• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 11
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 95
  • 26
  • 20
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The Influence of Disease Mapping Methods on Spatial Patterns and Neighborhood Characteristics for Health Risk

Ruckthongsook, Warangkana 12 1900 (has links)
This thesis addresses three interrelated challenges of disease mapping and contributes a new approach for improving visualization of disease burdens to enhance disease surveillance systems. First, it determines an appropriate threshold choice (smoothing parameter) for the adaptive kernel density estimation (KDE) in disease mapping. The results show that the appropriate threshold value depends on the characteristics of data, and bandwidth selector algorithms can be used to guide such decisions about mapping parameters. Similar approaches are recommended for map-makers who are faced with decisions about choosing threshold values for their own data. This can facilitate threshold selection. Second, the study evaluates the relative performance of the adaptive KDE and spatial empirical Bayes for disease mapping. The results reveal that while the estimated rates at the state level computed from both methods are identical, those at the zip code level are slightly different. These findings indicate that using either the adaptive KDE or spatial empirical Bayes method to map disease in urban areas may provide identical rate estimates, but caution is necessary when mapping diseases in non-urban (sparsely populated) areas. This study contributes insights on the relative performance in terms of accuracy of visual representation and associated limitations. Lastly, the study contributes a new approach for delimiting spatial units of disease risk using straightforward statistical and spatial methods and social determinants of health. The results show that the neighborhood risk map not only helps in geographically targeting where but also in tailoring interventions in those areas to those high risk populations. Moreover, when health data is limited, the neighborhood risk map alone is adequate for identifying where and which populations are at risk. These findings will benefit public health tasks of planning and targeting appropriate intervention even in areas with limited and poor-quality health data. This study not only fills the identified gaps of knowledge in disease mapping but also has a wide range of broader impacts. The findings of this study improve and enhance the use of the adaptive KDE method in health research, provide better awareness and understanding of disease mapping methods, and offer an alternative method to identify populations at risk in areas with limited health data. Overall, these findings will benefit public health practitioners and health researchers as well as enhance disease surveillance systems.
112

Three essays on the econometric analysis of high-frequency data

Malec, Peter 27 June 2013 (has links)
Diese Dissertation behandelt die ökonometrische Analyse von hochfrequenten Finanzmarktdaten. Kapitel 1 stellt einen neuen Ansatz zur Modellierung von seriell abhängigen positiven Variablen, die einen nichttrivialen Anteil an Nullwerten aufweisen, vor. Letzteres ist ein weitverbreitetes Phänomen in hochfrequenten Finanzmarktzeitreihen. Eingeführt wird eine flexible Punktmassenmischverteilung, ein maßgeschneiderter semiparametrischer Spezifikationstest sowie eine neue Art von multiplikativem Fehlermodell (MEM). Kapitel 2 beschäftigt sich mit dem Umstand, dass feste symmetrische Kerndichteschätzer eine geringe Präzision aufweisen, falls eine positive Zufallsvariable mit erheblicher Wahrscheinlichkeitsmasse nahe Null gegeben ist. Wir legen dar, dass Gammakernschätzer überlegen sind, wobei ihre relative Präzision von der genauen Form der Dichte sowie des Kerns abhängt. Wir führen einen verbesserten Gammakernschätzer sowie eine datengetriebene Methodik für die Wahl des geeigneten Typs von Gammakern ein. Kapitel 3 wendet sich der Frage nach dem Nutzen von Hochfrequenzdaten für hochdimensionale Portfolioallokationsanwendungen zu. Wir betrachten das Problem der Konstruktion von globalen Minimum-Varianz-Portfolios auf der Grundlage der Konstituenten des S&P 500. Wir zeigen auf, dass Prognosen, welche auf Hochfrequenzdaten basieren, im Vergleich zu Methoden, die tägliche Renditen verwenden, eine signifikant geringere Portfoliovolatilität implizieren. Letzteres geht mit spürbaren Nutzengewinnen aus der Sicht eines Investors mit hoher Risikoaversion einher. / In three essays, this thesis deals with the econometric analysis of financial market data sampled at intraday frequencies. Chapter 1 presents a novel approach to model serially dependent positive-valued variables realizing a nontrivial proportion of zero outcomes. This is a typical phenomenon in financial high-frequency time series. We introduce a flexible point-mass mixture distribution, a tailor-made semiparametric specification test and a new type of multiplicative error model (MEM). Chapter 2 addresses the problem that fixed symmetric kernel density estimators exhibit low precision for positive-valued variables with a large probability mass near zero, which is common in high-frequency data. We show that gamma kernel estimators are superior, while their relative performance depends on the specific density and kernel shape. We suggest a refined gamma kernel and a data-driven method for choosing the appropriate type of gamma kernel estimator. Chapter 3 turns to the debate about the merits of high-frequency data in large-scale portfolio allocation. We consider the problem of constructing global minimum variance portfolios based on the constituents of the S&P 500. We show that forecasts based on high-frequency data can yield a significantly lower portfolio volatility than approaches using daily returns, implying noticeable utility gains for a risk-averse investor.
113

Late Mesozoic to Cenozoic erosion and sediment dispersal in the Dinaride orogen: a sedimentary provenance approach / Spätmesozoische bis Känozoische Erosion und Sedimentschüttung im Dinarischen Orogen: Ansätze aus der Provenanzanalyse

Mikes, Tamás 16 December 2008 (has links)
No description available.
114

An integrated GIS-based and spatiotemporal analysis of traffic accidents: a case study in Sherbrooke

Harirforoush, Homayoun January 2017 (has links)
Abstract: Road traffic accidents claim more than 1,500 lives each year in Canada and affect society adversely, so transport authorities must reduce their impact. This is a major concern in Quebec, where the traffic-accident risks increase year by year proportionally to provincial population growth. In reality, the occurrence of traffic crashes is rarely random in space-time; they tend to cluster in specific areas such as intersections, ramps, and work zones. Moreover, weather stands out as an environmental risk factor that affects the crash rate. Therefore, traffic-safety engineers need to accurately identify the location and time of traffic accidents. The occurrence of such accidents actually is determined by some important factors, including traffic volume, weather conditions, and geometric design. This study aimed at identifying hotspot locations based on a historical crash data set and spatiotemporal patterns of traffic accidents with a view to improving road safety. This thesis proposes two new methods for identifying hotspot locations on a road network. The first method could be used to identify and rank hotspot locations in cases in which the value of traffic volume is available, while the second method is useful in cases in which the value of traffic volume is not. These methods were examined with three years of traffic-accident data (2011–2013) in Sherbrooke. The first method proposes a two-step integrated approach for identifying traffic-accident hotspots on a road network. The first step included a spatial-analysis method called network kernel-density estimation. The second step involved a network-screening method using the critical crash rate, which is described in the Highway Safety Manual. Once the traffic-accident density had been estimated using the network kernel-density estimation method, the selected potential hotspot locations were then tested with the critical-crash-rate method. The second method offers an integrated approach to analyzing spatial and temporal (spatiotemporal) patterns of traffic accidents and organizes them according to their level of significance. The spatiotemporal seasonal patterns of traffic accidents were analyzed using the kernel-density estimation; it was then applied as the attribute for a significance test using the local Moran’s I index value. The results of the first method demonstrated that over 90% of hotspot locations in Sherbrooke were located at intersections and in a downtown area with significant conflicts between road users. It also showed that signalized intersections were more dangerous than unsignalized ones; over half (58%) of the hotspot locations were located at four-leg signalized intersections. The results of the second method show that crash patterns varied according to season and during certain time periods. Total seasonal patterns revealed denser trends and patterns during the summer, fall, and winter, then a steady trend and pattern during the spring. Our findings also illustrated that crash patterns that applied accident severity were denser than the results that only involved the observed crash counts. The results clearly show that the proposed methods could assist transport authorities in quickly identifying the most hazardous sites in a road network, prioritizing hotspot locations in a decreasing order more efficiently, and assessing the relationship between traffic accidents and seasons. / Les accidents de la route sont responsables de plus de 1500 décès par année au Canada et ont des effets néfastes sur la société. Aux yeux des autorités en transport, il devient impératif d’en réduire les impacts. Il s’agit d’une préoccupation majeure au Québec depuis que les risques d’accidents augmentent chaque année au rythme de la population. En réalité, les accidents routiers se produisent rarement de façon aléatoire dans l’espace-temps. Ils surviennent généralement à des endroits spécifiques notamment aux intersections, dans les bretelles d’accès, sur les chantiers routiers, etc. De plus, les conditions climatiques associées aux saisons constituent l’un des facteurs environnementaux à risque affectant les taux d’accidents. Par conséquent, il devient impératif pour les ingénieurs en sécurité routière de localiser ces accidents de façon plus précise dans le temps (moment) et dans l’espace (endroit). Cependant, les accidents routiers sont influencés par d’importants facteurs comme le volume de circulation, les conditions climatiques, la géométrie de la route, etc. Le but de cette étude consiste donc à identifier les points chauds au moyen d’un historique des données d’accidents et de leurs répartitions spatiotemporelles en vue d’améliorer la sécurité routière. Cette thèse propose deux nouvelles méthodes permettant d’identifier les points chauds à l’intérieur d’un réseau routier. La première méthode peut être utilisée afin d’identifier et de prioriser les points chauds dans les cas où les données sur le volume de circulation sont disponibles alors que la deuxième méthode est utile dans les cas où ces informations sont absentes. Ces méthodes ont été conçues en utilisant des données d’accidents sur trois ans (2011-2013) survenus à Sherbrooke. La première méthode propose une approche intégrée en deux étapes afin d’identifier les points chauds au sein du réseau routier. La première étape s’appuie sur une méthode d’analyse spatiale connue sous le nom d’estimation par noyau. La deuxième étape repose sur une méthode de balayage du réseau routier en utilisant les taux critiques d’accidents, une démarche éprouvée et décrite dans le manuel de sécurité routière. Lorsque la densité des accidents routiers a été calculée au moyen de l’estimation par noyau, les points chauds potentiels sont ensuite testés à l’aide des taux critiques. La seconde méthode propose une approche intégrée destinée à analyser les distributions spatiales et temporelles des accidents et à les classer selon leur niveau de signification. La répartition des accidents selon les saisons a été analysée à l’aide de l’estimation par noyau, puis ces valeurs ont été assignées comme attributs dans le test de signification de Moran. Les résultats de la première méthode démontrent que plus de 90 % des points chauds à Sherbrooke sont concentrés aux intersections et au centre-ville où les conflits entre les usagers de la route sont élevés. Ils révèlent aussi que les intersections contrôlées sont plus à risque par comparaison aux intersections non contrôlées et que plus de la moitié des points chauds (58 %) sont situés aux intersections à quatre branches (en croix). Les résultats de la deuxième méthode montrent que les distributions d’accidents varient selon les saisons et à certains moments de l’année. Les répartitions saisonnières montrent des tendances à la densification durant l’été, l’automne et l’hiver alors que les distributions sont plus dispersées au cours du printemps. Nos observations indiquent aussi que les répartitions ayant considéré la sévérité des accidents sont plus denses que les résultats ayant recours au simple cumul des accidents. Les résultats démontrent clairement que les méthodes proposées peuvent: premièrement, aider les autorités en transport en identifiant rapidement les sites les plus à risque à l’intérieur du réseau routier; deuxièmement, prioriser les points chauds en ordre décroissant plus efficacement et de manière significative; troisièmement, estimer l’interrelation entre les accidents routiers et les saisons.
115

Spatial Ecology of Inter- and Post-nesting Green Turtles (Chelonia mydas) on Bioko Island, Equatorial Guinea

Emily K Mettler (6620087) 10 June 2019 (has links)
<p>Effective conservation strategies for sea turtles require knowledge of animal movements and protection of biologically important habitats and life history stages. For breeding adult sea turtles, understanding both their inshore and pelagic spatial patterns is imperative to the successful protection of the species and the accurate identification of their vulnerabilities. This study provides insight into the inter-nesting, post-nesting, and foraging movements of green sea turtles (<i>Chelonia mydas</i>) that nest on Bioko Island, Equatorial Guinea, by using satellite telemetry to track green turtles (n=12) during two nesting seasons (2017-18, 2018-19), and as they migrated to foraging grounds after the nesting season. These tracks were fit with a switching state space model to characterize movements, and then analyzed in relation to environmental and anthropogenic factors. Dive depth data was also used to determine utilization patterns within the water column. The 12 tagged turtles migrated for an average of 1064 km to two distinct foraging grounds, with 10 migrating west for an average of 1115 km to the coastal waters of Ghana, and 2 migrating south for an average of 1563 km to the coastal waters of Angola. Migrating turtles used both direct, pelagic migration strategies, and biphasal, coastal strategies, which included intermittent foraging throughout migrations. Dive depths varied depending on behavior, with an average of 19.3 m during inter-nesting, 12.6 m during migration and 8.5 m during foraging. Knowledge of inter-nesting habitat use, migration patterns, and foraging ground locations will be critical for the development of marine conservation management plans in the Gulf of Guinea and aide in sea turtle conservation efforts throughout the area. Additionally, spatial and dive depth data can inform zonal fishing regulators and provide information needed for modifications to fishing practices and gear that is most likely to reduce sea turtle bycatch. These data will provide a more complete understanding of marine areas critical to sea turtle conservation and aide in sustainable economic development in the Gulf of Guinea.</p><br>
116

Spatiotemporal Analyses of Recycled Water Production

Archer, Jana E. 01 May 2017 (has links)
Increased demands on water supplies caused by population expansion, saltwater intrusion, and drought have led to water shortages which may be addressed by use of recycled water as recycled water products. Study I investigated recycled water production in Florida and California during 2009 to detect gaps in distribution and identify areas for expansion. Gaps were detected along the panhandle and Miami, Florida, as well as the northern and southwestern regions in California. Study II examined gaps in distribution, identified temporal change, and located areas for expansion for Florida in 2009 and 2015. Production increased in the northern and southern regions of Florida but decreased in Southwest Florida. Recycled water is an essential component water management a broader adoption of recycled water will increase water conservation in water-stressed coastal communities by allocating recycled water for purposes that once used potable freshwater.
117

Range-use estimation and encounter probability for juvenile Steller sea lions (Eumetopias jubatus) in the Prince William Sound-Kenai Fjords region of Alaska

Meck, Stephen R. 21 March 2013 (has links)
Range, areas of concentrated activity, and dispersal characteristics for juvenile Steller sea lions Eumetopias jubatus in the endangered western population (west of 144° W in the Gulf of Alaska) are poorly understood. This study quantified space use by analyzing post-release telemetric tracking data from satellite transmitters externally attached to n = 65 juvenile (12-25 months; 72.5 to 197.6 kg) Steller sea lions (SSLs) captured in Prince William Sound (60°38'N -147°8'W) or Resurrection Bay (60°2'N -149°22'W), Alaska, from 2003-2011. The analysis divided the sample population into 3 separate groups to quantify differences in distribution and movement. These groups included sex, the season when collected, and the release type (free ranging animals which were released immediately at the site of capture, and transient juveniles which were kept in captivity for up to 12 weeks as part of a larger ongoing research program). Range-use was first estimated by using the minimum convex polygon (MCP) approach, and then followed with a probabilistic kernel density estimation (KDE) to evaluate both individual and group utilization distributions (UDs). The LCV method was chosen as the smoothing algorithm for the KDE analysis as it provided biologically meaningful results pertaining to areas of concentrated activity (generally, haulout locations). The average distance traveled by study juveniles was 2,131 ± 424 km. The animals mass at release (F[subscript 1, 63] = 1.17, p = 0.28) and age (F[subscript 1, 63] = 0.033, p = 0.86) were not significant predictors of travel distance. Initial MCP results indicated the total area encompassed by all study SSLs was 92,017 km², excluding land mass. This area was heavily influenced by the only individual that crossed over the 144°W Meridian, the dividing line between the two distinct population segments. Without this individual, the remainder of the population (n = 64) fell into an area of 58,898 km². The MCP area was highly variable, with a geometric average of 1,623.6 km². Only the groups differentiated by season displayed any significant difference in area size, with the Spring/Summer (SS) groups MCP area (Mdn = 869.7 km²) being significantly less than that of the Fall/Winter (FW) group (Mdn = 3,202.2 km²), U = 330, p = 0.012, r = -0.31. This result was not related to the length of time the tag transmitted (H(2) = 49.65, p = 0.527), nor to the number of location fixes (H(2) = 62.77, p = 0.449). The KDE UD was less variable, with 50% of the population within a range of 324-1,387 km2 (mean=690.6 km²). There were no significant differences in area use associated with sex or release type (seasonally adjusted U = 124, p = 0.205, r = -0.16 and U = 87, p = 0.285, r = -0.13, respectively). However, there were significant differences in seasonal area use: U = 328, p = 0.011, r = -0.31. There was no relationship between the UD area and the amount of time the tag remained deployed (H(2) = 45.30, p = 0.698). The kernel home range (defined as 95% of space use) represented about 52.1% of the MCP range use, with areas designated as "core" (areas where the sea lions spent fully 50% of their time) making up only about 6.27% of the entire MCP range and about 11.8% of the entire kernel home range. Area use was relatively limited – at the population level, there were a total of 6 core areas which comprised 479 km². Core areas spanned a distance of less than 200 km from the most western point at the Chiswell Islands (59°35'N -149°36'W) to the most eastern point at Glacier Island (60°54'N -147°6'W). The observed differences in area use between seasons suggest a disparity in how juvenile SSLs utilize space and distribute themselves over the course of the year. Due to their age, this variation is less likely due to reproductive considerations and may reflect localized depletion of prey near preferred haul-out sites and/or changes in predation risk. Currently, management of the endangered western and threatened eastern population segments of the Steller sea lion are largely based on population trends derived from aerial survey counts and terrestrial-based count data. The likelihood of individuals to be detected during aerial surveys, and resulting correction factors to calculate overall population size from counts of hauled-out animals remain unknown. A kernel density estimation (KDE) analysis was performed to delineate boundaries around surveyed haulout locations within Prince William Sound-Kenai Fjords (PWS-KF). To closely approximate the time in which population abundance counts are conducted, only sea lions tracked during the spring/summer (SS) months (May 10-August 10) were chosen (n = 35). A multiple state model was constructed treating the satellite location data, if it fell within a specified spatiotemporal context, as a re-encounter within a mark-recapture framework. Information to determine a dry state was obtained from the tags time-at-depth (TAD) histograms. To generate an overall terrestrial detection probability 1) The animal must have been within a KDE derived core-area that coincided with a surveyed haulout site 2) it must have been dry and 3) it must have provided at least one position during the summer months, from roughly 11:00 AM-5:00 PM AKDT. A total of 10 transition states were selected from the data. Nine states corresponded to specific surveyed land locations, with the 10th, an "at-sea" location (> 3 km from land) included as a proxy for foraging behavior. A MLogit constraint was used to aid interpretation of the multi-modal likelihood surface, and a systematic model selection process employed as outlined by Lebreton & Pradel (2002). At the individual level, the juveniles released in the spring/summer months (n = 35) had 85.3% of the surveyed haulouts within PWS-KF encompass KDE-derived core areas (defined as 50% of space use). There was no difference in the number of surveyed haulouts encompassed by core areas between sexes (F[subscript 1, 33] << 0.001, p = 0.98). For animals held captive for up to 12 weeks, 33.3% returned to the original capture site. The majority of encounter probabilities (p) fell between 0.42 and 0.78 for the selected haulouts within PWS, with the exceptions being Grotto Island and Aialik Cape, which were lower (between 0.00-0.17). The at-sea (foraging) encounter probability was 0.66 (± 1 S.E. range 0.55-0.77). Most dry state probabilities fell between 0.08-0.38, with Glacier Island higher at 0.52, ± 1 S.E. range 0.49-0.55. The combined detection probability for hauled-out animals (the product of at haul-out and dry state probabilities), fell mostly between 0.08-0.28, with a distinct group (which included Grotto Island, Aialik Cape, and Procession Rocks) having values that averaged 0.01, with a cumulative range of ≈ 0.00-0.02 (± 1 S.E.). Due to gaps present within the mark-recapture data, it was not possible to run a goodness-of-fit test to validate model fit. Therefore, actual errors probably slightly exceed the reported standard errors and provide an approximation of uncertainties. Overall, the combined detection probabilities represent an effort to combine satellite location and wet-dry state telemetry and a kernel density analysis to quantify the terrestrial detection probability of a marine mammal within a multistate modeling framework, with the ultimate goal of developing a correction factor to account for haulout behavior at each of the surveyed locations included in the study. / Graduation date: 2013
118

Probabilistic Sequence Models with Speech and Language Applications

Henter, Gustav Eje January 2013 (has links)
Series data, sequences of measured values, are ubiquitous. Whenever observations are made along a path in space or time, a data sequence results. To comprehend nature and shape it to our will, or to make informed decisions based on what we know, we need methods to make sense of such data. Of particular interest are probabilistic descriptions, which enable us to represent uncertainty and random variation inherent to the world around us. This thesis presents and expands upon some tools for creating probabilistic models of sequences, with an eye towards applications involving speech and language. Modelling speech and language is not only of use for creating listening, reading, talking, and writing machines---for instance allowing human-friendly interfaces to future computational intelligences and smart devices of today---but probabilistic models may also ultimately tell us something about ourselves and the world we occupy. The central theme of the thesis is the creation of new or improved models more appropriate for our intended applications, by weakening limiting and questionable assumptions made by standard modelling techniques. One contribution of this thesis examines causal-state splitting reconstruction (CSSR), an algorithm for learning discrete-valued sequence models whose states are minimal sufficient statistics for prediction. Unlike many traditional techniques, CSSR does not require the number of process states to be specified a priori, but builds a pattern vocabulary from data alone, making it applicable for language acquisition and the identification of stochastic grammars. A paper in the thesis shows that CSSR handles noise and errors expected in natural data poorly, but that the learner can be extended in a simple manner to yield more robust and stable results also in the presence of corruptions. Even when the complexities of language are put aside, challenges remain. The seemingly simple task of accurately describing human speech signals, so that natural synthetic speech can be generated, has proved difficult, as humans are highly attuned to what speech should sound like. Two papers in the thesis therefore study nonparametric techniques suitable for improved acoustic modelling of speech for synthesis applications. Each of the two papers targets a known-incorrect assumption of established methods, based on the hypothesis that nonparametric techniques can better represent and recreate essential characteristics of natural speech. In the first paper of the pair, Gaussian process dynamical models (GPDMs), nonlinear, continuous state-space dynamical models based on Gaussian processes, are shown to better replicate voiced speech, without traditional dynamical features or assumptions that cepstral parameters follow linear autoregressive processes. Additional dimensions of the state-space are able to represent other salient signal aspects such as prosodic variation. The second paper, meanwhile, introduces KDE-HMMs, asymptotically-consistent Markov models for continuous-valued data based on kernel density estimation, that additionally have been extended with a fixed-cardinality discrete hidden state. This construction is shown to provide improved probabilistic descriptions of nonlinear time series, compared to reference models from different paradigms. The hidden state can be used to control process output, making KDE-HMMs compelling as a probabilistic alternative to hybrid speech-synthesis approaches. A final paper of the thesis discusses how models can be improved even when one is restricted to a fundamentally imperfect model class. Minimum entropy rate simplification (MERS), an information-theoretic scheme for postprocessing models for generative applications involving both speech and text, is introduced. MERS reduces the entropy rate of a model while remaining as close as possible to the starting model. This is shown to produce simplified models that concentrate on the most common and characteristic behaviours, and provides a continuum of simplifications between the original model and zero-entropy, completely predictable output. As the tails of fitted distributions may be inflated by noise or empirical variability that a model has failed to capture, MERS's ability to concentrate on high-probability output is also demonstrated to be useful for denoising models trained on disturbed data. / <p>QC 20131128</p> / ACORNS: Acquisition of Communication and Recognition Skills / LISTA – The Listening Talker
119

Distributions Of Fiber Characteristics As A Tool To Evaluate Mechanical Pulps

Reyier Österling, Sofia January 2015 (has links)
Mechanical pulps are used in paper products such as magazine or news grade printing papers or paperboard. Mechanical pulping gives a high yield; nearly everything in the tree except the bark is used in the paper. This means that mechanical pulping consumes much less wood than chemical pulping, especially to produce a unit area of printing surface. A drawback of mechanical pulp production is the high amounts of electrical energy needed to separate and refine the fibers to a given fiber quality. Mechanical pulps are often produced from slow growing spruce trees of forests in the northern hemisphere resulting in long, slender fibers that are well suited for mechanical pulp products. These fibers have large varieties in geometry, mainly wall thickness and width, depending on seasonal variations and growth conditions. Earlywood fibers typically have thin walls and latewood fibers thick. The background to this study was that a more detailed fiber characterization involving evaluations of distributions of fiber characteristics, may give improved possibilities to optimize the mechanical pulping process and thereby reduce the total electric energy needed to reach a given quality of the pulp and final product. This would result in improved competitiveness as well as less environmental impact. This study evaluated the relation between fiber characteristics in three types of mechanical pulps made from Norway spruce (Picea abies), thermomechanical pulp(TMP), stone groundwood pulp (SGW) and chemithermomechanical pulp (CTMP). In addition, the influence of fibers from these pulp types on sheet characteristics, mainly tensile index, was studied. A comparatively rapid method was presented on how to evaluate the propensity of each fiber to form sheets of high tensile index, by the use of raw data from a commercially available fiber analyzer (FiberLabTM). The developed method gives novel opportunities of evaluating the effect on the fibers of each stage in the mechanical pulping process and has a potential to be applied also on‐line to steer the refining and pulping process by the characteristics of the final pulp and the quality of the final paper. The long fiber fraction is important for the properties of the whole pulp. It was found that fiber wall thickness and external fibrillation were the fibercharacteristics that contributed the most to tensile index of the long fiber fractions in five mechanical pulps (three TMPs, one SGW, one CTMP). The tensile index of handsheets of the long fiber fractions could be predicted by linear regressions using a combination of fiber wall thickness and degree of external fibrillation. The predicted tensile index was denoted BIN, short for Bonding ability INfluence. This resulted in the same linear correlation between BIN and tensile index for 52 samples of the five mechanical pulps studied, each fractionated into five streams(plus feed) in full size hydrocyclones. The Bauer McNett P16/R30 (passed 16 meshwire, retained on a 30 mesh wire) and P30/R50 fractions of each stream were used for the evaluation. The fibers of the SGW had thicker walls and a higher degree of external fibrillation than the TMPs and CTMP, which resulted in a correlation between BIN and tensile index on a different level for the P30/R50 fraction of SGW than the other pulp samples. A BIN model based on averages weighted by each fiber´s wall volume instead of arithmetic averages, took the fiber wall thickness of the SGW into account, and gave one uniform correlation between BIN and tensile index for all pulp samples (12 samples for constructing the model, 46 for validatingit). If the BIN model is used for predicting averages of the tensile index of a sheet, a model based on wall volume weighted data is recommended. To be able to produce BIN distributions where the influence of the length or wall volume of each fiber is taken into account, the BIN model is currently based on arithmetic averages of fiber wall thickness and fibrillation. Fiber width used as a single factor reduced the accuracy of the BIN model. Wall volume weighted averages of fiber width also resulted in a completely changed ranking of the five hydrocyclone streams compared to arithmetic, for two of thefive pulps. This was not seen when fiber width was combined with fiber wallthickness into the factor “collapse resistance index”. In order to avoid too high influence of fiber wall thickness and until the influence of fiber width on BIN and the measurement of fiber width is further evaluated, it is recommended to use length weighted or arithmetic distributions of BIN and other fiber characteristics. A comparably fast method to evaluate the distribution of fiber wall thickness and degree of external fibrillation with high resolution showed that the fiber wallthickness of the latewood fibers was reduced by increasing the refining energy in adouble disc refiner operated at four levels of specific energy input in a commercial TMP production line. This was expected but could not be seen by the use of average values, it was concluded that fiber characteristics in many cases should be evaluated as distributions and not only as averages. BIN distributions of various types of mechanical pulps from Norway spruce showed results that were expected based on knowledge of the particular pulps and processes. Measurements of mixtures of a news‐ and a SC (super calendered) gradeTMP, showed a gradual increase in high‐BIN fibers with higher amounts of SCgrade TMP. The BIN distributions also revealed differences between the pulps that were not seen from average fiber values, for example that the shape of the BINdistributions was similar for two pulps that originated from conical disc refiners, a news grade TMP and the board grade CTMP, although the distributions were on different BIN levels. The SC grade TMP and the SC grade SGW had similar levels of tensile index, but the SGW contained some fibers of very low BIN values which may influence the characteristics of the final paper, for example strength, surface and structure. This shows that the BIN model has the potential of being applied on either the whole or parts of a papermaking process based on mechanical or chemimechanical pulping; the evaluation of distributions of fiber characteristics can contribute to increased knowledge about the process and opportunities to optimize it.
120

Frequency Analysis of Floods - A Nanoparametric Approach

Santhosh, D January 2013 (has links) (PDF)
Floods cause widespread damage to property and life in different parts of the world. Hence there is a paramount need to develop effective methods for design flood estimation to alleviate risk associated with these extreme hydrologic events. Methods that are conventionally considered for analysis of floods focus on estimation of continuous frequency relationship between peak flow observed at a location and its corresponding exceedance probability depicting the plausible conditions in the planning horizon. These methods are commonly known as at-site flood frequency analysis (FFA) procedures. The available FFA procedures can be classified as parametric and nonparametric. Parametric methods are based on the assumption that sample (at-site data) is drawn from a population with known probability density function (PDF). Those procedures have uncertainty associated with the choice of PDF and the method for estimation of its parameters. Moreover, parametric methods are ineffective in modeling flood data if multimodality is evident in their PDF. To overcome those artifacts, a few studies attempted using kernel based nonparametric (NP) methods as an alternative to parametric methods. The NP methods are data driven and they can characterize the uncertainty in data without prior assumptions as to the form of the PDF. Conventional kernel methods have shortcomings associated with boundary leakage problem and normal reference rule (considered for estimation of bandwidth), which have implications on flood quantile estimates. To alleviate this problem, focus of NP flood frequency analysis has been on development of new kernel density estimators (kdes). Another issue in FFA is that information on the whole hydrograph (e.g., time to the peak flow, volume of the flood flow and duration of the flood event) is needed, in addition to peak flow for certain applications. An option is to perform frequency analysis on each of the variables independently. However, these variables are not independent, and hence there is a need to perform multivariate analysis to construct multivariate PDFs and use the corresponding cumulative distribution functions (CDFs) to arrive at estimates of characteristics of design flood hydrograph. In this perspective, recent focus of flood frequency analysis studies has been on development of methods to derive joint distributions of flood hydrograph related variables in a nonparametric setting. Further, in real world scenario, it is often necessary to estimate design flood quantiles at target locations that have limited or no data. Regional Flood Frequency analysis (RFFA) procedures have been developed for use in such situations. These procedures involve use of a regionalization procedure for identification of a homogeneous group of watersheds that are similar to watershed of the target site in terms of flood response. Subsequently regional frequency analysis (RFA) is performed, wherein the information pooled from the group (region) forms basis for frequency analysis to construct a CDF (growth curve) that is subsequently used to arrive at quantile estimates at the target site. Though there are various procedures for RFFA, they are largely confined to only univariate framework considering a parametric approach as the basis to arrive at required quantile estimates. Motivated by these findings, this thesis concerns development of a linear diffusion process based adaptive kernel density estimator (D-kde) based methodologies for at-site as well as regional FFA in univariate as well as bivariate settings. The D-kde alleviates boundary leakage problem and also avoids normal reference rule while estimating optimal bandwidth by using Botev-Grotowski-Kroese estimator (BGKE). Potential of the proposed methodologies in both univariate and bivariate settings is demonstrated by application to synthetic data sets of various sizes drawn from known unimodal and bimodal parametric populations, and to real world data sets from India, USA, United Kingdom and Canada. In the context of at-site univariate FFA (considering peak flows), the performance of D- kde was found to be better when compared to four parametric distribution based methods (Generalized extreme value, Generalized logistic, Generalized Pareto, Generalized Normal), thirty-two ‘kde and bandwidth estimator’ combinations that resulted from application of four commonly used kernels in conjunction with eight bandwidth estimators, and a local polynomial–based estimator. In the context of at-site bivariate FFA considering ‘peakflow-flood volume’ and ‘flood duration-flood volume’ bivariate combinations, the proposed D-kde based methodology was shown to be effective when compared to commonly used seven copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and student’s-T copulas) and Gaussian kernel in conjunction with conventional as well as BGKE bandwidth estimators. Sensitivity analysis indicated that selection of optimum number of bins is critical in implementing D-kde in bivariate setting. In the context of univariate regional flood frequency analysis (RFFA) considering peak flows, a methodology based on D-kde and Index-flood methods is proposed and its performance is shown to be better when compared to that of widely used L-moment and Index-flood based method (‘regional L-moment algorithm’) through Monte-Carlo simulation experiments on homogeneous as well as heterogeneous synthetic regions, and through leave-one-out cross validation experiment performed on data sets pertaining to 54 watersheds in Godavari river basin, India. In this context, four homogeneous groups of watersheds are delineated in Godavari river basin using kernel principal component analysis (KPCA) in conjunction with Fuzzy c-means cluster analysis in L-moment framework, as an improvement over heterogeneous regions in the area (river basin) that are currently being considered by Central Water Commission, India. In the context of bivariate RFFA two methods are proposed. They involve forming site-specific pooling groups (regions) based on either L-moment based bivariate homogeneity test (R-BHT) or bivariate Kolmogorov-Smirnov test (R-BKS), and RFA based on D-kde. Their performance is assessed by application to data sets pertaining to stations in the conterminous United States. Results indicate that the R-BKS method is better than R-BHT in predicting quantiles of bivariate flood characteristics at ungauged sites, although the size of pooling groups formed using R-BKS is, in general, smaller than size of those formed using R-BHT. In general, the performance of the methods is found to improve with increase in size of pooling groups. Overall the results indicate that the D-kde always yields bona fide PDF (and CDF) in the context of univariate as well as bivariate flood frequency analysis, as probability density is nonnegative for all data points and integrates to unity for the valid range of the data. The performance of D-kde based at-site as well as regional FFA methodologies is found to be effective in univariate as well as bivariate settings, irrespective of the nature of population and sample size. A primary assumption underlying conventional FFA procedures has been that the time series of peak flow is stationarity (temporally homogeneous). However, recent studies carried out in various parts of the World question the assumption of flood stationarity. In this perspective, Time Varying Gaussian Copula (TVGC) based methodology is proposed in the thesis for flood frequency analysis in bivariate setting, which allows relaxing the assumption of stationarity in flood related variables. It is shown to be effective than seven commonly used stationary copulas through Monte-Carlo simulation experiments and by application to data sets pertaining to stations in the conterminous United States for which null hypothesis that peak flow data were non-stationary cannot be rejected.

Page generated in 0.045 seconds