Spelling suggestions: "subject:"invariant subspace"" "subject:"envariant subspace""
21 |
[en] STABILITY FOR DISCRETE LINEAR SYSTEMS IN HILBERT SPACES / [pt] ESTABILIDADE DE SISTEMAS LINEARES DISCRETOS EM ESPAÇOS DE HILBERTPAULO CESAR MARQUES VIEIRA 31 May 2006 (has links)
[pt] Este trabalho aborda o problema da estabilidade de
sistemas lineares, invariantes no tempo, a tempo discreto,
com o espaço de estado sendo um espaço de Hilbert complexo
e separável de dimensão infinita. São investigadas
condições necessárias e/ou suficientes para quatro
conceitos diferentes de estabilidade: estabilidade
assintótica uniforme e estabilidade assintótica forte,
estabilidade assintótica fraca e estabilidade limitada.
Identifica-se e analisa-se as conexões entre os problemas
de estabilidade e dois problemas em aberto da teoria de
operadores em espaços de Hilbert: o problema do subespaço
invariante e o problemas da similaridade e contração.
Diversos resultados, oriundos de tentativas de solução
para os dois problemas acima, ou motivados por aquelas
tentativas, são utilizadas para fornecer caracterizações
adicionais (principalmente caracterizações espectrais)
para os quatro conceitos de estabilidade em questão. / [en] This work deals with the stability problem for time-
invariant discrete linear systems evolving in a separable
infinite-dimensional Hilbert space. Necessary and/or
sufficient conditions for uniform, strong and weak
asymptotic stability, as well as to bounded stability
problems to two open problems in operator theory, namely,
the invariant subspace and the similarity to contractions,
are identified and analysed in detail. Several results
from the many attempts, of solving the above mentioned
open problems, or motivated by those attempts, are used to
supply additional characterizations (mainly spectral
characterization) for the four stabilty concepts under
consideration.
|
22 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links) (PDF)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
23 |
[pt] CONSIDERAÇÕES SOBRE O PROBLEMA DO SUBESPAÇO INVARIANTE / [en] REMARKS ABOUT THE INVARIAN SUBSPACE PROBLEMJOAO ANTONIO ZANNI PORTELLA 03 May 2011 (has links)
[pt] O Problema do Subespaço Invariante é a questão em aberto mais importante
em Teoria de Operadores. Apesar de existirem diversos resultados parciais, a
questão continua em aberto para classes de operadores definidas em espaços
de Hilbert complexos separáveis de dimensão infinita. No caso de uma
resposta positiva, este pode ser o início de uma teoria geral para a estrutura
de operadores em espaços de Hilbert. Se apresentado um contra-exemplo,
então o mesmo pode dar origem a diversos teoremas de aproximação.
Este trabalho tem como objetivo realizar um levantamento dos principais
resultados relativos a essa questão, e apresentar um exemplo de como
poderia ser o espectro de um operador hiponormal (em um espaço de
Hilbert complexo separável de dimensão infinita) que não tivesse subespaço
invariante não trivial (caso tal operador exista). / [en] The Invariant Subspace Problem is the most important open question in
Operator Theory. Although, there are many partial results, the question
remains open for operators on complex, infinite-dimensional, separable
Hilbert spaces. To prove that every operator has a non-trivial invariant
subspace might be the beginning of a general structure theory for Hilbert
space operators. On the other hand, a counterexample would may yield a
number of approximation theorems. In this work we present a survey the
Invariant Subspace Problem, and in addition we show also how it might be
the spectrum of a hyponormal operator (on a complex separable infinitedimensional
Hilbert space) which had no nontrivial invariant subspace.
|
24 |
[en] INVARIANT SUBSPACES FOR HIPONORMAL OPERATORS / [pt] SUBESPAÇOS INVARIANTES PARA OPERADORES HIPONORMAISREGINA POSTERNAK 12 March 2003 (has links)
[pt] O problema do subespaço invariante consiste na seguinte
pergunta: será que todo operador (i.e., transformação
linear limitada) atuando em um espaço de Hilbert
separável
(complexo de dimensão infinita) tem subespaço invariante
nãotrivial?
Este é, possivelmente, o mais importante problema em
aberto
na teoria de operadores. Em particular, o problema do
subespaço invariante permanece em aberto (pelo menos até
a
presente data) para operadores hiponormais, ou seja,
ainda não se sabe se todo operador hiponormal (atuando em
um espaço de Hilbert complexo separável) tem subespaço
invariante não-trivial. O objetivo desta dissertação é
apresentar, de maneira unificada, um levantamento sobre
subespaços invariantes para operadores hiponormais.
Inicialmente, o problema do subespaço invariante é
abordado
em sua forma geral (sem restrição a classes de operadores)
onde diversos resultados clássicos são expostos. Em
seguida, o problema específico de se encontrar subespaços
invariantes para operadores hiponormais é apresentado de
maneira sistemática. Em particular, investigamos
propriedades do espectro de um operador hiponormal que
não
tenha subespaço invariante não trivial. / [en] The invariant subspace problem is: does every operator
acting on an infinite-dimensional complex separable Hilbert
space have a nontrivial invariant subspace? This is,
probably, the most important open question in the operator
theory. In particular, the problem of the invariant
subspace remains open (at least until now) for hyponormal
operators, that is, it is still unknown whether every
hyponormal operator (on a complex separable Hilbert space)
has a nontrivial invariant subspace. The purpose of these
dissertation is to present, in an unified way, a survey on
invariant subspaces for hyponormal operators. At first, the
invariant subspace problem is posed in a general form
(without any restriction on the operator classes), where
some of classical results are discussed. Secondly, the
specific problem of finding invariant subspaces for
hyponormal operators is presented in a systematic way and,
in particular, we show some characteristics of
the spectrum of a hyponormal operator with no nontrivial
invariant subspace.
|
25 |
Module structure of a Hilbert spaceLeon, Ralph Daniel 01 January 2003 (has links)
This paper demonstrates the properties of a Hilbert structure. In order to have a Hilbert structure it is necessary to satisfy certain properties or axioms. The main body of the paper is centered on six questions that develop these ideas.
|
26 |
Classifying Triply-Invariant SubspacesAdams, Lynn I. 13 September 2007 (has links)
No description available.
|
27 |
Linear Impulsive Control Systems: A Geometric ApproachMedina, Enrique A. 08 October 2007 (has links)
No description available.
|
28 |
Some Problems in Multivariable Operator TheorySarkar, Santanu January 2014 (has links) (PDF)
In this thesis we have investigated two different types of problems in multivariable operator theory. The first one deals with the defect sequence for contractive tuples and maximal con-tractive tuples. These condone deals with the wandering subspaces of the Bergman space and the Dirichlet space over the polydisc. These are described in thefollowing two sections.
(I) The Defect Sequence for ContractiveTuples
LetT=(T1,...,Td)bead-tuple of bounded linear operators on some Hilbert space
H. We say that T is a row contraction, or, acontractive tuplei f the row operator
(Pl refer the abstract pdf file)
|
29 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
30 |
Restrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the DiskThompson, Derek Allen 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Invariant subspaces are a natural topic in linear algebra and operator theory. In some rare cases, the restrictions of operators to different invariant subspaces are unitarily equivalent, such as certain restrictions of the unilateral shift on the Hardy space of the disk. A composition operator with symbol fixing 0 has a nested sequence of invariant subspaces, and if the symbol is linear fractional and extremally noncompact, the restrictions to these subspaces all have the same norm and spectrum. Despite this evidence, we will use semigroup techniques to show many cases where the restrictions are still not unitarily equivalent.
|
Page generated in 0.0708 seconds