• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 29
  • 16
  • 11
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthèse d'analogues de la pentamidine porteurs de plateformes hétérocycliques (rhodanine, benzimidazole, pyrazole et imidazole) et leurs évaluations biologiques / Synthesis of analogues of the pentamidine bearing heterocyclic platforms (rhodanine, benzimidazole, pyrazole and imidazole) and their biological evaluations

Ambeu, N'ta Christelle 16 December 2015 (has links)
Ce manuscrit de thèse concerne le développement d'une stratégie de synthèse multi-étapes de nouveaux composés comportant plusieurs plateformes hétérocycliques (rhodanine, benzimidazole, pyrazole et imidazole) à visée thérapeutique multiple contre la malaria, la leishmaniose, le cancer et les maladies neurodégénératives. Les pharmacomodulations de ces composés ont été élaborées sur la base du modèle de la pentamidine 35 comportant 2 motifs benzamidines (parties « Ouest » et « Est »). En effet, la substitution de sa partie « Ouest » par une plateforme rhodanine ou benzimidazole et de sa partie « Est » par un système aromatique plan ou système azole (pyrazole, imidazole) a permis d’accéder respectivement aux 5-arylidènes rhodanines (50, 58), aux dérivés ''aza'' (99,100) et aux dérivés ''aza azoles'' 174 qui sont des analogues de la pentamidine. Les rendements de ces composés sont respectivement compris entre 26 et 98%, 10 et 93% et 10 et 97%. L’ensemble des composés synthétisés dans les chapitres II, III et IV de ces travaux ont été l'objet d'évaluations pour leur activité antiproliférative sur les lignées cellulaires et pour leur activité inhibitrice sur les protéines kinases. / This thesis manuscript is focused on the development of multi-steps synthesis strategy of new compounds bearing several heterocyclic platforms (rhodanine, benzimidazole, pyrazole and imidazole) for multiple therapeutic use to fight malaria, leishmaniasis, cancer et neurodegenarative diseases. The pharmacomodulations of these compounds were developped from the design of pentamidine 35 which containins 2 fragments benzamidine (parts ''West'' and ''East''). Indeed, the substitution of its part ''West'' by a platform rhodanine or benzimidazole and its part ''East'' by an "azole" aromatic ring system (pyrazole, imidazole) lead respectively to 5-arylidene rhodanines (50, 58), to derivatives ''aza'' (99,100) and to derivatives ''aza azoles'' 174 which are pentamidine analogs. The chemical yields of these compounds are ranging respectively from 26 to 98%, 10 to 93% and 10 to 97%. All the compounds synthesized in the chapters II, III and IV of this research work were evaluated for their antiproliferative activity on tumoral cell lines and for their inhibitory activity on protein kinases.
22

Combination of Knoevenagel Polycondensation and Water-Assisted Dynamic Michael-Addition-Elimination for the Synthesis of Vinylene-Linked 2D Covalent Organic Frameworks

Xu, Shunqi, Liao, Dr. Zhongquan, Dianat, Arezoo, Park, Sang-Wook, Addicoat, Matthew A., Fu, Yubin, Pastoetter, Dominik L., Fabozzi, Filippo Giovanni, Liu, Yannan, Cuniberti, Gianaurelio, Richter, Marcus, Hecht, Stefan, Feng, Xinliang 22 April 2024 (has links)
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2-adsorption–desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.
23

Knoevenagel and Heck catalytic studies with Metal Organic Frameworks (MOFs)

Burgoyne, Andrew R. 24 July 2013 (has links)
M.Sc. (Chemistry) / Please refer to full text to view abstract
24

Celogentin C and Thioviridamide: Synthetic and Structural Studies

Litvinov, Dmitry Nikolayevich 07 June 2010 (has links) (PDF)
Project I Celogentin C, isolated by Kobayashi from the seeds of Celosia argentea in 2001 exhibits strong inhibitory behavior towards polymerization of tubulin – globular protein, which plays crucial role during the cell division cycle. We have attempted synthesis of the left-hand ring of celogentin C via the intramolecular alkylation and the Knoevenagel condensation strategies. Utilizing synthetic methodologies in the field of nitroacetyl chemistry, developed by Kornblum and Rajappa we have successfully prepared the intermolecular Knoevenagel condensation product – the late-stage precursor to the left-hand ring of celogentin C. Synthesis of this key intermediate subsequently led to the preparation of the left-hand ring and the total synthesis of celogentin C by other members of Castle's group. Project II Thioviridamide is the potent apoptosis inducer isolated by Hayakawa from the bacterial broth of Streptomyces olivoviridis. Unusual structural features of the thioviridamide macrocycle contain two novel amino acids, never before encountered in a natural product - S-(2-aminovinyl)cysteine (avCys) and β-hydroxy-N1,N3-dimethylhistidinium (hdmHis). No stereochemical information except for the Z-configuration of the β-thioenamide linkage was reported in the literature. We have performed a computational study to predict the thioviridamide stereochemistry. Initial populations of conformers for the likely candidate structures were produced using OPLS-AA force field. Prediction of the NMR properties was accomplished at the mPW1PW91/6-311+G(2d,p) level of theory with the polarizable continuum model of salvation. Utilizing Boltzmann averaging and statistical analysis we have determined that the only possible cases of stereochemical inversion occur at the sites of the two novel amino acids. Project III Model studies towards the synthesis of the β-thioenamide subunit of thioviridamide were performed. The radical addition reaction of thiyl radicals to ynamides produces Z- (kinetic products) or E- β-thioenamides (thermodynamic products) depending on the reaction conditions. Two distinct sets of reaction conditions allowing kinetic or thermodynamic control of β-thioenamide formation were developed. Synthesis of the model β-thioenamide subunit of thioviridamide was attempted.
25

Synthesis of Isatin Derivatives Used for the Inhibition of Pro-Apoptotic Jurkat T Cells

Clay, Charles Michael 16 September 2011 (has links)
No description available.
26

Catalytic Material Design: Impact of Synthesis Conditions on the Pore Architecture and Catalytic Performance of Micro-Mesoporous Silica Supported Catalysts

Kane, Ashwin 05 October 2022 (has links)
No description available.
27

Vers de nouveaux antalgiques : optimisation de molécules activatrices des canaux potassiques TREK-1 / Research and evaluation of novel analgesics : optimization of molecules activating TREK-1 potassium channel

Vivier, Delphine 05 December 2014 (has links)
La morphine demeure l'antalgique de référence pour le traitement de la douleur (nociception), mais elle est également responsable d‘effets secondaires importants. Des études ont montré que les animaux privés de canaux potassiques TREK-1 (TWIK-related K+channels) étaient plus sensibles à la douleur. Plus récemment, il a été démontré que le canal potassique TREK-1 joue un rôle crucial dans l'analgésie induite par la morphine chez les souris, alors qu'il n'est pas impliqué dans les effets secondaires (constipation, dépression respiratoire et dépendance). Ces résultats suggèrent que les canaux TREK-1 constituent des cibles d‘intérêt pour la conception de nouveaux antalgiques sans effets indésirables liés aux opioïdes. Des études antérieures au sein de notre laboratoire ont permis l'identification de quatre structures chefs de file, activatrices des canaux TREK-1, présentant une activité antalgique in vivo. La structure 3D du canal TREK-1 n‘étant pas élucidée au moment de nos travaux, nous avons décidé d'effectuer une optimisation basée sur une étude de relation structure-activité (RSA). Trente-six analogues ont été synthétisés par condensation de Knoevenagel et évalués pour leur effet antalgique (test de l‘acide acétique, test de la plaque chaude) et leur capacité à activer le canal TREK-1 (électrophysiologie). La capacité des substituants du noyau aromatique à établir des interactions de type liaison hydrogène ainsi que le volume de ces substituants ont une influence déterminante sur l'activité. Des résultats prometteurs ont émergé de cette étude RSA: 5 molécules présentent une très bonne activité antalgique (> 50% d'inhibition de la douleur, test de la plaque chaude) ainsi que d'une bonne activation de TREK-1 canaux (R ≥ 2 à 10 μM ou R ≥ 4 au-dessus de 20 μM). / Morphine remains the analgesic of reference for the treatment of pain (nociception), but it is also responsible for serious adverse effects. Research studies have shown that animals deprived of potassium channels TREK-1 (TWIK-related K+ channels) were over-sensitive to pain. More recently, it has been demonstrated that the TREK-1 potassium channel is a crucial contributor of morphine-induced analgesia in mice, while it is not involved in morphine-induced constipation, respiratory depression and dependence. These results suggest that the TREK-1 channels constitute targets of interest for the design of novel analgesics without opioid-like adverse effects. Previous studies within our consortium led to the identification of four lead structures as TREK-1 activators exhibiting analgesic activity in vivo.Since the 3D structure of TREK-1 was not available at the time, we decided to perform hit optimization by conventional structure-activity relationship (SAR) studies. Thirty six analogs were synthesized via Knoevenagel condensation and evaluated for their analgesic effect (writhing test, hot plate assay) and their ability to activate TREK-1 channel (electrophysiology). It turned out that the possibility to form hydrogen bonding interaction (aryl moiety) and the volume of substituents of the amide or ester has a crucial influence on activity. Promising results emerged from this SAR study: 5 molecules display a very good analgesic activity (> 50% inhibition of pain, hot plate assay) as well as a good activation of TREK-1 channels (R ≥ 2 at 10μM or R ≥ 4 above 20μM).
28

Synthesis and Characterization of Biologically Active Imidazolium Salts

Hobbs, Mahala S. 28 July 2023 (has links)
No description available.
29

Synthesis, adsorption and catalysis of large pore metal phosphonates

Pearce, Gordon M. January 2010 (has links)
The synthesis and properties of metal phosphonates prepared using piperazine-based bisphosphonic acids have been investigated. The ligands N,N’-piperazinebis(methylenephosphonic acid) (H₄L), and the 2-methyl (H₄L-Me) and 2,5-dimethyl (H₄L 2,5-diMe) derivatives have been prepared using a modified Mannich reaction. Hydrothermal reaction of gels prepared from metal (II) acetates and the bisphosphonic acids results in the synthesis of four structures: STA-12, Ni VSB-5, Co H₂L.H₂O and Mg H₂L. STA-12, synthesised by reaction of Mn, Fe, Co or Ni acetate with H₄L or H₄L-Me, has been investigated further. STA-12 crystallises in the space group R⁻₃, and Ni STA-12 is the most crystalline version. Its structure was solved from synchrotron data (a = b = 27.8342(1) Å, c = 6.2421(3) Å, α = β = 90°, γ = 120°), and it has large 10 Å hexagonal shaped pores. Helical chains of Ni octahedra are coordinated by the ligands, resulting in phosphonate tetrahedra pointing towards the pore space. Water is present, both coordinated to the Ni²⁺ cations and physically adsorbed in the pores. Mixed metal structures based on Ni STA-12, where some Ni is replaced in the gel by another divalent metal (Mg, Mn, Fe or Co) can also be synthesised. Dehydration of STA-12 results in two types of behaviour, depending on the metal present. Rhombohedral symmetry is retained on dehydration of Mn and Fe STA-12, the a cell parameter decreasing compared to the as-prepared structures by 2.42 Å and 1.64 Å respectively. Structure solution of dehydrated Mn STA-12 indicates changes in the torsion angles of the piperazine ring bring the inorganic chains closer together. Fe and Mn STA-12 do not adsorb N₂, which is thought to be due to the formation of an amorphous surface layer. Dehydration of Ni and Co STA-12 causes crystallographic distortion. Three phases were isolated for Ni STA-12: removal of physically adsorbed water results in retention of rhombohedral symmetry, while dehydration at 323 K removes some coordinated water forming a triclinic structure. A fully dehydrated structure (dehydrated at 423 K) was solved from synchrotron data (a = 6.03475(5) Å, b = 14.9156(2) Å, c = 16.1572(7) Å, α = 112.5721(7)°, β = 95.7025(11)°, γ = 96.4950(11)°). The dehydration mechanism, followed by UV-vis and Infra-red spectroscopy, involves removal of water from the Ni²⁺ cations and full coordination of two out of three of the phosphonate tetrahedra forming three crystallographically distinct Ni and P atoms. No structural distortion takes place on dehydration of Ni and Co STA-12 prepared using the methylated bisphosphonate, and the solids give a higher N₂ uptake as a result. Dehydrated Ni and Co STA-12 were tested for adsorption performance for fuel related gases and probe molecules. Investigations were undertaken at low temperature with H₂, CO and CO₂, and ambient temperature with CO₂, CH₄, CH₃CN, CH₃OH and large hydrocarbons. Due to the presence of lower crystallinity, Co STA-12 has an inferior adsorption performance to Ni STA-12, although it has similar adsorption enthalpies for CO₂ at ambient temperature (-30 to -35 kJ mol⁻¹). Ni STA-12 adsorbs similar amounts of CO₂ and N₂ at low temperature, indicating the adsorption mechanisms are similar. Also, it adsorbs 10 × more CO₂ than CH₄ at low pressure, meaning it could be used for separation applications. Ni STA-12 adsorbs 2 mmol g⁻¹ H₂ with an enthalpy of -7.5 kJ mol⁻¹, the uptake being due to adsorption on only one-third of the Ni²⁺ cations. The uptake for CO is 6 mmol g⁻¹, with adsorption enthalpies ranging from -24 to -14 kJ mol⁻¹. This uptake is due to adsorption on all the Ni²⁺, meaning the adsorption enthalpies are high enough to allow the structure to relax. This is also observed for adsorption of CH₃CN and CH₃OH, where there is a return to rhombohedral symmetry after uptake. The adsorption sites in dehydrated Ni and Co STA-12 were investigated via Infra-red spectroscopic analysis of adsorbed probe molecules (H₂, CO, CO₂, CH₃CN and CH₃OH). The results indicate the adsorption sites at both low and ambient temperature are the metal cations and the P=O groups. The metal cation sites are also characterised as Lewis acids with reasonable strength. STA-12 was shown to have acidic activity for the liquid phase selective oxidations of 1-hexene and cyclohexene, although there is evidence active sites are coordinated by products and/or solvents during the reaction. STA-12 also demonstrates basic activity for the Knoevenagel condensation of ethyl cyanoacetate and benzaldehyde. Modification of STA-12 by adsorption of diamine molecules causes a slight increase in the basicity, and the highest conversions are where water and diamine molecules are both present.

Page generated in 0.0242 seconds