821 |
THE SOCHI OLYMPICS - MAPPING AND UNDERSTANDING THE POLITICAL CONTROVERSIES DURING THE GAMESEkberg, Johan January 2014 (has links)
The purpose of this thesis is to, through media, observe and map the political controversies during the XXII Olympic Winter Games in Sochi and once the games have finished summarize and analyze them in order to close in on a comprehensive understanding of them. In addition to being tinged by the hermeneutics and inductive reasoning the study uses a methodology referred to as a qualitative explanatory case study with an intensive approach. In applying IR-theory, and more specifically the theoretical perspectives of realism, liberalism and social constructivism, the study manage to shy away from mainstream Olympic research. The thesis finds that the political controversies during the Games in Sochi were fewer than anticipated and offers various understandings of why that is, including the realist notion of the triumph of the principle of sovereignty over human rights, the within liberalism found belief of the good nature of mankind, and the social constructivist idea of actions being constrained by social structures.
|
822 |
Squaraine Dyes, Design And Synthesis For Various Functional Materials ApplicationsZhang, Yuanwei 01 January 2013 (has links)
This dissertation contains the synthesis and characterization of squaraine based new functional materials. In the first part of this thesis work, a water soluble benzothiazolium squaraine dye was synthesized with pyridium pendents, and controlled aggregation properties were achieved. After formation of partially reversible J-aggregation on a polyelectrolyte (poly(acryl acid) sodium salt) template, the nonlinear, two-photon absorption cross section per repeat unit was found to be above 30-fold enhanced compared with nonaggregate and/or low aggregates. Using a similar strategy, sulfonate anions were introduced into the squaraine structure, and the resulting compounds exhibited good water solubilities. A ‘turn on’ fluorescence was discovered when these squaraine dyes interacted with bovine serum albumin (BSA), titration studies by BSA site selective reagents show these squaraine dyes can bind to both site I and II of BSA, with a preference of site II. Introduction of these squaraine dyes to BSA nanoparticles generated near-IR protein nano fabricates, and cell images were collected. Metal sensing properties were also studied using the sulfonates containing a benzoindolium squaraine dye, and the linear response of the absorption of the squaraine dye to the concentration of Hg2+ makes it a good heavy metal-selective sensing material that can be carried out in aqueous solution. Later, a squaraine scaffold was attached to deoxyribonucleosides by Sonogashira coupling reactions, in which the reaction conditions were modified. Iodo-deoxyuridine and bromo-deoxyadenosine were used as the deoxyribonucleosides building blocks, and the resulting squaraine dye-modified deoxyribonucleosides exhibited near-IR absorption and emission properties due to the squaraine chromophore. Interestingly, these non-natural deoxyribonucleosdies showed viscosity dependent photophysical properties, which make them nice candidates for fluorescence viscosity sensors at the cellular level. After incubation with cells, these iv viscosity sensors were readily uptaken by cell, and images were obtained showing regions of high viscosity in cells.
|
823 |
Ultrafast Laser Material Processing For Photonic ApplicationsRamme, Mark 01 January 2013 (has links)
Femtosecond Laser Direct Writing (FLDW) is a viable technique for producing photonic devices in bulk materials. This novel manufacturing technique is versatile due to its full 3D fabrication capability. Typically, the only requirement for this process is that the base material must be transparent to the laser wavelength. The modification process itself is based on non-linear energy absorption of laser light within the focal volume of the incident beam. This thesis addresses the feasibility of this technique for introducing photonic structures into novel dielectric materials. Additionally, this work provides a deeper understanding of the lightmatter interaction mechanism occurring at high pulse repetition rates. A novel structure on the sample surface in the form of nano-fibers was observed when the bulk material was irradiated with high repetition rate pulse trains. To utilize the advantages of the FLDW technique even further, a transfer of the technology from dielectric to semiconductor materials is investigated. However, this demands detailed insight of the absorption and modification processes themselves. Experiments and the results suggested that non-linear absorption, specifically avalanche ionization, is the limiting factor inhibiting the application of FLDW to bulk semiconductors with today’s laser sources.
|
824 |
Scanning Fabry-perot Spectrometer For Terahertz And Gigahertz Spectroscopy Using Dielectric Bragg MirrorsCleary, Justin 01 January 2007 (has links)
A scanning Fabry-Perot transmission filter composed of a pair of dielectric mirrors has been demonstrated at millimeter and sub-millimeter wavelengths. The mirrors are formed by alternating quarter-wave optical thicknesses of silicon and air in the usual Bragg configuration. Detailed theoretical considerations are presented for determining the optimum design including factors that affect achievable finesse. Fundamental loss by lattice and free carrier absorption are considered. High resistivity in the silicon layers was found important for achieving high transmittance and finesse, especially at the longer wavelengths. Also considered are technological factors such as surface roughness, bowing, and misalignment for various proposed manufacturing schemes. Characterization was performed at sub-mm wavelengths using a gas laser together with a Golay cell detector and at millimeter wavelengths using a backward wave oscillator and microwave power meter. A finesse value of 422 for a scanning Fabry-Perot cavity composed of three-period Bragg mirrors was experimentally demonstrated. Finesse values of several thousand are considered to be within reach. This suggests the possibility of a compact terahertz Fabry-Perot spectrometer that can operate in low resonance order to realize high free spectral range while simultaneously achieving a high spectral resolution. Such a device is directly suitable for airborne/satellite and man-portable sensing instrumentation.
|
825 |
L'étude des matériaux polymériques par spectroscopie vibrationnelle à haute résolution spatialeHyett, Craig January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
826 |
Obstacle Avoidance and Line Following 2WD RobotSai Chaya Mounika, Mudragada, Devi Venkata Shanmukha Sai Lohith, Bondada January 2020 (has links)
We use autonomous line-following robots in various industrial environments, surveillance applications, and construction and mining industries for object transportation tasks where rail, conveyer, and gantry solutions are unavailable. They help us reduce the work process and improve efficiency. In this report, we will illustrate how a 2WD robot can move on a predefined path and detect obstacles along the way. In this project, we have used a proximity sensor to detect the obstacle in the path and turn the robot from the obstacle. Also, we used an IR sensor so that robot could follow along the predefined path. The used in the project sensors were connected to Arduino UNO, which was programmed to control the robot's movements and decisions. By employing these two techniques, we can efficiently use such robots in various scenarios. For example, in the current Covid scenario, physical contact has become minimal, so if we use this line-following robot to deliver medicines to the patient, the physical contact between people can be reduced. The obstacle avoidance robot technique can be used in cars to improve safety. If an obstacle is detected in the path of the car and the driver does not apply the brakes, this type of technique can be used to bring the car to a stop by applying breaks. Using the proposed robotic techniques we can save time and work efficiently with minimal physical touch. Overall, the project achieved its primary goal of moving the robot on a predefined path and detecting obstacles on the path
|
827 |
Pressurized Combustion Product Temperature Measurement Using Integrated Spectral Band RatiosEgbert, Scott Cutler 01 August 2019 (has links)
With increasing global power demands, there is a growing need for the clean and efficient use of fossil fuel resources. Gas turbine engines are a commonly used means for generating power; from the propulsion of aircraft to electricity on municipal grids. Measuring the temperature within a turbine combustor or at a turbine inlet could provide numerous advantages related to engine control, durability, efficiency, and emissions and yet this relatively straightforward task has eluded turbine engine manufacturers, primarily because of the high temperatures and pressures, harsh environment, and limited access. Optical emissions measurements are of particular interest for this task as they only require one optical access point and can be accomplished using thin optical fibers that can be fit within existing turbine geometries.This work extends an optical emission method known as the integrated spectral band ratio (ISBR) method beyond previously obtained temperature measurements on atmospheric combustion products to temperature measurements in a pressurized turbine combustor. The ISBR correlates modeled integrated spectral band ratios of spectral water emission to gas temperature, comparable to two-color pyrometry. When the integrated spectral bands are measured, the temperature can be inferred from this correlation. This technique has previously been successfully applied at atmospheric conditions over pathlengths as short at 25 cm but in this case has been applied at pressures of 0.7 and 1.2 MPa and a pathlength of 15 cm.Optical measurements were taken in a pressurized combustion test rig at Solar Turbines Inc. in San Diego California. Two temperature sweeps at high load and low load (pressures of 1.2 and 0.7 MPa, respectively) were measured. The average ISBR optical temperature measurements were approximately 200 K higher than the downstream thermocouple measurements. Thermocouple radiative losses were predicted to yield a bias of -175 K. The slope of a change in optical temperature to change in thermocouple temperature was 1.03 over the 87 K variation seen. Repeatability of the optical measurement at a given operating condition was on the order of ± 15 K and the absolute uncertainty of a single measurement was estimated to be ± 70 K over a temperature range of 1350 to 1500 K. The spectra, measured with a Fourier Transform Infrared Spectrometer (FTIR), was in very good agreement with spectral emission models produced using a derivative of the HITEMP database. All of the measured peak locations matched the model, and the measured data matched changes in spectral wings with changing pressure. A linear correlation was also found between raw optical signal and thermocouple measurements.
|
828 |
Sitting Time and Insulin Resistance in 6,931 United States Adults: The Role of Abdominal AdiposityParker, Kayla Marie 02 December 2022 (has links) (PDF)
This cross-sectional investigation of 6,931 U.S. adults examined the relationship between sitting time and insulin resistance. A primary objective was to evaluate how this relationship was mediated by the following variables: age, sex, race, year of assessment, cigarette smoking, physical activity, body mass index (BMI), and waist circumference. Self-reported sitting time, measured in minutes per day, was the exposure variable. Insulin resistance, indexed by the homeostatic model assessment of insulin resistance (HOMA-IR), was the outcome variable. Data were used from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Results showed a strong, positive association between sitting time and insulin resistance after adjusting for age, sex, race, and year of assessment (F = 13.3, p < 0.0001). Further controlling for cigarette smoking and physical activity did not alter the significance of the relationship. Adding BMI to the demographic covariates weakened the relationship but did not nullify it; however, the association was no longer significant after adjusting for differences in waist circumference (F = 1.39, p = 0.2563). Overall, waist circumference was a powerful mediating variable between sitting time and insulin resistance.
|
829 |
INVESTIGATION OF Ir(100) STRUCTURAL AND ELECTRONIC PROPERTIES TOWARDS C-H BOND ACTIVATION IN STEAM ETHANE REFORMINGOre, Rotimi Mark 01 August 2023 (has links) (PDF)
The reaction barrier and heat of formation of the various dehydrogenation reactions involved in the steam reforming of ethane is a critical concern in the applications and understanding of these reactions. Focusing on Ir-based catalyst, we report a comprehensive reaction network of dehydrogenation of ethane on Ir(100) based on extensive density functional theory calculations performed on 10 C-H bond cleavage reactions, utilizing the Vienna Ab Initio Package codes. The geometric and electronic structures of the adsorption of C2Hx species with corresponding transition-state structures is reported. We found that the C-H bond in CH3C required the most energy to activate, due to the most stable four-fold hollow adsorption site configuration. Ethane can easily dissociate to CH3CH and CH2CH2 on Ir(100) and further investigation of surface temperature dependence will contribute to the research effort in this area. By using the degree of dehydrogenation of the reactant species as a variable to correlate the C-H bond cleavage barrier as well as reaction energy. DFT studies reveal that the surface Ir(100) to a great extent promotes ethane dehydrogenation when compared to other surfaces.
|
830 |
Multi-Physics Sensing and Real-time Quality Control in Metal Additive ManufacturingWang, Rongxuan 08 June 2023 (has links)
Laser powder bed fusion is one of the most effective ways to achieve metal additive manufacturing. However, this method still suffers from deformation, delamination, dimensional error, and porosities. One of the most significant issues is poor printing accuracy, especially for small features such as turbine blade tips. The main reason for the shape inaccuracy is the heat accumulation caused by using constant laser power regardless of the shape variations.
Due to the highly complex and dynamic nature of the laser powder bed fusion, improving the printing quality is challenging. Research gaps exist from many perspectives. For example, the lack of understanding of multi-physical melt pool dynamics fundamentally impedes the research progress. The scarcity of a customizable laser powder bed platform further restricts the possibility of testing the improvement strategies. Additionally, most state-of-the-art quality inspection techniques suitable for laser powder bed fusion are costly in economic and time aspects. Lastly, the rapid and chaotic printing process is hard to monitor and control.
This dissertation proposes a complete research scheme including a fundamental physics study, process signature and quality correlation, smart additive manufacturing platform development, high-performance sensor development, and a robust real-time closed-loop control system design to address all these issues. The entire research flow of this dissertation is as follows:
1. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the melt pool dynamics, keyhole, porosity formation, vapor plume, and thermal evolution in Ti-64 and 410 stainless steel. The study discovers a strong correlation between the thermal and X-ray data, enabling the feasibility of using relatively cheap IR cameras to predict features that can only be captured using costly synchrotron X-ray imaging. Such correlation is essential for thermal-based melt pool control.
2. A highly customizable smart laser powder bed fusion platform is designed and constructed. This platform integrates numerous sensors, including but not limited to co-axial cameras, IR cameras, oxygen sensors, photodiodes, etc. The platform allows in-process parameter adjusting, which opens the boundary to test various control theories based on multi-sensing and data correlations.
3. To fulfill the quality assessment need of laser powder bed fusion, this dissertation proposes a novel structured light 3D scanner with extraordinary high spatial resolution. The spatial resolution and accuracy are improved by establishing hardware selection criteria, integrating the proper hardware, designing a scale-appropriate calibration target, and developing noise reduction procedures during calibration. Compared to the commercial scanner, the proposed scanner improves the spatial resolution from 48 µm to 5 µm and the accuracy from 108.5 µm to 0.5 µm.
4. The final goal of quality improvement is achieved through designing and implementing a real-time closed-loop system into the smart laser powder bed fusion platform. The system regulates the laser power based on the monitoring result from a novel thermal sensor. The desired printing temperature is found by correlating the laser power, the dimensional accuracy, and the thermal signatures from a set of thin-wall structure printing trails. An innovative high-speed data acquisition and communication software can operate the whole system with a graphic user interface. The result shows the laser power can be successfully controlled with 2 kHz, and a significant improvement in small feature printing accuracy has been observed. / Doctor of Philosophy / Laser powder bed fusion is one of the most effective ways to achieve metal additive manufacturing. However, this method still suffers from defects such as deformation, delamination, dimensional error, and porosities. Due to the highly complex and dynamic nature of the laser powder bed fusion, improving the printing quality is challenging. Research gaps exist from many perspectives, such as the lack of understanding of melt pool dynamics; the scarcity of a customizable laser powder bed platform; the need for suitable sensors; and the missing of a control system that can effectively regulate the rapid and chaotic printing process.
This dissertation proposes a complete research scheme to address all these issues. The fundamental study characterizes the melt pool dynamics and discovers a strong correlation between the melt pool thermal and geometrical data, enabling thermal-based melt pool control. Following that, a highly customizable smart laser powder bed fusion platform is designed and constructed. The platform allows in-process parameter changes, opening the boundary to test various control theories. A novel structured light 3D scanner with an ultra-high spatial resolution was proposed to fulfill the quality assessment need. The final goal of quality improvement is achieved through designing and implementing a real-time closed-loop system into the smart laser powder bed fusion platform. The system regulates the laser power based on real-time thermal monitoring. The result shows the laser power can be successfully controlled with 2 kHz, and a significant improvement in printing accuracy is achieved.
|
Page generated in 0.0383 seconds