• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 119
  • 52
  • 10
  • 10
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 411
  • 411
  • 108
  • 107
  • 70
  • 70
  • 66
  • 41
  • 38
  • 32
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Roles of organic cation transporters on the disposition of N-butylpyridinium chloride and structurally related ionic liquids

Cheng, Yaofeng January 2010 (has links)
Studies in this dissertation were conducted to explore the roles of organic cation transporters (OCTs) in the disposition of N-butylpyridinium Chloride (NBuPy-Cl) and structurally related ILs. Following a single i.v. dose to rats, the blood concentration of NBuPy-Cl and 1-butyl-1-methylpyrrolidinium chloride (BmPy-Cl) decreased in a biphasic manner with a clearance of 3.3 and 7 ml/min, respectively. More than 84% of dosed compounds were excreted in the urine. Depending on the vehicle, the dermal absorption of BmPy-Cl and NBuPy-Cl (5 mg/kg, 125 μg/cm²) was 10-35% at 96 h. Following a single oral (50 mg/kg) administration to rats, the maximum blood concentrations of both ILs were reached in less than 90 min in rats. Most of the orally dosed NBuPy-Cl (62-68 %) was excreted in the urine in 72 h. However, more of the dosed BmPy-Cl was eliminated in the feces Its oral bioavailability was only 47%. The elimination differences between BmPy-Cl and NBuPy-Cl were not altered by the size (0.5, 5, or 50 mg/kg) or frequency (1 or 5 administrations) of oral doses. In all urine and blood samples, only parent compounds were detected. Co-administration of NBuPy-Cl and inulin intravenously to rats revealed that the clearance of NBuPy-Cl exceeded the rat glomerular filtration rate, suggesting a renal secretion processing. The in vitro transport studies demonstrated that NBuPy-Cl, BmPy-Cl and 1-butyl-3-methylimidazolium chloride are substrates (Kt, 9~277 μM), as well as inhibitors (IC₅₀: 0.2~7.5 μM), of rOCT1/2 and hOCT2. Their inhibitory effects increased dramatically with increasing the alkyl chain length. The IC₅₀ values were 0.1, 3.8, 14 and 671 μM (hexyl-, butyl-, ethyl-pyridinium and pyridinium chloride) for rOCT2 mediated metformin transport. Similar structurally related inhibitory kinetics were observed for rOCT1 and hOCT2. In vivo co-administration of NBuPy-Cl prolonged the plasma half-life and reduced renal clearance of the diabetic drug, metformin. In summary, BmPy-Cl and NBuPy-Cl are partially absorbed from gastrointestinal tract. The present in blood is eliminated rapidly in the urine as parent, by renal filtration and OCT-mediated secretion. ILs also compete with other substrates of OCTs and have the potential to alter their pharmacokinetic profiles.
102

Cost Effective Synthesis of Ionic Liquids and Their Thermal Properties

Kolanka, Varun Kiran 01 August 2014 (has links)
Ionic liquids (ILs) are liquid organic salts at room temperature which are composed of only ions (cations and anions). Ionic liquids are regarded as “novel solvents” and have been gaining attention as alternatives to volatile molecular organic solvents. Ionic liquids have outstanding properties, such as negligible vapor pressure (no or limited evaporation or volatilization), low melting point, thermal stability, and ionic conductivity. They can be used in efficient and clean energy production and storage. The synthesis of the low-cost and performance-effective ionic liquids using inexpensive raw materials is presented and characterized. Characterization was done using Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Differential Thermometry (DSC-TGA). Cost effective ionic liquids were synthesized and characterized and then compared to commercially available ionic liquids. Results for newly synthesized ionic liquids suggest that these cost effective ionic liquids were electroconductive and thermally stable when compared to the raw materials used for synthesis of ionic liquids. The thermal stability of these ionic liquids was less, however, when compared to the regular higher cost ionic liquids. FTIR characterization also provided secondary evidence on expected functional groups of newly synthesized ionic liquids. Viscosity of the syntehsized ionic liquids was higher when comapred to the commercially avaialable ionic liquids.
103

Electrochemical comparison and deposition of lithium and potassium from phosphonium- and ammonium-tfsi ionic liquids

Vega, Jose A. 09 April 2009 (has links)
In this work, ionic liquids (ILs) were investigated for use as battery electrolytes. The ILs were synthesized from quaternary ammonium and phosphonium salts and TFSI-. A dendrite free lithium metal anode was demonstrated by deposition of a lithium-potassium alloy. Several phosphonium ILs were synthesized using the TFSI- and PF6- anions until a room temperature IL was obtained. The smaller size, highly symmetric PF6- anion yielded high melting point salts, while TFSI- yielded much lower melting point ILs. When a room temperature IL, Bu3HexP+TFSI-, was obtained the analogous ammonium IL, Bu3HexP+TFSI-, was synthesized and compared. The phosphonium-based ionic liquid showed improved stability and physical properties compared to the analogous ammonium-based IL. The phosphonium-based IL had higher conductivity, 0.43 mS/cm, than the ammonium-based IL, 0.28 mS/cm. The addition of LiTFSI to both ILs led to a decrease in conductivity and increase in viscosity. The lower viscosity and higher stability of the phosphonium-based IL led to higher current density and stability for electrodeposited lithium metal. IL reduction interfered with lithium deposition reflecting lower coulombic efficiencies and giving the appearance of an unstable lithium couple. An optimum deposition potential was found which was bounded by the electrochemical stability of each IL. The stability of lithium in the ILs increased at lower temperature due to slower reactivity with the IL. Addition of higher quantities of lithium ions caused a higher fraction of the cathodic current going to lithium deposition that was reoxidized. The stability of lithium in the ILs increased at lower temperature due to slower reactivity with the IL. The electrodeposition and reoxidation of potassium was also demonstrated. Deposition of a lithium-potassium alloy caused slight increases in the cathodic and anodic currents along with higher coulombic efficiencies. Also, it was found that a lithium-potassium alloy could be deposited at high current for long times without the occurrence of dendrites.
104

Φυσικά πηκτώματα συμπολυμερών κατά συστάδες πολυστυρολίου (PS) / πολυαιθυλενοξειδίου (PEO) σε ιονικά υγρά / Physical gels formed by polystyrene (PS) / poly(ethylene oxide) (PEO) copolymers in ionic liquids

Γκερμπούρα, Σάνδρα 29 March 2013 (has links)
Στην παρούσα εργασία μελετήθηκαν φυσικά πηκτώματα κατά συστάδων συμπολυμερών σε ιοντικό υγρό. Τα συμπολυμερή που μελετήθηκαν ήταν το τρισυσταδικό συμπολυμερές πολυ(αιθυλενοξείδιο)-πολυ(στυρόλιο)-πολυ(αιθυλενοξείδιο) (PEO-PS-PEO) και το αστεροειδές συμπολυμερές πολυ(στυρόλιο)-πολυ(αιθυλενοξείδιο) (PS10PEO10) στο ιοντικό υγρό εξαφθοροφωσφορούχο 1-βουτυλο-3-μεθυλιμιδαζόλιο [BMIM][PF6], το οποίο είναι "καλός" διαλύτης για το PEO και "κακός" διαλύτης για το PS. Αρχικά πραγματοποιήθηκε μοριακός χαρακτηρισμός των συμπολυμερών PEO-PS-PEO και PS10PEO10 μέσω των τεχνικών χρωματογραφίας αποκλεισμού μεγεθών (SEC) και της φασματοσκοπίας πυρηνικού μαγνητικού συντονισμού (1H-NMR). Στη συνέχεια πραγματοποιήθηκε η μελέτη των συμπολυμερών σε αραιά διαλύματα μέσω των τεχνικών της δυναμικής σκέδασης φωτός (DLS) και της ιξωδομετρίας. Παρατηρήθηκε πως τα συμπολυμερή PEO-PS-PEO και PS10PEO10 δημιουργούν πολυμοριακά και μονομοριακά "μαλακά" νανοσωματίδια μικκυλιακού τύπου, αντίστοιχα. Από τη DLS προσδιορίστηκε η υδροδυναμική ακτίνα, Rh, των σωματιδίων. Μέσω της τεχνικής της ιξωδομετρίας AMVn υπολογίστηκε η κρίσιμη συγκέντρωση επικάλυψης, c*, στην οποία τα σωματίδια αρχίζουν να εφάπτονται μεταξύ τους. Σε υψηλές συγκεντρώσεις των πολυμερών παρατηρείται η δημιουργία φυσικών πηκτωμάτων λόγω της πλήρωσης του όγκου του διαλύματος από τα σωματίδια. Μέσω ρεολογικών μελετών προσδιορίστηκε η κρίσιμη συγκέντρωση σχηματισμού πηκτώματος, cgel. Παρατηρήθηκε μεγάλη εξάρτηση του σχετικού ιξώδους από τη συγκέντρωση του συμπολυμερούς καθώς και η αύξηση της ισχύος (μέτρου αποθήκευσης) και του χρόνου χαλάρωσης των φυσικών πηκτωμάτων με την αύξηση της συγκέντρωσης. Τέλος, πραγματοποιήθηκε σύγκριση μεταξύ των συστημάτων PEO-PS-PEO/[BMIM][PF6] και PS10PEO10/[BMIM][PF6]. Διαπιστώθηκε πως το PS10PEO10 παρουσιάζει μεγαλύτερη cgel από το PEO-PS-PEO λόγω της μικρότερης πυκνότητας των αλυσίδων στην κορώνα του αστεροειδούς από αυτή του τρισυσταδικού με αποτέλεσμα τα σωματίδια του αστεροειδούς να διεισδύουν πολύ περισσότερο μεταξύ τους για να επιτευχθεί το φαινόμενο του συνωστισμού. / In the present study the properties of physical gels formed by block copolymers in an ionic liquid were studied. The triblock poly(ethylene oxide)-poly(styrene)-poly(ethylene oxide) (PEO-PS-PEO) and the star polystyrene-polyethylene (PS10PEO10) copolymers were studied in 1-butyl-3-methylimadazolium hexafluapophoshate, [BMIM][PF6], which is a good solvent for the PEO blocks and bad solvent for the PS blocks. Initially, the copolymers were characterized by size exclusion chromatography (SEC) and neutron magnetic resonance (1H-NMR). At a next step the study of the polymers in dilute solutions was followed by dynamic light scattering (DLS) and AMVn viscometry. It was found that PEO-PS-PEO and PS10PEO10 self assemble into multimolecular and monomolecular, micellar type soft nanoparticles, respectively. The size of the particles was calculated by DLS. From the AMVn viscometry, the critical overlap concentration at which the formed nanoparticles start adhering to each other, c*, was calculated. At high polymer concentrations, the formation of gels was observed which was due to the jamming of the particles in the total volume of the solution. Through rheological studies, the critical gelation concentration, cgel, was determined. Above cgel a dramatic viscosity rise was observed. At the same time, the storage modulus Go and the relaxation time τR of the system increased also with increasing concentration. Finally, the comparison between the PEO-PS-PEO/[BMIM][PF6] and PS10PEO10/[BMIM][PF6] systems was discussed. It was concluded that the PS10PEO10 copolymer exhibits a higher value of cgel than that of PEO-PS-PEO copolymer due to the lower density of the chains in the corona of the star nanoparticles.
105

Metal chalcogenides syntheses using reactions of ionic liquids

Zhang, Tao 12 June 2018 (has links) (PDF)
Ionic liquids (ILs) are nowadays a large and widely explored class of ionic compounds that melt below 100 °C. Due to their attractive properties, ILs are now of growing interests in a variety of inorganic materials preparation. However, most studies have put much focus on the description of new synthetic strategies. The chemical reactivity of ILs in the reactions is often neglected. In this dissertation, a series of metal chalcogenides were synthesized using the decompositions of ILs. The role or chemical reactivity of ILs in the reactions was demonstrated in detail. The hierarchical desert-rose-like SrTiO3 particles have been successfully prepared based on an ethylene glycol (EG) mediated one-pot IL-assisted solvothermal synthetic route. The used basic ionic liquid tetrabutylammonium hydroxide (TBAH) serves as an alkaline source and can also replace EG as the sole solvent to synthesize polyhedral SrTiO3, showing “all-in-one” solvent and reactant. A series of metal sulfides, such as Sb2S3, Bi2S3, PbS, CuS, Ag2S, ZnS, and CdS have been obtained from a choline chloride/thioacetamide based deep eutectic solvent (DES, an IL analog solvent) by a simple and general synthetic method. The reaction mainly proceeds in two steps: i) the dispersion of metal salts in the DES and the formation of a metal-DES complex, and ii) the decomposition of the metal-DES complex and formation of the final products. In addition, the chemical reactivity of phosphonium based ILs with selenium and tellurium at above 220 °C was systematically investigated by a series of dissolution experiments, tracking the solute selenium and tellurium species by nuclear magnetic resonance (NMR). NMR results clearly indicate some common decomposition mechanisms for quaternary phosphonium ILs at a relatively high temperature in the presence of selenium or tellurium. The decomposition of the quaternary phosphonium cations should proceed by an elimination of one alkyl substituent via an SN2 reaction, forming the respective trialkylphosphane selenides or tellurides in the presence of selenium or tellurium, which is then responsible for the genuine dissolution of selenium or tellurium. However, in the case of tellurium, the dissolution behavior is much more complicated compared to that of selenium. The coupling of P and Te which indicates a P–Te bond formation is only observed in the NMR spectra when a sufficient amount of tellurium (e.g. Te : IL = 1 : 1) is provided. The existence of a parallel-competitive IL decomposition route besides the SN2 reaction is regarded as the side reaction for the dissolution of tellurium. This may at least partially explain the relatively lower solubility of tellurium in phosphonium based ILs compared to that of selenium.
106

Vers une méthode de recyclage et de valorisation des aimants permanents à base de terres rares par électrochimie en milieux liquides ioniques / Recycling of permanent magnet based on rare earth elements via electrochemistry in ionic liquid

Bonnaud, Céline 17 October 2017 (has links)
Les terres rares (TR) sont aujourd’hui les « vitamines » des nouvelles technologies, elles se retrouvent dans tous les objets technologiques du quotidien et contribuent notablement au développement d’énergies vertes principalement par l’intermédiaire d’aimants permanents à base de terres rares (APTR). Ces derniers, de type NdFeB ou SmCo, représentent actuellement plus de 50 % du marché des TR et offrent un fort potentiel de recyclage. La présente étude se concentre sur le recyclage et la valorisation des APTR, principalement grâce au développement de l’électrochimie en milieu liquide ionique (LI) qui permet d’atteindre les potentiels de réduction des TR (< -2 V vs. ENH). Samarium, néodyme, dysprosium, praséodyme et cobalt ont effectivement été électrodéposés dans [C1C4Pyrr][Tf2N] suivant une méthode potentiométrique à 25 °C et sur une électrode de carbone vitreux.Deux méthodes globales de recyclage sont finalement proposées et ont été appliquées à des APTR industriels. La première est entièrement électrochimique. Elle est basée sur une phase d’électrodissolution de l’APTR dans le LI puis d’une électrodéposition sélective permettant de récupérer les métaux de transition. Une électrodéposition des TR est ensuite envisageable. La deuxième méthode s’appuie sur une lixiviation acide afin de séparer efficacement les métaux de transition des TR grâce à la formation de sels phosphatés. Une dissolution des sels obtenus dans un LI permettrait ensuite d’électrodéposer les ions métalliques. / Rare earth elements (REE) are currently essential for new technologies development; from everyday life objects to green energies devices, they are especially used in permanent magnets. NdFeB and SmCo permanent magnets represent more than 50% of the REE market and offer a high recycling opportunity. The present study focuses on their recycling, mainly via electrochemistry in ionic liquid medium (IL), which enables to reach the reduction potentials of REE (< -2 V vs. ENH).Samarium, neodymium, dysprosium, praseodymium and cobalt were successfully electrodeposited in [C1C4Pyrr] [Tf2N] according to a potentiometric method at 25 ° C and on a glassy carbon electrode.Two general recycling methods are finally proposed and have been applied to industrial permanent magnets. The first uses only electrochemistry and is based on a first magnet electrodissolution step in the IL followed by a selective electroplating to recover the transition metals. Electrodeposition of REE could then be possible. The second method starts by an acid leaching of the magnet in order to efficiently separate the transition metals from REE via the formation of phosphate salts. Dissolution of the salts obtained in LI would then enable to electrodeposit the metal ions.
107

Produção de grafeno pela abertura de nanotubos de carbono auxiliada por líquido iônico e uso em nanocompósitos de resina epoxídica

Kleinschmidt, Ana Claudia January 2014 (has links)
No fim do século XX cresceu o interesse por materiais com potencial para aplicação na área da nanotecnologia. Um destes materiais é o grafeno (alótropo do carbono da espessura de um átomo), indicado para aplicações que exploram desde propriedades ópticas até mecânicas. Todavia, os métodos de produção estabelecidos até o momento geram normalmente um produto com alto grau de defeitos estruturais. Por isso, o objetivo deste estudo foi desenvolver um método mais brando para obtenção de grafeno, por meio do desenrolamento de nanotubos de carbono (NTC) de parede múltipla na presença de líquidos iônicos (LI) (que possuem caráter lubrificante e estabilizador) e adicioná-lo à resina epoxídica para avaliar seu efeito nas propriedades do nanocompósito. A metodologia consistiu em definir a rota a que a mistura NTC:LI (bis(trifluorometanosulfonil)imidato de 1-n-butil-3-metilimidazólio – BMImNTf2), na proporção 1:10, deveria ser submetida e depois avaliar variações para validação do método (alteração de temperatura, solventes – LI BMImCl e tolueno e nanocarga – grafite). As misturas de grafeno-NTC/LI produzidas foram adicionadas na proporção de 0,1% em massa de grafeno-NTC à resina epoxídica. A caracterização das misturas se deu pelas técnicas de microscopia eletrônica de transmissão (MET), espectroscopia Raman e microscopia de força atômica (AFM), e dos nanocompósitos, também por microscopia eletrônica de varredura (MEV), análise termogravimétrica (TGA), calorimetria diferencial exploratória (DSC), infravermelho (IV) análise dinâmico-mecânica (DMA) e ensaios mecânicos. A morfologia observada em MET e AFM evidenciou que a rota em que a mistura permaneceu 3 h em aquecimento e agitação magnética sob vácuo e 3 h sob sonificação resultou em grafeno de algumas camadas. Os resultados de Raman mostraram que foi produzido grafeno de boa qualidade, baseando-se na razão ID/IG. Nos nanocompósitos, confirmou-se que BMImNTf2 mantém as folhas de grafeno abertas. Já com BMImCl a morfologia dos NTC permanece inalterada, mas seu grau de emaranhamento é diminuído pela ação lubrificante deste LI, o que reflete em melhoria na resistência ao impacto. Os NTC sem a presença de um LI de forma geral não conferiram melhoria à matriz polimérica (ex: queda de 35% na dureza). / In the late twentieth century, the interest in materials with potential application in the nanotechnology´s field has increased. One of these materials is graphene (carbon allotrope of a single atom thickness), suitable for applications, which exploit properties such as optical or mechanical. However, the methods developed up to now to obtain graphene usually generate a product with high degree of structural defects. Therefore, the aim of this study was to produce graphene sheets through a milder route of unrolling multi-walled carbon nanotubes (CNT) in ionic liquids (IL; which have a lubricating and stabilizing character) and to add it to an epoxy resin to evaluate its effect on the nanocomposite properties. The methodology consisted of defining the route through which the 1:10 mixture of CNT:IL (1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imidate - BMImNTf2) should be submitted, and then evaluate possible variations for validating the method (change in temperature, solvents - toluene and IL BMImCl and nanofiller - graphite). The produced graphene-CNT/IL mixtures were added at 0.1% by weight of graphene-CNT to epoxy resin. Characterization of the graphene/IL mixtures was done by transmission electron microscopy (TEM), Raman spectroscopy and atomic force microscopy (AFM), and the nanocomposites also by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamical mechanical analysis (DMA) and mechanical tests. The morphology observed using TEM and AFM showed that the route based on 3 h under heating, stirring and vacuum, followed by 3 h of sonication leads to CNT unrolling. Raman spectra showed that the produced graphene was of good quality, based on the low ID/IG ratio. In the nanocomposites, CNT unrolling was confirmed when IL BMImNTf2 was used, yielding reasonable property improvements. In the case of IL BMImCl, the unrolling of the CNT did not occur, but the lubricant effect of the IL decreased the degree of entanglement, which increased its impact strength. Differently, the non-treated CNT generally reduced the properties of the polymer matrix, e.g. a 35% drop in hardness.
108

Aprimoramento do modelo F-SAC para aplicação na descrição de líquidos iônicos

Schneider, Rafael January 2018 (has links)
Os líquidos iônicos são uma das principais apostas para revolucionar a química no século XXI. Em geral, apresentam propriedades como baixa pressão de vapor, alta estabilidade térmica, e ampla existência liquida e outras que os tornam interessantes para aplicações como solventes para extração, meio reacional e como meio catalítico. Estas propriedades permitem a redução da geração de efluentes industriais, o que os torna potenciais solventes verdes. O interesse recente aumentou a quantidade de ânions e cátions disponíveis para formar líquidos iônicos. Essa maior diversidade por um lado aumenta o potencial de aplicação industrial dos líquidos iônicos, mas por outro aumenta a carga de trabalho para obter as propriedades necessárias para projeto industrial destas novas substâncias. Métodos preditivos podem ser utilizados para evitar a grande demanda de ensaios experimentais para obter essas propriedades. Entretanto modelos puramente preditivos, como o COSMO-RS, usualmente não obtém uma acurácia adequada para o uso industrial. Modelos que fazem uso de dados experimentais de misturas para estimar seus parâmetros, como o UNIFAC (Do) e o F-SAC, são predominantes na indústria. Esses modelos, que são modelos de coeficiente de atividade, permitem o cálculo de equilíbrio de fases e outras propriedades termodinâmicas. Este trabalho teve como objetivo o desenvolvimento do modelo F-SAC para líquidos iônicos. Baseado em trabalhos anteriores, foram reestimados os parâmetros dos grupos de líquidos iônicos já existentes e adicionados novos grupos de cátions e ânions. Também foram geradas as primeiras curvas de equilíbrio líquido-vapor de misturas contendo líquidos iônicos com o F-SAC. De forma geral, para os 1-alquil-3-etil-imidazólios, foi obtido um R2 de 0.9794 e o valor de AAD de 0.1721 para 1514 misturas com o modelo F-SAC, superior ao encontrado para o UNIFAC (Do). Para o piridínio e o pirrolidínio o F-SAC obteve, respectivamente, um R2 de 0.9281 e 0.9837 e um valor de AAD de 0.2749 e 0.0962. Com este trabalho é possível formar 24 diferentes líquidos iônicos base com o uso de 33 parâmetros eletrostáticos estimados e 22 parâmetros geométricos no F-SAC. Para o mesmo objetivo o modelo UNIFAC (Do) necessitaria de 180 parâmetros binários e 26 parâmetros individuais – todos estimados. Ou seja, o F-SAC, nesse caso, precisou estimar apenas 27% do número de parâmetros que o UNIFAC (Do). / Ionic Liquids are one of the most promising fields to revolutionize chemistry in the 21st century. In general, they show properties like negligible vapor pressure, high thermal stability, wide liquid existence turn them interesting for applications as solvents for extraction, as reactional and catalytic media. These properties allow a reduction in industrial effluent production, making them eligible green solvents. Recent inteerest expanded the number of anions and cations available to compose Ionic. This great diversity enhances the industrial application potential of Ionic Liquids, while increases the workload needed for obtaining properties of these new substances needed for industrial project. Predictive methods can used to avoid the demand of experiments to obtain these properties. Purely predictive methods, as COSMO-RS, are usually not accurate enough for industrial use. Models use experimental data from mixtures for parameter estimation like UNIFAC (Do) and F-SAC, are predominant in the industry. Activity coefficient models like these allow the solving of phase equilibria and other thermodynamic properties. This work aimed at developing the F-SAC model for Ionic Liquids. Based on previous works, the already existing parameters for Ionic Liquid groups were reestimated and new cation and anion groups were added. In addition, the first vapor-liquid equilibrium curves for mixtures containing Ionic Liquids were created for the F-SAC model. For 1-alkyl-3-ethyl-imidazoliums, an overall R2 of 0.9794 and AAD of 0.1721 for 1514 mixtures was obtained, superior to UNIFAC (Do) values. For pyridinium and pyrrolidinium, F-SAC achieved, respectively, R2 of 0.9281 and 0.9837 and AAD of 0.2749 and 0.0962. With this work is possible to form 24 different base Ionic Liquids with 33 estimated electrostatic parameters and 22 geometric parameters with F-SAC. For the same purpose, UNIFAC (Do) would need 180 binary parameters and 23 individual parameters – all estimated. For this particular case the F-SAC model needed to estimate only 27% of the parameter number UNIFAC (Do) needed.
109

SYNTHESIS OF PERFLUOROHETEROAROMATIC POLYMERS FOR ION-CONDUCTING MEMBRANE FUEL CELLS VIA FREE RADICAL-BASED REACTIONS AND SYNTHESIS OF DI-CATIONIC IONIC LIQUIDS AS EFFICIENT SO2 ABSORBENTS

Xu, Shaoyi 01 May 2016 (has links)
A novel free radical-based substitution reaction was developed for grafting aromatic/heteroaromatic compounds to perfluorosulfonic acid polymers (PFSAs). Two proton-exchange membranes perfluorobenzoic acid (PFBA) and perfluorobenzenesulfonic acid (PFBSA)—were synthesized for proton-exchange membrane fuel cells via the free radical-based reaction. The physical properties, in-plane ionic conductivities and fuel cell performance of two membranes were investigated. They exhibited different electrochemical and physical properties, possibly due to the formation of unique dimerized/trimerized structure of –CO2H groups in the PFBA membrane. A free radical-based thermolytic reaction under a high temperature (180 oC)/pressure (1000 psi) condition in the presence of TFA and hydrogen peroxide is first demonstrated. A novel perfluorotetrafluoroaniline (PFTFAn) polymer was synthesized from PFSA and 2,3,5,6-tetrafluoroaniline in one step via the thermolytic reaction. After doping H2SO4 in the PFTFAn polymer, a new conjugated acid membrane (H2SO4-doped PFTFAn) was obtained. The H2SO4-doped PFTFAn membrane displayed better chemical stability and mechanical properties than NafionTM due to the removal of –SO3H groups. The second part of this thesis deals with fluoropolymer-based anion-exchange membranes. A new class of coordinated metal/perfluoropolymer type composite membranes were synthesized and characterized for anion-exchange membrane fuel cells (AEMFCs). A membrane comprised of perfluoro(phenyl-2,2’:6’,2”-terpyridine) polymer, ZrO(ClO4)2 nanoclusters, and 2,2’:6’,2”-terpyridine displayed the highest conductivity of 23.1 mS/cm at 60 oC. The chemical stability test of composite membrane showed no conductivity loss after refluxing in 7 M KOH solution at 120 oC for 2,200 h. A H+ coordinated cage-shape molecule with a benzyl group (Bn-proton cage) was designed and synthesized as a base-stable anion-exchange group. By employing the free radical-based reaction, Bn-proton cage was grafted to a fluoropolymer to yield a stable anion-conductive membrane under alkaline conditions. The third part of this thesis is our design, synthesis and test of ionic liquids for reversible SO2 absorption. Novel di-cationic ionic liquids (DILs) were designed and synthesized for SO2 absorption. DILs were found to have better SO2 absorption capabilities than mono-cationic ionic liquids (MILs). A chloride-based DIL comprised of two N-methylimidazolium cations and a PEG9 (HO-(CH2CH2O)9-H) chain could reversibly uptake 3.710 mole SO2 per mole DIL under ambient conditions. The anion, temperature and water impact on SO2 absorption in DILs was investigated. Although replacing chloride with triflate or tosylate groups led to a reduced SO2 absorption for the DILs, a high selectivity against CO2 was observed in CO2 absorption test.
110

Tratamento superficial de fibras de poliaramida com líquidos iônicos imidazólicos

Moraes, Carolina Vicente January 2017 (has links)
Poli(p-fenileno de tereftalamida) (PPTA), usualmente chamado de aramida, é uma fibra polimérica de baixa densidade que possui alta rigidez e resistência à tração, assim como excelente estabilidade térmica e química. Essa fibra é utilizada como reforço em materiais compósitos utilizados nas indústrias aeroespacial e automobilística, em artefatos de proteção balística e de proteção ao corte. No entanto, sua aplicação como reforço em materiais compósitos está limitada por sua baixa afinidade interfacial com matrizes poliméricas, devido a sua superfície lisa e relativamente inerte. Para superar esta desvantagem, diversos tratamentos foram desenvolvidos para modificar a superfície da aramida. Contudo, realizar essa modificação sem diminuir a resistência mecânica da fibra é um grande desafio, assim como desenvolver um método industrialmente viável. Líquidos iônicos (LI) apresentam-se como uma alternativa promissora para a compatibilização da aramida com matrizes poliméricas, devido à possibilidade de ajuste de suas propriedades com a escolha de ânions e cátions específicos. Dessa forma, o objetivo deste estudo é investigar a influência de diferentes LI nas propriedades adesivas entre Kevlar e uma resina epoxídica. Para tanto, as fibras foram submetidas a soluções de etanol e LI imidazólicos (cloreto de 1-n-butil-3-metilimidazólio, cloreto de 1-carboximetil-3-metilimidazólio, metanossulfonato de 1-trietilenoglicol monometil éter-3-metilimidazólio e metanossulfonato de 1-n-butil-3-metilimidazólio) e analisadas por espectroscopia do infravermelho, análise termogravimétrica e microscopia eletrônica de varredura. A resistência mecânica das fibras foi investigada por teste de tração e a interface foi caracterizada em termos de molhabilidade e adesão pelos testes de ângulo de contato e pull-out. Os resultados mostraram um aumento na molhabilidade e na adesão nas fibras tratadas com cloreto de 1- n-butil-3-metilimidazólico, metanossulfonato de 1-trietilenoglicol monometil éter-3- metilimidazólio e metanossulfonato de 1-n-butil-3-metilimidazólio. Dois compósitos laminados foram fabricados com os tecidos comercial e tratado com metanossulfonato de 1- trietilenoglicol monometil éter-3-metilimidazólio. Suas propriedades mecânicas foram aferidas por ensaios de tração e short beam. O compósito feito com o tecido tratado apresentou maior resistência mecânica, módulo e tensão de cisalhamento interlaminar. / Poly(p-phenylene terephthalamide) (PPTA), known as aramid, is a low density polymeric fiber that has high rigidity and exceptional tensile strength, as well as excellent thermal and chemical stability. It is used as reinforcement in composite materials in the aerospace and automobile industry and in ballistic and stab-resistant articles. However, its inferior interfacial affinity towards polymeric matrices due to its smooth surface hampers its use in composite materials, preventing full achievement of its potential as reinforcement. To overcome this drawback, various treatments have been applied to modify the aramid surface. Nevertheless it is a great challenge to introduce this modification without diminishing the fiber mechanical properties and to develop an industrially feasible process. Ionic liquids (IL) might be an alternative as compatibilizer in polymeric matrices reinforced with aramid fibers because of their unique set of physical-chemical properties that can be finely tuned by their chemical structures. Hence, the objective of this study is to investigate the influence of different IL on the adhesive properties between Kevlar and epoxy resin. Kevlar fibers were submitted to solutions of ethanol and imidazolium IL (1-n-butyl-3-methylimidazolium chloride, 1- carboxymethyl-3-methylimidazolium chloride, 1-n-hexadecyl-3-methylimidazolium chloride, 1- triethyleneglycol monomethyl ether-3-methylimidazolium methanesulfonate and 1-n-butyl-3- methylimidazolium methanesulfonate) and then analyzed by infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The mechanical strength of the fibers was analyzed by tensile strength tests and the interface was characterized by contact angle measurements and pull-out tests. There was an increase in wettability and adhesion of the fibers treated with 1-n-butyl-3-methylimidazolium chloride, 1-triethyleneglycol monomethyl ether-3-methylimidazolium methanesulfonate and 1-n-butyl-3- methylimidazolium methanesulfonate. Two laminated composites were manufactured with commercial and 1-triethyleneglycol monomethyl ether-3-methylimidazolium methanesulfonate treated fabrics and their mechanical properties were measured with tensile strength and short beam test. The composite made with treated fabrics presented higher mechanical resistance, modulus and interfacial shear strength.

Page generated in 0.2025 seconds