• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 17
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 30
  • 30
  • 23
  • 21
  • 21
  • 19
  • 19
  • 18
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Relations fonctionnelles entre les voies des hormones thyroïdiennes et WNT dans la physiopathologie intestinale : étude de la fonction de sFRP2 / Functional relations between the thyroïd hormones and WNT pathways in the intestinal physiopathology : study of sFRP2 function

Skah, Seham 27 September 2012 (has links)
L'épithélium intestinal est un tissu en constant renouvellement, grâce à des cellules souches somatiques présentes dans les cryptes intestinales. Le renouvellement perpétuel et l’homéostasie de ce tissu sont assurés par plusieurs réseaux de signalisation. Il est maintenant admis que la dérégulation de ces mêmes voies est impliquée dans le processus d’initiation et/ou de progression tumorale. Mon laboratoire a décrit l'implication des hormones thyroïdiennes (HT) et de leur récepteur nucléaire TRα1 dans le contrôle de l'homéostasie intestinale, via la régulation de la voie Wnt, jouant un rôle clé dans la physiopathologie de ce tissu. Plus précisément, TRα1 active l’expression et la stabilisation de β-caténine via un mécanisme impliquant le facteur sFRP2. Au cours de ma thèse, j’ai participé, d’une part à l’étude de souris transgéniques surexprimant TRα1 dans l’épithélium intestinal et à l’analyse des mécanismes moléculaires de la régulation croisée entre TRα1 et la voie Wnt canonique dans l’induction des tumeurs intestinales. Nous avons donc démontré un rôle oncogénique de TRα1 dans l’épithélium intestinal. De plus, le mécanisme moléculaire et fonctionnel implique les deux effecteurs de la voie canonique, β-caténine et TCF4. D’autre part, j’ai analysé la fonction de sFRP2 dans la physiopathologie intestinale, et son action sur la voie Wnt. D’une manière intéressante, l’étude de la fonction de sFRP2 nous a permis de révéler son rôle original dans la différenciation des cytotypes épithéliaux. De plus, nous avons montré que sFRP2 est un modulateur positif des voies Wnt canonique et non canonique (JNK). Par ailleurs, l’absence d’expression de sFRP2 a pour conséquence d’augmenter l’apoptose dans les cryptes intestinales et ainsi diminuer le nombre de tumeurs chez des animaux double mutants sFRP2-/-/Apc+/1638N comparé aux simple mutants Apc+/1638N. Ces résultats fournissent des éléments originaux et importants sur les relations fonctionnelles entre les voies des HT et Wnt. / The intestinal epithelium is a tissue constantly renewing through somatic stem cells located within the crypts. Several signalling pathways control this process and the homeostasis in this tissue. It is now recognized that the deregulation of these pathways is involved in the process of initiation and/or progression of intestinal tumors. My laboratory has described the involvement of thyroid hormones (TH) and their nuclear receptor TRα1 in the control of the intestinal homeostasis via the regulation of Wnt pathway, which plays a key role in the intestinal physiopathology. Specifically, TRα1 directly activates the expression of β-catenin and controls its stabilization through a mechanism involving sFRP2 (secreted frizzled-related protein 2). During my thesis, I participated to the characterization of transgenic mice overexpressing TRα1 in the intestinal epithelium. Moreover, I have been involved in the study of the molecular mechanisms of the cross-regulation between TRα1 and the canonical Wnt in the induction of intestinal tumors. We have therefore demonstrated an oncogenic role of TRα1 in the intestinal epithelium. In addition, the molecular and functional mechanisms involve both effectors of the canonical pathway, β-catenin and TCF4. On the other hand, I carried out the study of sFRP2 function in the intestinal physiopathology, and its action on the Wnt pathway. My data strongly suggest that sFRP2 plays an essential role in the differentiation of epithelial cytotypes. In addition, we showed that sFRP2 is a positive modulator of the canonical and non-canonical (JNK) Wnt. For instance, the absence of sFRP2 expression increases the apoptosis in the intestinal crypts and thus reduces the number of tumors in the double mutant sFRP2-/-/Apc+/1638N compared to simple mutant Apc+/1638N. These results provided original and important data of the functional relationships between TH and Wnt pathways.
112

Studies on Signal Transduction Mechanisms in Rhabdomyosarcoma

Durbin, Adam 06 August 2010 (has links)
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, with two predominant histologic subtypes: embryonal and alveolar. These histologies display distinct clinical courses, and despite refinements in dose and duration of multimodality therapy, the 5-year overall survival of patients diagnosed with metastatic RMS remains <30%. Thus, there is an urgent need to define novel targets for therapeutic intervention. Interrogation of cancer cell signal transduction pathways that regulate the pathogenic behaviours of tumor cells has been successful in defining targets in numerous tumor types. These have ultimately yielded clinically-relevant drugs that have improved the disease-free and overall survival of patients diagnosed with cancer. Work contained in this thesis describes the interrogation of several potential targets for inhibition in RMS. Interruption of RMS cell proliferation, survival and apoptosis is examined through disruption of the protein kinase integrin-linked kinase (ILK) and the nuclear receptor estrogen-receptor β. ILK, in particular, is demonstrated to have dual competing functions through the regulation of c-jun amino-terminal kinase (JNK) signaling: an oncogene in alveolar, and a tumor suppressor in embryonal RMS. These findings are recapitulated in other tumor cell lines, indicating that expression levels of JNK1 correlate with ILK function in a broad spectrum of tumor types. Furthermore, interruption of rhabdomyosarcoma cell migration as a surrogate marker of metastasis is examined through disruption of the stromal-cell derived factor 1α/chemokine (CXC)receptor 4 signaling network, as well as through cooperative interactions between ILK and the mammalian target of rapamycin. Finally, we demonstrate that the insulin-like growth factor pathway is a potential target for therapeutic inhibition, which also distinguishes tumors of embryonal and alveolar histology. These studies provide a rationale for the development of novel agents, as well as the use of established drugs targeting these pathways in rhabdomyosarcoma.
113

Studies on Signal Transduction Mechanisms in Rhabdomyosarcoma

Durbin, Adam 06 August 2010 (has links)
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, with two predominant histologic subtypes: embryonal and alveolar. These histologies display distinct clinical courses, and despite refinements in dose and duration of multimodality therapy, the 5-year overall survival of patients diagnosed with metastatic RMS remains <30%. Thus, there is an urgent need to define novel targets for therapeutic intervention. Interrogation of cancer cell signal transduction pathways that regulate the pathogenic behaviours of tumor cells has been successful in defining targets in numerous tumor types. These have ultimately yielded clinically-relevant drugs that have improved the disease-free and overall survival of patients diagnosed with cancer. Work contained in this thesis describes the interrogation of several potential targets for inhibition in RMS. Interruption of RMS cell proliferation, survival and apoptosis is examined through disruption of the protein kinase integrin-linked kinase (ILK) and the nuclear receptor estrogen-receptor β. ILK, in particular, is demonstrated to have dual competing functions through the regulation of c-jun amino-terminal kinase (JNK) signaling: an oncogene in alveolar, and a tumor suppressor in embryonal RMS. These findings are recapitulated in other tumor cell lines, indicating that expression levels of JNK1 correlate with ILK function in a broad spectrum of tumor types. Furthermore, interruption of rhabdomyosarcoma cell migration as a surrogate marker of metastasis is examined through disruption of the stromal-cell derived factor 1α/chemokine (CXC)receptor 4 signaling network, as well as through cooperative interactions between ILK and the mammalian target of rapamycin. Finally, we demonstrate that the insulin-like growth factor pathway is a potential target for therapeutic inhibition, which also distinguishes tumors of embryonal and alveolar histology. These studies provide a rationale for the development of novel agents, as well as the use of established drugs targeting these pathways in rhabdomyosarcoma.
114

Regulation and Function of Stress-Activated Protein Kinase Signal Transduction Pathways: A Dissertation

Brancho, Deborah Marie 14 January 2005 (has links)
The c-Jun NH2-terminal kinase (JNK) group and the p38 group of mitogen-activated protein kinases (MAPK) are stress-activated protein kinases that regulate cell proliferation, differentiation, development, and apoptosis. These protein kinases are involved in a signal transduction cascade that includes a MAP kinase (MAPK), a MAP kinase kinase (MAP2K), and a MAP kinase kinase kinase (MAP3K). MAPK are phosphorylated and activated by the MAP2K, which are phosphorylated and activated by various MAP3K. The work presented in this dissertation focuses on understanding the regulation and function of the JNK and p38 MAPK pathways. Two different strategies were utilized. First, I used molecular and biochemical techniques to examine how MAP2K and MAP3K mediate signaling specificity and to define their role in the MAPK pathway. Second, I used gene targeted disruption studies to determine the in vivo role ofMAP2K and MAP3K in MAPK activation. I specifically used these approaches to examine: (1) docking interactions between p38 MAPK and MAP2K [MKK3 and MKK6 (Chapter II)]; (2) the differential activation of p38 MAPK by MAP2K [MKK3, MKK4, and MKK6 (Chapter III)]; and (3) the selective involvement of the mixed lineage kinase (MLK) group of MAP3K in JNK and p38 MAPK activation (Chapter IV and Appendix). In addition, I analyzed the role of the MKK3 and MKK6 MAP2K in cell proliferation and the role of the MLK MAP3K in adipocyte differentiation (Chapter III and Chapter IV). Together, these data provide insight into the regulation and function of the stress-activated MAPK signal transduction pathways.
115

Jun Kinases in Hematopoiesis, and Vascular Development and Function: A Dissertation

Ramo, Kasmir 06 July 2015 (has links)
Arterial occlusive diseases are major causes of morbidity and mortality in industrialized countries and represent a huge economic burden. The extent of the native collateral circulation is an important determinant of blood perfusion restoration and therefore the severity of tissue damage and functional impairment that ensues following arterial occlusion. Understanding the mechanisms responsible for collateral artery development may provide avenues for therapeutic intervention. Here, we identify a critical requirement for mixed lineage kinase (MLK) – cJun-NH2-terminal kinase (JNK) signaling in vascular morphogenesis and native collateral artery development. We demonstrate that Mlk2-/-Mlk3-/- mice or mice with compound JNK-deficiency in the vascular endothelium display abnormal collateral arteries, which are unable to restore blood perfusion following arterial occlusion, leading to severe tissue necrosis in animal models of femoral and coronary artery occlusion. Employing constitutive and inducible conditional deletion strategies, we demonstrate that endothelial JNK acts during the embryonic development of collateral arteries to ensure proper patterning and maturation, but is dispensable for angiogenic and arteriogenic responses in adult mice. During developmental vascular morphogenesis, MLK – JNK signaling is required for suppression of excessive sprouting angiogenesis likely via JNK-dependent regulation of Dll4 expression and Notch signaling. This function of JNK may underlie its critical requirement for native collateral artery formation. Thus, this study introduces MLK – JNK signaling as a major regulator of vascular development. In contrast, we find that JNK in hematopoietic cells, which are thought to share a common mesodermally-derived precursor with endothelial cells, is cellautonomously dispensable for normal hematopoietic development and hematopoietic stem cell self-renewal, illustrating the highly context dependent function of JNK.
116

Zinc oxide nanoparticles affect the expression of p53, Ras p21 and JNKs: an ex vivo/in vitro exposure study in respiratory disease patients

Kumar, A., Najafzadeh, Mojgan, Jacob, B.K., Dhawan, A., Anderson, Diana January 2015 (has links)
No / Zinc oxide (ZnO) nanoparticles are the mostly used engineered metal oxide nanoparticles in consumer products. This has increased the likelihood of human exposure to this engineered nanoparticle (ENPs) through different routes. At present, the majority of the studies concerning ZnO ENPs toxicity have been conducted using in vitro and in vivo systems. In this study, for the first time we assessed the effect of ZnO ENPs on the major cellular pathways in the lymphocytes of healthy individuals as well as in susceptible patients suffering from lung cancer, chronic obstructive pulmonary disease (COPD) and asthma. Using the differential expression analysis, we observed a significant (P < 0.05) dose-dependent (10, 20 and 40 microg/ml for 6h) increase in the expression of tumour suppressor protein p53 (40, 60 and 110%); Ras p21 (30, 52 and 80%); c-Jun N-terminal kinases; JNKs) (28, 47 and 78%) in lung cancer patient samples treated with ZnO ENPs compared to healthy controls. A similar trend was also seen in COPD patient samples where a significant (P < 0.05) dose-dependent increase in the expression of tumour suppressor protein p53 (26, 45 and 84%), Ras p21 (21, 40 and 77%), JNKs (17, 32 and 69%) was observed after 6h of ZnO ENPs treatment at the aforesaid concentrations. However, the increase in the expression profile of tested protein was not significant in the asthma patients as compared to controls. Our results reiterate the concern about the safety of ZnO ENPs in consumer products and suggest the need for a complete risk assessment of any new ENPs before its use.
117

The role of the JNK/AP-1 pathway in the induction of iNOS and CATs in vascular cells

Zamani, Marzieh January 2013 (has links)
Nitric oxide (NO) is an important biological molecule within the body, which over production of this molecule in response to different stimulations can cause various inflammatory diseases. Over production of this molecule is caused by the induction of the inducible nitric oxide synthase (iNOS) enzyme. This enzyme uses L-arginine as a substrate and therefore the presence and transport of this amino acid into the cells can be a key factor in regulating NO over production. Different signalling mechanisms have been implicated in the regulation of this pathway and one of which involves the Mitogen Activated Protein Kinases (MAPK). This family of proteins respond to inflammatory conditions and may mediate effects induced by inflammatory mediators. Of the MAPKs, the role of the c-Jun-N-terminal kinase (JNK) pathway in the induction of iNOS is still controversial. JNK and its downstream target, the transcription factor Activator Protein-1 (AP-1), have shown contradictory effects on iNOS induction leading to controversies over their role in regulating iNOS expression in different cell systems or with various stimuli. The studies described in this thesis have determined the role of JNK/AP-1 on iNOS expression, NO production, L-arginine uptake and also on the transporters responsible for L-arginine transport into the cells. The studies were carried out in two different cell types: rat aortic smooth muscle cells (RASMCs) and J774 macrophages which are both critically associated with the over production of NO in vascular inflammatory disease states. The first approach was to block the expression of the inducible L-arginine-NO pathway using SP600125 and JNK Inhibitor VIII which are both pharmacological inhibitors of JNK. The results from these studies showed that the pharmacological intervention was without effect in RASMCs, but inhibited iNOS, NO and L-arginine transport in J774 macrophages. In contrast, the molecular approach employed using two dominant negative constructs of AP-1 (TAM-67 and a-Fos) revealed a different profile of effects in RASMCs, where a-Fos caused an induction in iNOS and NO while TAM-67 had an inhibitory effect on iNOS, NO, L-arginine transport and CAT-2B mRNA expression. The latter was unaffected in RASMCs but suppressed in J774 macrophages by SP600125. Examination of JNK isoforms expression showed the presence of JNK1 and 2 in both cell systems. Moreover, stimulation with LPS/IFN- or LPS alone resulted in JNK phosphorylation which did not reveal any difference between smooth muscle cells and macrophages. In contrast, expression and activation of AP-1 subunits revealed differences between the two cell systems. Activation of cells with LPS and IFN- (RASMCs) or LPS alone (J774 macrophages) resulted in changes in the activated status of the different AP-1 subunit which was different for the two cell systems. In both cell types c-Jun, JunD and Fra-1 were increased and in macrophages, FosB activity was also enhanced. Inhibition of JNK with SP600125 caused down-regulation in c-Jun in both cell types. Interestingly this down-regulation was in parallel with increases in the subunits JunB, JunD, c-Fos and Fra-1 in RASMCs or JunB and Fra-1 in J774 macrophages. Since, SP600125 was able to exert inhibitory effects in the latter cell type but not in RASMCs, it is possible that the compensatory up-regulation of certain AP-1 subunits in the smooth muscle cells may compensate for c-Jun inhibition thereby preventing suppression of iNOS expression. This notion clearly needs to be confirmed but it is potentially likely that hetero-dimers formed between JunB, JunD, c-Fos and Fra-1 could sustain gene transcription in the absence of c-Jun. The precise dimer required has not been addressed but unlikely to exclusively involve JunB and Fra-1 as these are up-regulated in macrophages but did not sustain iNOS, NO or induced L-arginine transport in the presence of SP600125. To further support the argument above, the dominant negatives caused varied effects on the activation of the different subunits. a-Fos down-regulated c-Jun, c-Fos, FosB, Fra-1 whereas TAM-67 reduced c-Jun and c-Fos but marginally induced Fra-1 activity. Associated with these changes was an up-regulation of iNOS-NO by a-Fos and inhibition by TAM-67. Taken together, the data proposes a complex mechanism(s) that regulate the expression of the inducible L-arginine-NO pathway in different cell systems and the complexity may reflect diverse intracellular changes that may be different in each cell type and not always be apparent using one experimental approach especially where this is pharmacological. Moreover, these findings strongly suggest exercising caution when interpreting pure pharmacological findings in cell-based systems particularly where these are inconsistent or contradictory.
118

Targeting breast cancer with natural forms of vitamin E and simvastatin

Gopalan, Archana 13 July 2012 (has links)
Breast cancer is the second leading cause of death due to cancer in women. A number of effective therapeutic strategies have been implemented in clinics to cope with the disease yet recurrent disease and toxicity reduce their effectiveness. Hence, there is a need to identify and develop more effective therapies with reduced toxic side effects to improve overall survival rates. This dissertation investigates the mechanisms of action of two natural forms of vitamin E and a cholesterol lowering drug, simvastatin, as a therapeutic strategy in human breast cancer cells. Vitamin E in nature consists of eight distinct forms which are fat soluble small lipids. Until recently, vitamin E was known as a potent antioxidant but emerging work suggests they may be resourceful agents in managing a number of chronic diseases including cancer. Anticancer properties of vitamin E have been identified to be limited to the γ- and δ- forms of both tocopherols and tocotrienols. Gamma-tocopherol ([gamma]T) and gamma-tocotrienol ([gamma]T3) have both already been identified to induce death receptor 5 (DR5) mediated apoptosis in breast cancer cells. Studies here show that similar to [gamma]T3, [gamma]T induced DR5 activation is mediated by c-Jun N-terminal kinase/C/EBP homologous protein (JNK/CHOP) proapoptotic axis which in part contributed to [gamma]T mediated dowregulation of c-FLIP, Bcl-2 and Survivin. Also, both agents activate de novo ceramide synthesis pathway which induces JNK/CHOP/DR5 proapoptotic axis and downregulates antiapoptotic factors FLICE inhibitory protein (c-FLIP), B-cell lymphoma 2 (Bcl-2) and Survivin leading to apoptosis. Simvastatin (SVA) has been identified to display pleiotropic effects including anticancer effects but mechanisms responsible for these actions have yet to be fully understood. In this dissertation, it was observed that simvastatin induced apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 proapoptotic axis and down regulation of antiapoptotic factors c-FLIP and Survivin which are in part dependent on JNK/CHOP/DR5 axis. The anticancer effects mediated by simvastatin can be reversed by exogenously added mevalonate and geranylgeranyl pyrophosphate (GGPP), implicating the blockage of mevalonate as a key event. Furthermore, work has been done to understand the factors responsible for drug resistance and identify therapeutic strategies to counteract the same. It was observed that development of drug resistance was associated with an increase in the percentage of tumor initiating cells (TICs) in both tamoxifen and Adriamycin resistant cells compared to their parental counterparts which was accompanied by an increase in phosphorylated form of Signal transducer and activator of transcription 3 (Stat3) proteins as well as its downstream mediators c-Myc, cyclin D1, Bcl-xL and Survivin. Inhibition of Stat3 demonstrated that Stat3 and its downstream mediators play an important role in regulation of TICs in drug resistant breast cancer. Moreover, SVA, [gamma]T3 and combination of SVA+[gamma]T3 has been observed to target TICs in drug resistant human breast cancer cells and downregulate Stat3 as well as its downstream mediators making it an attractive agent to overcome drug resistance. From the data presented here, the mechanisms responsible for the anticancer actions of [gamma]T, [gamma]T3 and SVA have been better understood, providing the necessary rationale to test these agents by themselves or in combination in pre-clinical models. / text
119

Death is Not the End: The Role of Reactive Oxygen Species in Driving Apoptosis-induced Proliferation

Fogarty, Caitlin E. 02 June 2015 (has links)
Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and morphology following unexpected cell loss during normal development, and may also be a contributing factor to cancer growth and drug resistance. In apoptotic cells, caspase-initiated signaling cascades lead to the downstream production of mitogenic factors and the proliferation of neighboring surviving cells. In epithelial Drosophila tissues, the Caspase-9 homolog Dronc drives AiP via activation of Jun N-terminal kinase (JNK); however, the specific mechanisms of JNK activation remain unknown. Using a model of sustained AiP that produces a hyperplastic phenotype in Drosophila eye and head tissue, I have found that caspase-induced activation of JNK during AiP depends on extracellular reactive oxygen species (ROS) generated by the NADPH oxidase Duox. I found these ROS are produced early in the death-regeneration process by undifferentiated epithelial cells that have initiated the apoptotic cascade. I also found that reduction of these ROS by mis-expression of extracellular catalases was sufficient to reduce the frequency of overgrowth associated with our model of AiP. I further observed that extracellular ROS attract and activate Drosophila macrophages (hemocytes), which may in turn trigger JNK activity in epithelial cells by signaling through the TNF receptor Grindelwald. We propose that signaling back and forth between epithelial cells and hemocytes by extracellular ROS and Grindelwald drives compensatory proliferation within the epithelium, and that in cases of persistent signaling, such as in our sustained model of AiP, hemocytes play a tumor promoting role, driving overgrowth.
120

Dopamine et dégénérescence des neurones striataux dans la maladie de Huntington : vers l'identification de nouvelles cibles thérapeutiques

Charvin, Delphine 05 December 2005 (has links) (PDF)
La maladie de Huntington résulte d'une expansion de glutamines dans la protéine huntingtine. Cette mutation lui confère de nouvelles propriétés, dont celle de s'agréger et de produire une neurodégénérescence, qui malgré l'expression ubiquitaire de la huntingtine mutée, est spécifique du striatum. L'objectif de ce travail consistait à explorer le rôle de la dopamine dans cette vulnérabilité striatale. Après avoir démontré que la huntingtine mutée est capable d'activer la voie pro-apoptotique JNK/cJun dans des cultures primaires de neurones striataux (Garcia, Charvin and Caboche, 2004), nous avons étudié l'influence de la dopamine dans ce modèle neuronal. Nous avons alors montré que la dopamine i) active la voie pro-apoptotique JNK/cJun en synergie avec la huntingtine mutée via la production de radicaux libres, ii) augmente la formation d'agrégats via l'activation des récepteurs D2, iii) augmente la toxicité de la huntingtine mutée à travers ces deux effets combinés. Ainsi, nos résultats suggèrent que la dopamine concourt à la vulnérabilité des neurones striataux exprimant la huntingtine mutée (Charvin et al., 2005). Nous avons ensuite évalué in vivo l'effet thérapeutique d'un traitement précoce avec un antagoniste des récepteurs D2 dans un modèle murin de maladie de Huntington. Chez des rats infectés dans le striatum par des lentivirus exprimant la huntingtine normale ou mutée, nous avons montré que l'halopéridol décanoate retarde la formation des agrégats et protègent les neurones striataux exprimant la huntingtine mutée (Charvin et al., soumis). Ces travaux mettent en évidence un rôle potentialisateur de la dopamine dans la vulnérabilité des neurones striataux à la huntingtine mutée et ouvrent des perspectives nouvelles de thérapies pour la maladie de Huntington.

Page generated in 0.031 seconds