• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 26
  • 13
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 53
  • 38
  • 36
  • 26
  • 25
  • 25
  • 25
  • 25
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Gelové polymerní elektrolyty pro elektrochromní prvky / Gel Polymer Electrolytes for Electrochromic Devices

Krejza, Ondřej January 2009 (has links)
Předkládaná práce se zabývá výzkumem nových materiálů a metod přípravy gelových polymerních elektrolytů (GPE) na bázi methakrylátů, které lze zejména vzhledem k jejich mechanickým vlastnostem s výhodou využít při konstrukci elektrochromních (EC) prvků.
142

Scandia And Ceria Stabilized Zirconia Based Electrolytes And Anodes For Intermediate Temperature Solid Oxide Fuel Cells: Manufacturing And Properties

Chen, Yan 01 January 2013 (has links)
Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in complex media. Dynamical and structural information from complex fluids—such as colloidal suspensions and biological fluids—was obtained by controlling the size of the interaction volume with low coherence interferometry. With this information, material properties such as particle sizes, optical transport coefficients, and viscoelastic characteristics of polymer solutions and blood were determined in natural, realistic conditions that are inaccessible to conventional techniques. The same framework also enabled the development of new, scale-dependent models for several important physical and biological systems. These models were then used to explain the results of some unique measurements. For example, the transport of light in disordered photonic lattices was interpreted as a scale-dependent, diffusive process to explain the anomalous behavior of photon path length distributions through these complex structures. In addition, it was demonstrated how specialized optical measurements and models at the mesoscale enable solutions to fundamental problems in cell biology. Specifically, it was found for the first time that the nature of cell motility changes markedly with the curvature of the substrate that the cells iv move on. This particular work addresses increasingly important questions concerning the nature of cellular responses to external forces and the mechanical properties of their local environment. Besides sensing of properties and modeling behaviors of complex systems, mesoscale optics encompasses the control of material systems as a result of the light-matter interaction. Specific modifications to a material’s structure can occur due to not only an exchange of energy between radiation and a material, but also due to a transfer of momentum. Based on the mechanical action of multiply scattered light on colloidal particles, an optically-controlled active medium that did not require specially tailored particles was demonstrated for the first time. The coupling between the particles and the random electromagnetic field affords new possibilities for controlling mesoscale systems and observing nonequilibrium thermodynamic phenomena
143

Электрические свойства перовскитоподобных фаз Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1 : магистерская диссертация / Electrical properties of perovskite-type phases Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1

Корякин, К. Е., Koryakin, K. E. January 2015 (has links)
В данной работе твердофазным методом синтезированы образцы составов Ba3Sc2MO8 (где M=Ti4+, Zr4+). Растворным методом синтезирован оксифторид Ba1.9K0.1In2O4.9F0.1. Проведена рентгенофазовая аттестация образцов. Исследованы электрические свойства образцов методом электрохимического импеданса при варьировании термодинамических параметров внешней среды (Т, рО2, pH2O). Установлено влияние влажности на электропроводность образцов. Проведена дифференциация общей электропроводности на кислородно-ионный, электронный и протонный вклады. Выявлены условия доминирования протонного переноса. / In this work samples Ba3Sc2MO8 (where M=Ti4+, Zr4+) are synthesized by solid state reaction. Oxyfluoride with formula Ba1.9K0.1In2O4.9F0.1 is synthesized by solution method. Phase composition of the samples is certificated by X-ray diffraction. Electric properties of the samples are investigated by electrochemical impedance method at a variation of thermodynamic parameters of environment (T, pO2, pH2O). An influence of humidity on the conductivity of the samples is established. The total conductivity is differentiated on oxygen-ionic, electronic and protonic contributions. Conditions of domination of proton transfer are revealed.
144

Effect of Alumina and LAGP Fillers on the Ionic Conductivity of Printed Composite Poly(Ethylene Oxide) Electrolytes for Lithium-Ion Batteries

Crisanti, Samuel Nathan, Crisanti 31 May 2018 (has links)
No description available.
145

Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion

Zhang, Zhen, Bhauriyal, Preeti, Sahabudeen, Hafeesudeen, Wang, Zhiyong, Liu, Xiaohui, Hambsch, Mike, Mannsfeld, Stefan C. B., Dong, Renhao, Heine, Thomas, Feng, Xinliang 22 April 2024 (has links)
Two-dimensional (2D) membranes are emerging candidates for osmotic energy conversion. However, the trade-off between ion selectivity and conductivity remains the key bottleneck. Here we demonstrate a fully crystalline imine-based 2D polymer (2DPI) membrane capable of combining excellent ionic conductivity and high selectivity for osmotic energy conversion. The 2DPI can preferentially transport cations with Na+ selectivity coefficient of 0.98 (Na+/Cl− selectivity ratio ~84) and K+ selectivity coefficient of 0.93 (K+/Cl− ratio ~29). Moreover, the nanometer-scale thickness (~70 nm) generates a substantially high ionic flux, contributing to a record power density of up to ~53 W m−2, which is superior to most of nanoporous 2D membranes (0.8~35 W m−2). Density functional theory unveils that the oxygen and imine nitrogen can both function as the active sites depending on the ionization state of hydroxyl groups, and the enhanced interaction of Na+ versus K+ with 2DPI plays a significant role in directing the ion selectivity.
146

Advanced BaZrO3-BaCeO3 Based Proton Conductors Used for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs)

Bu, Junfu January 2015 (has links)
In this thesis, the focus is on studying BaZrO3-BaCeO3 based proton conductors due to that they represent very promising proton conductors to be used for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs). Here, dense BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) ceramics were selected as the major studied materials. These ceramics were prepared by different sintering methods and doping strategies. Based on achieved results, the thesis work can simply be divided into the following parts: 1) An improved synthesis method, which included a water-based milling procedure followed by a freeze-drying post-processing, was presented. A lowered calcination and sintering temperature for a Hf0.7Y0.3O2-δ (YSH) compound was achieved. The value of the relative density in this work was higher than previously reported data. It is also concluded that this improved method can be used for mass-production of ceramics. 2) As the solid-state reactive sintering (SSRS) represent a cost-effective sintering method, the sintering behaviors of proton conductors BaZrxCe0.8-xLn0.2O3-δ (x = 0.8, 0.5, 0.1; Ln = Y, Sm, Gd, Dy) during the SSRS process were investigated. According to the obtained results, it was found that the sintering temperature will decrease, when the Ce content increases from 0 (BZCLn802) to 0.3 (BZCLn532) and 0.7 (BZCLn172). Moreover, the radii of the dopant ions similar to the radii of Zr4+ or Ce4+ ions show a better sinterability. This means that it is possible to obtain dense ceramics at a lower temperature. Moreover, the conductivities of dense BZCLn532 ceramics were determined. The conductivity data indicate that dense BZCY532 ceramics are good candidates as either oxygen ion conductors or proton conductors used for ITSOFCs. 3) The effect of NiO on the sintering behaviors, morphologies and conductivities of BZCY532 based electrolytes were systematically investigated. According to the achieved results, it can be concluded that the dense BZCY532B ceramics (NiO was added during ball-milling before a powder mixture calcination) show an enhanced oxygen and proton conductivity. Also, that BZCY532A (NiO was added after a powder mixture calcination) and BZCY532N (No NiO was added in the whole preparation procedures) showed lower values. In addition, dense BZCY532B and BZCY532N ceramics showed only small electronic conductivities, when the testing temperature was lower than 800 ℃. However, the BZCY532A ceramics revealed an obvious electronic conduction, when they were tested in the range of 600 ℃ to 800 ℃. Therefore, it is preferable to add the NiO powder during the BZCY532 powder preparation, which can lower the sintering temperature and also increase the conductivity. 4) Dense BZCY532 ceramics were successfully prepared by using the Spark Plasma Sintering (SPS) method at a temperature of 1350 ℃ with a holding time of 5 min. It was found that a lower sintering temperature (&lt; 1400 ℃) and a very fast cooling rate (&gt; 200 ℃/min) are two key parameters to prepare dense BZCY532 ceramics. These results confirm that the SPS technique represents a feasible and cost-effective sintering method to prepare dense Ce-containing BaZrO3-BaCeO3 based proton conductors. 5) Finally, a preliminary study for preparation of Ce0.8Sm0.2O2-δ (SDC) and BZCY532 basedcomposite electrolytes was carried out. The novel SDC-BZCY532 based composite electrolytes were prepared by using the powder mixing and co-sintering method. The sintering behaviors, morphologies and ionic conductivities of the composite electrolytes were investigated. The obtained results show that the composite electrolyte with a composition of 60SDC-40BZCY532 has the highest conductivity. In contrast, the composite electrolyte with a composition of 40SDC-60BZCY532 shows the lowest conductivity. In summary, the results show that BaZrO3-BaCeO3 based proton-conducting ceramic materials represent very promising materials for future ITSOFCs electrolyte applications. / <p>QC 20150423</p>
147

Électrolytes solides fluorés pour batteries tout solide à ions F- / Fluoride solid electrolytes for Fluoride Ion Battery

Chable, Johann 30 November 2015 (has links)
Ce travail porte sur la synthèse, la mise en forme et la caractérisation desolutions solides de type tysonite RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr). Dans unpremier temps, une démarche d’étude rigoureuse est mise en place pour la solution solide ditede référence, La1-xBaxF3-x. Les synthèses menées à l’état solide aboutissent à une maîtrise dela composition chimique et à l'établissement de lois de variations des paramètres structuraux.Une meilleure compréhension de l’influence de la structure sur la mobilité des ions F- estégalement acquise. L’influence du frittage dans l’obtention de bonnes valeurs de conductivitéionique est également à souligner. Dans un second temps, les effets de la nanostructurationpar mécanobroyage sur les propriétés de conductivité sont évalués. L’utilisation de laméthodologie des plans d’expériences mène à la mise au point des réglages optimums debroyage. Il apparaît alors que la synthèse des électrolytes peut être accélérée et mise àl’échelle tout en gardant des valeurs optimales de conductivité. Enfin, la démarche déterminéeest appliquée à d'autres solutions solides de type tysonite et à la recherche du conducteurionique le plus performant. Si les composés issus de la substitution Ce/Sr ou encore Sm/Casemblent les plus prometteurs, la plus grande stabilité chimique de la solution solide La1-xSrxF3-x est le compromis idéal pour l'utiliser comme électrolyte solide lors des mesuresélectrochimiques des batteries. / This work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability.
148

Étude des propriétés électriques et structurales de verres de sulfures au lithium pour électrolytes de batteries tout-solide / Electrical and structural properties of Li-sulfide glasses as electrolytes for all-solid-state batteries

Cozic, Solenn 15 September 2016 (has links)
Le marché du stockage de l'énergie est en perpétuelle expansion, tant pour les applications nomades que fixes. Afin de répondre aux exigences requises pour les diverses applications (appareils électroniques, véhicules hybrides et électriques, stockage des énergies renouvelables…), des batteries toujours plus performantes, compactes et légères doivent être développées. Pour cela, les batteries utilisant du lithium métallique en tant qu'anode sont les plus attractives en termes de densités d'énergies. Néanmoins, l'utilisation d'électrolytes liquides conventionnels, généralement des solvants organiques inflammables, dans de tels dispositifs soulève des problématiques de sécurité. Les travaux de recherche présentés dans ce manuscrit concernent l'étude de matériaux vitreux pouvant être utilisés en tant qu'électrolyte solide afin de permettre le développement de batteries tout-solide sûres et performantes. Des verres de sulfures au lithium, attractifs pour leurs propriétés de conduction ionique, sont étudiés et caractérisés. Les propriétés de conduction ionique dans les verres étant toujours mal comprises et sujettes à controverses, l'analyse structurale des verres présente ici un réel intérêt pour une meilleure compréhension des corrélations entre structure et propriétés. Un effort de recherche a donc été porté sur l'étude de l'ordre local dans les verres préparés via différentes techniques d'analyse structurale complémentaires. Enfin, les matériaux vitreux, sont de manière générale relativement faciles à mettre en forme. Les verres étudiés dans ce manuscrit peuvent alors également être utilisés en tant qu'électrolytes sous forme de couches minces dans les micro-batteries. Des premiers essais de dépôts par pulvérisation cathodique RF magnétron de couches minces conductrices ont donc été effectués et constituent la première brique à la fabrication de micro-batteries. / The energy storage market is in constant growth for both portable and stationary applications. To satisfy the requirements of various applications (electronic devices, hybrid-electric vehicles, renewable energy storage…), always more efficient, more compact and lightweight batteries have to be developed. Then, thanks to their high energy densities, batteries using Li metal anodes are the most promising to complete this challenge. However, the use of conventional liquid electrolytes raises safety issues, mainly related to the flammability of the organic liquid. In this thesis, glassy materials, exhibiting great interest towards developing solid electrolytes are considered and might enable the development of safe and efficient all-solid-state batteries. Here, Li-sulfide glasses, attractive for their ionic conduction properties, have been studied and characterized. The ionic conduction properties of glasses are still misunderstood and controversial, the structural investigation of glasses is of great interest in order to get a better understanding of structure-properties relationship. Then, the short and intermediate range order of prepared glasses have been investigated by the mean of various complementary structural analysis techniques. Finally, glassy materials are usually quite easy to shape. Thus, studied glasses in this thesis can also be used as thin-film electrolytes in microbatteries. First tests of sputtering of conducting thin-films have been performed by RF magnetron sputtering and constitute a first step in order to design microbatteries.
149

DESIGN AND CHARACTERIZATION OF A PEO-BASED POLYMER COMPOSITE ELECTROLYTE EMBEDDED WITH DOPED-LLZO: ROLE OF DOPANT IN BULK IONIC CONDUCTIVITY

Andres Villa Pulido (8083202) 06 December 2019 (has links)
Ionic conductivity of solid polymer electrolytes (SPEs) can be enhanced by the addition of fillers, while maintaining good chemical stability, and compatibility with popular cathode and anode materials. Additionally, polymer composite electrolytes can replace the flammable organic liquid in a lithium-ion battery design and are compatible with lithium metal. Compatibility with Li-metal is a key development towards a next-generation rechargeable Li-ion battery, as a Li-metal anode has a specific capacity an order of magnitude higher than LiC6 anodes used today in everyday devices. The addition of fillers is understood to suppress the crystalline fraction in the polymer phase, increasing the ionic conductivity, as Li-ion conduction is most mobile through the amorphous phase. A full model for a conduction mechanism has not yet constructed, as there is evidence that a semi-crystalline PEO-based electrolyte performs better than a fully amorphous electrolyte. Furthermore, it is not yet fully understood why the weight load of fillers in PCEs can range from 2.5%wt to 52.5%wt, in order to achieve high ionic conductivity (~10-4S/cm). This work seeks to investigate the conduction mechanism in the PCE through the use of doped-Li7La3Zr2O12 as a filler and analysis of the PCE microstructure. In this work, a solid-state electrolyte, doped-Li7La3Zr2O12 (LLZO) was synthesized via a sol-gel method, and characterized. The effect of doping and co-doping the Li, La and Zr sites in the LLZO garnet was investigated. A PEO-based polymer composite electrolyte (PCE) was prepared by adding bismuth doped LLZO (Li7-xLa3Zr2-xBixO12) as a filler. The bismuth molar ratio was changed in value to study the dopant role on the bulk PCE ionic conductivity, polymer phase crystallinity and microstructure. Results suggest that small variations in dopant can determine the optimal weight load of filler at which the maximum ionic conductivity is reached. By understanding the relationship between filler properties and electrochemical properties, higher performance can be achieved with minimal filler content, lowering manufacturing costs a solid-state rechargeable Li-ion battery.<br>
150

Estudo de compostos LiMePO4 (Me=Mg, Co, Ni) através de Ressonância Magnética Nuclear / Studies of LiMePO4 (Me = Mg, Co, Ni) compounds through Nuclear Magnetic Resonance

Silva, Marcos Antonio da 06 October 2000 (has links)
Nesta dissertação é apresentado um estudo dos compostos Li1-3xMgFexPO4 através de Ressonância Magnética Nuclear (7Li e 31P), no intervalo de temperatura de 150 a 410 K. Estudos desses compostos através de técnicas de difração de elétrons e efeito Mossbauer confirmam que os íons Fe entram na rede cristalina na forma Fe3+, substituindo os íons Li+. O comportamento dos espectros de RMN, dos tempos de relaxação spin-rede e da susceptibilidade magnética dos núcleos 7Li e 31P em função da temperatura, em conjunto com medidas de condutividade iônica, indicam que, mesmo com a adição de impurezas Fe3+ na rede, os íons Li+ pouca mobilidade dentro do intervalo de temperatura utilizado. / This work reports a 7Li and 31P nuclear magnetic resonance study in the Li1-3xMgFexPO4 phases between 150 and 410 K. This study, complementary to those made using Mössbauer and magnetic neutron diffraction experiments, confirms that the Fe3+ ions enter as in the lattice, and that they enter substituting Li ions. The behavior of the 7Li e 31P nuclear magnetic resonance spectra, together with ionic conductivity measurements, show that no Li mobility occurs in temperature range studied even with the addition of the Fe impurity.

Page generated in 0.0426 seconds