Spelling suggestions: "subject:"interconnects"" "subject:"nterconnects""
181 |
Integration of thin film GaAs MSM photodetector in fully embedded board-level optoelectronic interconnectsLin, Lei 28 August 2008 (has links)
Not available / text
|
182 |
Parameter extraction and characterization of transmission line interconnects based on high frequency measurementKim, Jooyong 28 August 2008 (has links)
Not available / text
|
183 |
Highly integrated polymer photonic switching and interconnectsWang, Xiaolong 28 August 2008 (has links)
Not available / text
|
184 |
Scaling and process effect on electromigration reliability for Cu/low k interconnectsPyun, Jung Woo, 1970- 28 August 2008 (has links)
The microelectronics industry has been managing the RC delay problem arising from aggressive line scaling, by replacing aluminum (Al) by copper (Cu) and oxide dielectric by low-k dielectric. Electromigration (EM) turned out to be a serious reliability problem for Cu interconnects due to the implementation of mechanically weaker low-k dielectrics. In addition, line width and via size scaling resulted in the need of a novel diffusion barrier, which should be uniform and thin. The objective of this dissertation is to investigate the impacts of Ta barrier process, such as barrier-first and pre-clean first, and scaling of barrier and line/via on EM reliability of Cu/low-k interconnects. For this purpose, EM statistical test structures, having different number of line segments, line width, and via width, were designed. The EM test structures were fabricated by a dualdamascene process with two metal layers (M1/Via/M2), which were then packaged for EM tests. The package-level EM tests were performed in a specially designed vacuum chamber with pure nitrogen environment. The novel barrier deposition process, called barrier-first, showed a higher (jL)[subscript c] product and prolonged EM lifetime, compared with the conventional Ta barrier deposition process, known as pre-clean first. This can be attributed to the improved uniformity and thickness of the Ta layer on the via and trench, as confirmed by TEM. As for the barrier thickness effect, the (jL)c product decreased with decreasing thickness, due to reduced Cu confinement. A direct correlation between via size and EM reliability was found; namely, EM lifetime and statistics degraded with via size. This can be attributed to the fact that critical void length to cause open circuit is about the size of via width. To investigate further line scaling effect on EM reliability, SiON (siliconoxynitride) trenchfilling process was introduced to fabricate 60-nm lines, corresponding to 45-nm technology, using a conventional, wider line lithograph technology. The EM lifetime of 60-nm fine lines with SiON filling was longer than that of a standard damascene structure, which can be attributed to a distinct via/metal-1 configuration in reducing process-induced defects at the via/metal-1 interface. / text
|
185 |
Chemical Vapor Deposition of Thin Film Materials for Copper Interconnects in MicroelectronicsAu, Yeung Billy 24 July 2012 (has links)
The packing density of microelectronic devices has increased exponentially over the past four decades. Continuous enhancements in device performance and functionality have been achieved by the introduction of new materials and fabrication techniques. This thesis summarizes the thin film materials and metallization processes by chemical vapor deposition (CVD) developed during my graduate study with Professor Gordon at Harvard University. These materials and processes have the potential to build future generations of microelectronic devices with higher speeds and longer lifetimes. Manganese Silicate Diffusion Barrier: Highly conformal, amorphous and insulating manganese silicate \((MnSi_xO_y)\) layers are formed along the walls of trenches in interconnects by CVD using a manganese amidinate precursor vapor that reacts with the surfaces of the insulators. These \((MnSi_xO_y)\) layers are excellent barriers to diffusion of copper, oxygen and water.
Manganese Capping Layer: A selective CVD manganese capping process strengthens the interface between copper and dielectric insulators to improve the electromigration reliability of the interconnects. High selectivity is achieved by deactivating the insulator surfaces using vapors containing reactive methylsilyl groups. Manganese at the Cu/insulator interface greatly increases the strength of adhesion between the copper and the insulator. Bottom-up Filling of Copper and Alloy in Narrow Features: Narrow trenches, with widths narrow than 30 nm and aspect ratios up to 9:1, can be filled with copper or copper-manganese alloy in a bottom-up fashion using a surfactant-catalyzed CVD process. A conformal manganese nitride \((Mn_4N)\) layer serves as a diffusion barrier and adhesion layer. Iodine atoms chemisorb on the \(Mn_4N\) layer and are then released to act as a catalytic surfactant on the surface of the growing copper layer to achieve void-free, bottom-up filling. Upon post-annealing, manganese in the alloy diffuses out from the copper and forms a self-aligned barrier in the surface of the insulator. Conformal Seed Layers for Plating Through-Silicon Vias: Through-silicon vias (TSV) will speed up interconnections between chips. Conformal, smooth and continuous seed layers in TSV holes with aspect ratios greater than 25:1 can be prepared using vapor deposition techniques. \(Mn_4N\) is deposited conformally on the silica surface by CVD to provide strong adhesion at Cu/insulator interface. Conformal copper or Cu-Mn alloy seed layers are then deposited by an iodine-catalyzed direct-liquid-injection (DLI) CVD process. / Chemistry and Chemical Biology
|
186 |
Time domain space mapping optimization of digital interconnect circuitsHaddadin, Baker. January 2009 (has links)
Microwave circuit design including the design of Interconnect circuits are proving to be a very hard and complex process where the use of CAD tools is becoming more essential to the reduction in design time and in providing more accurate results. Space mapping methods, the relatively new and very efficient way of optimization which are used in microwave filters and structures will be investigated in this thesis and applied to the time domain optimization of digital interconnects. The main advantage is that the optimization is driven using simpler models called coarse models that would approximate the more complex fine model of the real system, which provide a better insight to the problem and at the same time reduce the optimization time. The results are always mapped back to the real system and a relation/mapping is found between both systems which would help the convergence time. In this thesis, we study the optimization of interconnects where we build certain practical error functions to evaluate performance in the time domain. The space mapping method is formulated to avoid problems found in the original formulation where we apply some necessary modifications to the Trust Region Aggressive Space Mapping TRASM for it to be applicable to the design process in time domain. This new method modified TRASM or MTRASM is then evaluated and tested on multiple circuits with different configuration and the results are compared to the results obtained from TRASM.
|
187 |
Modeling, design, fabrication and characterization of glass package-to-PCB interconnectionsMenezes, Gary 22 May 2014 (has links)
Emerging I/O density and bandwidth requirements are driving packages to low-CTE silicon, glass and organic substrates for higher wiring density and reliability of interconnections and Cu-low k dielectrics. These are needed for high performance applications as 2.5D packages in large-size, and also as ultra-thin packages for consumer applications that are directly assembled on the board without the need for an intermediate package.
The trend to low-CTE packages (CTE of 3-8ppm/°C), however, creates large CTE mismatch with the board on which they are assembled. Interconnection reliability is, therefore, a major concern when low CTE interposers are surface mounted onto organic system boards via solder joints. This reliability concern is further aggravated with large package sizes and finer pitch. For wide acceptance of low CTE packages in high volume production, it is also critical to assemble them on board using standard Surface Mount Technologies (SMT) without the need for under-fill. This research aims to demonstrate reliable 400 micron pitch solder interconnections from low CTE glass interposers directly assembled onto organic boards by overcoming the above challenges using two approaches; 1) Stress-relief dielectric build up layers on the back of the interposer, 2) Polymer collar around the solder bumps for shear stress re-distribution. A comprehensive methodology based on modeling, design, test vehicle fabrication and characterization is employed to study and demonstrate the efficacy of these approaches in meeting the interposer-to-board interconnection requirements. The effect of varying geometrical and material properties of both build-up layers and polymer collar is studied through Finite Element Modeling. Interposers were designed and fabricated with the proposed approaches to demonstrate process feasibility.
|
188 |
Design methodology to characterize and compensate for process and temperature variation in digital systemsCho, Minki 18 September 2012 (has links)
The main objective of this dissertation is to investigate a design methodology that can characterize and compensate for process and temperature variation. First, a design methodology is discussed to handle process variation in low-power memory for image processing application. This is followed by a design technique to characterize and recover TSV-defect-induced signal degradation in a 3D integrated circuit. For thermal variation, the spatiotemporal power migration is proposed as a methodology to handle thermal issues in digital systems both during the test and normal operation. The power migration continuously distributes the generated heat in space and time to control chip temperature. To enable this approach a unique method is developed, and verified through hardware for post-fabrication characterization of thermal system and prediction of transient variation in chip temperature. The inverse temperature dependence in a digital logic is characterized through hardware to help better thermal management in wide operating voltage design.
|
189 |
Interconnects for future technology generations - conventional CMOS with copper/low-k and beyondCeyhan, Ahmet 12 January 2015 (has links)
The limitations of the conventional Cu/low-k interconnect technology for use in future ultra-scaled integrated circuits down to 7 nm in the year 2020 are investigated from the power/performance point of view. Compact models are used to demonstrate the impacts of various interconnect process parameters, for instance, the interconnect barrier/liner bilayer thickness and aspect ratio, on the design and optimization of a multilevel interconnect network. A framework to perform a sensitivity analysis for the circuit behavior to interconnect process parameters is created for future FinFET CMOS technology nodes. Multiple predictive cell libraries down to the 7‒nm technology node are constructed to enable early investigation of the electronic chip performance using commercial electronic design automation (EDA) tools with real chip information. Findings indicated new opportunities that arise for emerging novel interconnect technologies from the materials and process perspectives. These opportunities are evaluated based on potential benefits that are quantified with rigorous circuit-level simulations and requirements for key parameters are underlined. The impacts of various emerging interconnect technologies on the performances of emerging devices are analyzed to quantify the realistic circuit- and system-level benefits that these new switches can offer.
|
190 |
Model order reduction for efficient modeling and simulation of interconnect networksMa, Min. January 2007 (has links)
As operating frequency increases and device sizes shrink, the complexity of current state-of-the-art designs has increased dramatically. One of the main contributors to this complexity is high speed interconnects. At high frequencies, interconnects become dominant contributors to signal degradation, and their effects such as delays, reflections, and crosstalk must be accurately simulated. Time domain analysis of such structures is however very difficult because, at high frequencies, they must be modeled as distributed transmission lines which, after discretization, result in very large networks. In order to improve the simulation efficiency of such structures, model order reduction has been proposed in the literature. Conventional model order reduction methods based on Krylov subspace have a number of limitations in many practical simulation problems. This restricts their usefulness in general commercial simulators. / In this thesis, a number of new reduction techniques were developed in order to address the key shortcomings of current model order reduction methods. Specifically a new approach for handling macromodels with a very large number of ports was developed, a multi-level reduction and sprasification method was proposed for regular as well as parametric macromodels, and finally a new time domain reduction method was presented for the macromodeling of nonlinear parametric systems. Using these approaches, CPU speedups of 1 to 2 orders of magnitude were obtained.
|
Page generated in 0.0674 seconds