide, capable en principe de traiter des signaux dépassant les 50 GHz à été montrée. Cette porte requiert une puissance de commande de l’ordre de 200 fJ/impulsion, ce qui est suffisamment faible pour utiliser des sources lasers compactes (diode laser) et, de ce fait, outre sa très faible taille, peut être intégrée facilement. / This thesis is focused on the digitalization of radio-frequency signal using optical clock, allowing a low time jitter compared to electronic clocks. A low jitter is a key factor for high performance sampling, as the clock commands the “gate” opening which extracts the signal samples at regular intervals. This thesis describes two original approaches: all-optical sampling and electro-optics one.An electro-optic gate is based on radio-frequency transmission strip-line carrying the electric signal. A discontinuity in this strip-line occurs which become conductive, thanks to the optical command provided by the clock, due to a photo-conductive material. Semiconductor alloys from the III-V groups are widely used thanks to the high mobility of the photo-generated carriers allowing a high “on” state. In particular, GaAs present a good “off” state due to its band-gap energy. However, this restrains the optical clock wavelength explaining the use of optical sources around 800 nm.In this thesis, the focus was made on using mode-locked lasers in the Telecom range, thus using the improvement made on these sources during the past decades, while keeping GaAs as the active material in the electro-optic sampler. This is made possible by exalting the efficiency of two-photon absorption, which is usually weak in common structures. The approach followed here is to use a photonic crystal cavity. Thanks to its high optical mode confinement, non-linear absorption becomes efficient enough to generated carriers to modify the resistivity of the material. In addition, the nano-structuration of the material reduce tremendously the carrier lifetime, owing to switch from an “on” to “off” state fast enough to sample high frequency signals.The same function has been studied in the case where the signal is not carried electrically but optically. The all-optical gate function is realized using two photonic crystal resonators coupled together. The carrier generation by two-photon absorption induces a spectral shift of the resonance, used to modulate the transmission of the device. A fast all-optical gate, enabling signal processing up to 50 GHz is demonstrated here. The gate only requires a control power of about 200 fJ per pulses, which is low enough to use integrated optical sources (laser diodes) and, thanks to the small footprint, be easily integrated.
|
134 |
Étude et développement d'une plateforme photonique moyen infrarouge sur silicium : vers des capteurs intégrés / Study and development of a mid-infrared photonic platform : towards integrated sensorsFavreau, Julien 05 October 2017 (has links)
Aujourd’hui, les puces et capteurs provenant de la microélectronique ne sont plus simplement des circuits électroniques mais peuvent désormais véhiculer des signaux électriques et optiques. En témoignent les puces dites photoniques, utilisées pour la transmission de données à très haut débit. Cependant, cette technologie exploite une part très restreinte du spectre de la lumière, située dans le proche infrarouge. L’exploitation de l’ensemble du moyen infrarouge (λ=2-20 µm) permettrait la mise au point de nouveaux capteurs intégrés se servant des empreintes spectrales spécifiques des molécules dans cette partie du spectre électromagnétique.L’objet de cette thèse est de développer des circuits optiques intégrés sur silicium capables de véhiculer ces longueurs d’onde et qui soient compatibles avec des procédés de fabrication en salle blanche 200 mm. La technologie développée dans ces travaux est basée sur des guides carrés à saut d’indice en Si₀,₆Ge₀,₄ enterrés dans le Si, afin d’obtenir des circuits compactes et à faibles pertes. La conception des fonctions optiques nécessaires à la construction des circuits est tout d’abord présentée. Ces fonctions sont ensuite assemblées pour former un circuit optique qui sera fabriqué puis caractérisé afin de valider les performances de la technologie développée. Deux circuits ont ainsi été fabriqués : un premier a été réalisé avec un procédé standard tandis que le deuxième a été fabriqué avec un procédé de type damascène. La première réalisation offre l’avantage d’utiliser des procédés connus, tandis que la deuxième permet de fabriquer des guides pour différentes longueurs d’onde sur une même puce. Ces deux circuits ont été caractérisés afin de mener une étude comparative entre les deux procédés de fabrication. Enfin, dans un soucis de monter en maturité de la plateforme, une étude approfondie des réseaux de couplage sur des guides Si₀,₆Ge₀,₄ a été conduite. Celle-ci a donnée lieu à la fabrication et à la caractérisation de deux réseaux : un constitué d’inclusions d’air et un deuxième localement suspendu. / Nowadays, microelectronic chips and sensors are not simply electronic circuits anymore. They are able to convey both electric and optical signal. As shown by the so-called photonic chips used to transmit data at high speed rate. However, this technology only exploits a very small part of the light spectrum, namely in the near infrared. Exploitation of the whole mid-infrared domain (λ=2-20 µm) would allow to develop new integrated sensors using molecules specific spectral fingerprints in this part of the electromagnetic spectrum.This thesis deals with the development of integrated optical circuits on silicon capable of handling these wavelengths and compatible with 200 mm clean room fabrication processes. The technology developed in this work, is based on Si₀,₆Ge₀,₄ channel square waveguides in order to obtain compact and low loss optical circuits. First of all, the design of optical functions required to build circuits is presented. Then, these functions are assembled into circuits which are manufactured and characterized in order to assess performances of the developed technology. Two circuits have been produced: one with standard processes and one with damascene processes. The first one has the advantage of using known processes, whereas the second one allows to make waveguides for different wavelengths on a single chip. These two circuits have been characterized in order to conduct a comparative study between the two fabrication processes. Finally, in order to mature the technology, an in-depth study on grating coupler for Si₀,₆Ge₀,₄ waveguides have been conducted. It has led to the manufacturing and characterization of two grating couplers : one made of air inclusions and another locally suspended.
|
135 |
Application du concept de symétrie Parité-Temps à l’optique intégrée / Application of the concept of Parity-Time symmetry to integrated opticsBrac de la Perrière, Vincent 18 February 2019 (has links)
Le développement des systèmes photoniques aucours des dernières décennies, rendu possible parl’évolution des technologies de nanofabrication, a vul’apparition de nouveaux matériaux synthétiques tels queles cristaux photoniques, les métamatériaux, les plasmonsde surface, et plus récemment les structures dites « àsymétrie Parité-Temps ». La caractéristique de ces derniersmatériaux synthétiques est que bien qu’ils soient décrits parun Hamiltonien non-Hermitien, leurs valeurs proprespeuvent toutefois être réelles. En optique plusieursphénomènes physiques sont connus pour la ressemblancedes équations les décrivant, avec l’expression de ce typed’Hamiltonien en mécanique quantique. C’est le cas deséquations de modes couplés dans les lasers DFB.Ce travail de thèse a porté sur la conception, fabrication etétude de lasers DFB à couplage complexe, dans l’optiqued’appliquer le principe de symétrie Parité Temps (PT) à uncomposant fonctionnel. Ces lasers sont combinent un réseaupar l’indice et par les pertes, avec un déphasage spécifique.La simulation des modes dans la cavité, effectuée parméthode matricielle de Ables, a dévoilé l’avantageuxfiltrage apporté par les lasers DFB à couplage complexe, engardant un seuil faible. Le cas spécifique d’un déphasaged’un quart de période entre les deux réseaux, correspondantà une condition de symétrie PT, induit des effetsunidirectionnels d’amplification en réflexion.Des lasers DFB à couplage par l’indice, par les pertes et àcouplage complexe avec différentes phases entre les réseauxont été fabriqués selon les techniques courantes deréalisation de circuits photonique intégrés : lithographieélectronique et gravure ICP notamment.Les mesures de caractéristiques courant /puissancemontrent une diminution du courant de seuil des lasers àcouplage complexe en comparaison de leur équivalent àcouplage par les pertes, et un comportement monomodeplus robuste et plus systématique en comparaison de leuréquivalent à couplage par l’indice.Les variations d’indice réelle et imaginaire dans les cavitésont été mesurés à l’aide d’un laser externe.La résistance au retour optique de nos lasers a également étéétudiée. Les résultats montrent une corrélation entre latolérance au retour optique et le déphasage des réseauxd’indice et de pertes, sans montrer d’améliorationsignificative de cette résistance par rapport aux lasers DFBà couplage par l’indice.Ce premier « véhicule test » sur l’application de la symétriePT aux lasers à contre réaction répartie a permis d’obtenirdes perspectives encourageantes quant à l’amélioration desperformances des technologies existantes. Ce travailconforte l’intérêt de ce concept pour la conception de lasersDFB tolérant au feedback et leur intégration dans unsystème laser-modulateur fonctionnant sur la même base. / The development of photonics during the pastdecades, enabled by the advent of nanofabricationtechnologies, witnessed the appearance of new types ofartificial materials such as photonic crystals,metamaterials, plasmonic circuits, and more recently the socalled “PT symmetry” structures. The characteristic featureof this new type of artificial structures is that though theyare described by non-Hermitian Hamiltonians theireigenvalues can still be real. In optics, several physicalphenomena are known to obey equations that are formallyequivalent to that of Hamiltonians in quantum mechanics.During this work, we investigated the design, fabricationand characterization of complex-coupled DFB lasers, withthe intent to apply Parity-Time (PT) symmetry to apractical device. The mode selectivity inside the cavity isbrought by the combination of a gain-coupled and indexcoupledBragg grating, under the form of respectively acorrugated waveguide and a metallic absorbing surfacegrating.Through the simulation of the mode evolution insideconventional DFB lasers and complexe-coupled DFBlasers using Ables matrix method, the advantages ofefficient mode filtering while keeping a low thresholdcurrent was observed. The specific phase shift of a quarterperiod, matching the PT-symmetric configuration, is foundto show highly asymmetric mode selection, with unidirectionalamplification in reflection.Index, gain and complex-coupled DFB lasers with differentphase shifts between loss and index grating profiles werefabricated, using photonics integrated circuits fabricationbuilding blocks: electron beam lithography and inducedcoupled plasma dry etching to name but a few.The characterization of the fabricated lasers shows areduction in threshold compared to equivalent third ordergain-coupled DFB lasers, and improved monomodeoperation and yield compared to third order index-coupledDFB lasers.Real and imaginary parts of the index modulation as wellas reflection spectral response was investigated by externaloptical probing of the laser cavities.The resistance of the CC DFB lasers to external opticalfeedback was studied. If results show an apparentcorrelation between the gratings phase shift and thefeedback resistance, but no significant improvement wasfound with regards to IC DFB lasers.This first milestone on the application of PT-symmetry tothe design and fabrication of DFB lasers provide interestingprospects on the improvement of existing technologies.This work reinforces the interest of this concept for thedesign of feedback tolerant DFB lasers, and theirintegration in an all PT-symmetric laser-modulator system.
|
136 |
Micro SERS sensors based on photonic-plasmonic circuits and metallic nanoparticles / Micro-capteurs SERS basés sur les circuits photoniques-plasmoniques et les nanoparticules métalliquesTang, Feng 15 September 2017 (has links)
La spectroscopie Raman exaltée de surface (SERS) est largement utilisée comme un outil non-intrusif et sans marquage pour identifier les empreintes spectrales moléculaires dans des applications comme la pharmacologie, la salubrité des aliments, etc. Cette thèse présente un micro-capteur SERS basé sur un guide d'ondes hybride constitué de fentes métalliques (Au/Al) et de rubans diélectriques (Si3N4) et sur une méthode pour promouvoir la capacité de détection SERS en plaçant des nanoparticules métalliques dans la fente du capteur. L'étude théorique du capteur est principalement menée par la méthode des différences finies dans le domaine temps en trois dimensions (3D-FDTD) qui fournit la réponse électromagnétique à large bande des nanostructures métalliques. Les facteurs d'exaltation du capteur sont estimés par l’approximation |E|4. Les expériences sont basées principalement sur la fabrication de fentes métalliques, qui est réalisée par la lithographie à faisceau d'électrons (EBL), et sur la caractérisation de la capacité de détection SERS des capteurs. Les résultats montrent que les signaux Raman donnés par les capteurs SERS sont détectables. Les nanoparticules métalliques, qui sont situées dans le capteur, peuvent améliorer considérablement la capacité de détection SERS. En combinant le capteur SERS avec les éléments photoniques et électroniques, un système de détection SERS entièrement intégré sur une puce peut être développé dans un proche avenir pour des détections SERS portables et stables / Surface-enhanced Raman spectroscopy (SERS) is widely used as a non-intrusive and label-free tool to identify the molecular spectral fingerprints in pharmacology, biology, etc. This thesis presents a SERS sensor based on the hybrid waveguide made of metallic (Au/Al) slots and dielectric (Si3N4) strips and a method to improve the SERS-detection capacity by placing metallic nanoparticles into the sensor’s slot. The theoretical investigation of the sensor is mainly conducted by the 3D finite-difference time-domain method (3D-FDTD) which provides the broadband electromagnetic response of metallic nanostructures. The enhancement factors in the sensor’s slot are estimated based on the |E|4-approximation. The experiments are mainly the fabrication of metallic slots, which is conducted by the electron beam lithography (EBL), and the characterization of the SERS-detection capacity of the sensors. The results show that the Raman signals given out by the SERS sensors are detectable. Metallic nanoparticles, which are located in the sensor’s slot, can improve dramatically the SERS-detection capacity. By combining the SERS sensor with the extended photonic and electronic elements, a fully integrated-on-chip SERS detection system on a chip can be developed in the near future for portable and stable SERS detections
|
137 |
Integration of a single photon source on a planar dielectric waveguide / Intégration d'une source à photon unique dans un guide plan diélectriqueBeltran Madrigal, Josslyn 14 March 2017 (has links)
Le développement de dispositifs optiques intégrés dans des domaines tels que l'information quantique et la détection de molécules est actuellement dirigé vers l'intégration de nanosources (NS) sur des systèmes sur puce avec faible pertes de propagation. Cette thèse montre une contribution à la conception, à la fabrication et à la caractérisation de structures photonique-plasmoniques en vue de l'intégration d'une seule NS sur des puces optiques à travers le spectre visible. Nous recherchons à optimiser l’efficacité d’excitation et de collection de l'émission de la fluorescence d'une NS en combinant un nano-prisme en or et une structure formée par une couche de dioxyde de titane (TiO2) et un guide d'ondes à échange d'ions (IEW) sur verre. Le couplage entre les modes permet un transfert efficace de l'énergie entre un mode faiblement confiné dans l'IEW vers un mode plasmonique confiné dans un volume effectif de quelques nanomètres cubes. Ce mode confiné interagit avec une NS en améliorant son émission de fluorescence par l'effet de facteur Purcell. En utilisant le théorème de réciprocité de l'électromagnétisme, nous avons étudié le cas réciproque où la lumière émise par la NS peut être collectée dans les modes photoniques du IEW.La caractérisation a été réalisée en champ lointain et en champ proche avec en particulier l'utilisation d'un microscope optique de champ proche à sonde diffusante (SNOM). Nous avons proposé une configuration SNOM qui permet d'imiter l'interaction d'une NS et des systèmes guidés, cartographiant la densité locale des modes guidés (LDOM) / The development of integrated optical devices in areas such as quantum information and molecular sensing is currently directed towards the integration of nanosources (NS) into systems on a chip with low propagation losses. This thesis shows a contribution on the design, fabrication, and characterization of photonic-plasmonic structures towards the integration of a NS on optical chips across the visible spectrum. We pursue the efficient excitation and collection of the fluorescence emission of a NS by making use of the interaction between an electromagnetic field concentrator (gold nanoprism) and an integrated optics structure formed by a high-index layer of titanium dioxide (TiO2) and a low-contrast index ion exchanged waveguide on glass (IEW). The coupling mode allows an efficient transfer of the energy between a weakly confined mode in the IEW and a plasmonic mode confined in an effective volume of few cubic nanometers. This confined mode interacts with a NS enhancing its florescence emission through Purcell factor effect. Using the reciprocity theorem of electromagnetism, we studied the reciprocal case where the light emitted by the NS can be collected into the photonic modes of the IEW.The characterization was performed in the far and in the near field with the use of a scanning near-field optical microscopy (SNOM). We proposed a SNOM configuration that allows us to imitate the interaction of a NS and guided systems, mapping the local density of guided modes (LDOM)
|
138 |
Vers les technologies quantiques basées sur l’intrication photonique / Towards quantum applications based on photonic entanglementVergyris, Panagiotis 28 November 2017 (has links)
Le but de cette thèse est de développer des sources d’intrication photonique en vue d'applications en sciences information quantique. Dans ce contexte, nous présentons une source très performante et entièrement guidée permettant, au moyen d'une boucle de Sagnac, la génération d'états hyper-intriqués en polarisation et en énergie-temps. La configuration guidée rend le dispositif versatile, efficace et compatible avec une large bande spectrale, répondant ainsi au besoin des systèmes et réseaux de communication fibrés. À cette fin, nous avons distribué simultanément dans différents canaux télécoms des paires de photons hyper-intriqués au moyen de multiplexeurs en longueur d'onde à 5 canaux (DWDM), augmentant de fait le débit. La qualité de l'intrication est validée par la violation d'une inégalité de Bell étendue à un espace de Hilbert à 16 dimensions. Afin de pouvoir interfacer des photons aux longueurs d'ondes des télécommunications avec les bandes d'absorption des mémoires quantiques situées dans le visible, nous avons également développé une interface cohérente en longueur d'ondes. Un nouveau dispositif de métrologie quantique permettant la mesure avec une précision inégalée des effets de la dispersion chromatique dans les fibres optiques standards est également proposé. Notre approche "quantique" améliore la précision par un facteur 2.6 par rapport aux méthodes de mesures conventionnelles. Dans ce même contexte, nous avons aussi implémenté un nouveau protocole de métrologie de la phase de deux photons en ne détectant uniquement qu'un seul photon. Cette réalisation ouvre la voie à des applications potentielles simples s'appuyant sur peu de ressources au niveau de la détection. Finalement, dans la perspective de la miniaturisation de dispositifs quantiques, nous avons démontré un générateur d'intrication annoncée intégré sur puce qui trouve des applications en calcul et métrologie quantique. / The aim of this thesis was to develop photonic entanglement sources and study their implementation in the general field of quantum information technologies. To this end, a novel fully wave-guided, high performance photonic entanglement source is presented, able to generate hyper-entangled states in the observables of polarization and energy-time by means of a nonlinear Sagnac loop. The waveguide-based design makes it flexible, reliable, and adaptable to a wide spectral range, paving the way towards compact photonic entanglement generators, compatible with fiber-based communication systems and networks. This has been underlined by generating and distributing hyperentanglement in 5x2 dense wavelength division multiplexed channel telecom pairs, simultaneously, towards higher bit rates. The quality of the generated entanglement has been qualified by violating the Bell inequalities in a 16-dimension Hilbert space. Moreover, to adapt the wavelength of the entangled telecom photon pairs to the absorption wavelength of current quantum memory systems, a coherent wavelength converter is demonstrated. Furthermore, within the framework of quantum metrology, a new concept for a high-precision chromatic dispersion (CD) measurement in standard single mode fibers is introduced and demonstrated. In this demonstration, due to conceptual advantages enabled by quantum optics, an unprecedented 2.6 times higher accuracy on CD measurements is shown, compared to state-of-the-art techniques. In the same context, a new protocol for measuring two-photon phase shifts is performed using single photon detection only, promising scalable and potential real device applications with limited resources and simplified detection schemes. Finally, any potential application of quantum optics will be realized using small-scale devices. In this framework, an integrated on-chip heralded path entanglement generator is demonstrated, and shown to be adaptable to logic gate operations.
|
139 |
Simulation of magneto-optical devicesZhuromskyy, Oleksandr 20 February 2001 (has links)
This thesis is devoted to numerical simulations of integrated optical isolators and circulators. The results contain:
Polarization independent isolators
Different magneto-optical configurations are required to produce large nonreciprocal phase shifters for orthogonally polarized modes. The polarization independent isolator can be realized by placing two different nonreciprocal phase shifters into the interferometer arms. The light interferes constructively or destructively at the end of the interferometer depending on the propagation direction.
Another possibility is to find a magnetic configuration that yields equal nonreciprocal phase shift for transverse electric (TE) and transversemagnetic (TM) modes. Compared to the concept of polarization independent isolators with two different phase shifters in the interferometer arms, the concept with a polarization independent phase shifter has an advantage: the entire length of the device can be almost halved placing an additional nonreciprocal phase shifter into the second arm. Another advantage is that the power loss inside the nonreciprocal phaseshifter may differ from that in the rest of the structure. For the non-symmetrical setup it can lead to a reduction of the device performance.
Utilization of multimode waveguides in magneto-optical devices
The principle distinction of a Mach-Zehnder type isolator and an isolator based on multimode imaging is that in the latter case the input power is distributed between modes propagating in the same waveguide, whereas in the first case two separate waveguides are used. Nonreciprocal phaseshifters with different effects on guided modes are needed to produce a magneto-optic multi-mode imaging (MMI) isolator or circulator. Multimode imaging splitters with non zero phase difference between the output modes can be used in integrated optical isolators. If the essential phase difference is utilized by the splitter, the rest of the interferometer should be symmetrical.
|
140 |
Fabrication of Hollow Optical Waveguides on Planar SubstratesBarber, John P. 16 October 2006 (has links) (PDF)
This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial core material is then deposited and patterned. Core materials used include aluminum, SU-8 and reflowed photoresist, each resulting in a different core geometry. Additional dielectric layers are then deposited, forming the top and sides of the waveguide. The sacrificial core is then removed in an acid solution, resulting in a hollow ARROW waveguide. Experiments investigating the mechanical strength of the hollow waveguides and the etching characteristics of the sacrificial core suggest design rules for the different core types. Integration of solid-core waveguides is accomplished by etching a ridge into the top dielectric layer of the ARROW structure. Improved optical performance can be obtained by forming the waveguides on top of a raised pedestal on the silicon substrate. Loss measurements on hollow ARROW waveguides fabricated in this manner gave loss coefficients of 0.26 cm-1 for liquid-core waveguides and 2.6 cm-1 for air-core waveguides. Fluorescence measurements in liquid-core ARROW waveguides have achieved single-molecule detection sensitivity. Integrated optical filters based on ARROW waveguides were fabricated, and preliminary results of a capillary electrophoresis separation device using a hollow ARROW indicate the feasibility of such devices for future investigation.
|
Page generated in 0.0637 seconds