• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 35
  • 26
  • 16
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 395
  • 395
  • 128
  • 82
  • 77
  • 70
  • 50
  • 43
  • 43
  • 42
  • 40
  • 31
  • 31
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Etude explicative de l’innovation à partir des connaissances : proposition d’une approche par les capacités / Knowledge based innovation : an explanatory study according to a capability approach

Trabelsi-Jabeur, Imene 06 September 2013 (has links)
L’objet de cette thèse est l’analyse de l’innovation à partir des connaissances autour de l’approche Knowledge-Based Innovation (KBI) qui décrit l’innovation à travers le prisme de la connaissance. L’innovation s’apparente, foncièrement, à un processus de création, d’application et de diffusion de différents types de connaissances. Cette recherche se focalise sur la phase cognitive de l’innovation dont l’ancrage choisi a été celui d’une approche par les capacités. Nous cherchons alors à identifier les capacités organisationnelles qui sous-tendent l’innovation en amont et à expliquer comment ces capacités s’articulent pour favoriser l’innovation à partir des connaissances. A la lumière des développements théoriques effectués, nous avons élaboré notre modèle conceptuel de recherche qui consacre le rôle médiateur de la capacité d’absorption.La démarche méthodologique appliquée est qualimétrique. Deux études empiriques ont été menées. La première est qualitative, basée sur des entretiens exploratoires. Elle a permis, dans un premier temps, de décrire et d’illustrer les relations étudiées, et dans un second temps, d’affiner nos interrogations et de les enrichir par deux nouvelles propositions de recherche. La deuxième étude est quantitative. Elle s’est basée sur l’administration du questionnaire conçu, à des entreprises françaises œuvrant majoritairement dans le secteur industriel. Cette étude, basée sur la méthode des équations structurelles, a validé globalement le modèle développé en affirmant la médiation partielle de la capacité d’absorption, mais elle a rejeté, toutefois, l’existence de relations entre les investissements en R&D et la capacité d’absorption. / The purpose of this thesis is the analysis of the Knowledge-Based Innovation (KBI) which describes innovation through the prism of knowledge approach. Innovation seems essentially like a process of creation, application and dissemination of different types of knowledge. This research focuses on the cognitive phase of innovation explained according to a capability approach. We seek to identify organizational capabilities that sustain innovation and to explain how these capabilities are linked to promote innovation based on knowledge. We developed then a conceptual model that establishes the mediating role of absorptive capacity.Our methodology is based on two empirical studies. The first is qualitative, based on exploratory interviews. It enabled to illustrate the studied relationships, to refine our questions and to enrich the conceptual model with two new research proposals. The second study is quantitative. It is based on the administration of the questionnaire designed for French companies which operate mainly in the industrial sector. This study, based on a structural equation method, validated the overall developed model. It asserted the partial mediation of the absorption capacity. However the existence of relationships between investment in R&D and absorptive capacity was rejected
332

Desenvolvimento de sistema especialista para a geração automática de superestruturas para síntese e otimização de sistemas térmicos /

Vieira, Felipe Seabra. January 2019 (has links)
Orientador: José Alexandre Matelli / Resumo: Por estar relacionado com questões econômicas e ambientais, o uso eficiente de energia é atualmente alvo de diversos estudos e pesquisas. A demanda energética, tanto elétrica quanto térmica, está presente nos mais diversos setores, tais como, indústrias, condomínios residenciais, cidades, comércios e hospitais. Para que tais demandas sejam supridas, com o melhor aproveitamento energético possível, surge o conceito de cogeração. Cogeração pode ser entendida como a geração de dois ou mais tipos de energia (trabalho mecânico, energia elétrica, calor ou energia de resfriamento) a partir de uma única fonte energética. O projeto, porém, de um sistema térmico de cogeração pode apresentar uma complexidade muito elevada. Isso se deve, dentre outras razões, aos diversos tipos e tamanhos de tecnologias existentes, além das inter-relações complexas dos parâmetros de um sistema (tais como pressões, temperaturas, vazões e eficiências em carga parcial). Surgem, então, diversas possibilidades de configurações de sistemas para se atender aos requisitos de um projeto, fazendo com que a busca pela solução ótima seja complexa. A solução ótima depende fortemente da superestrutura, no sentido que diferentes superestruturas resultam em diferentes soluções ótimas. No entanto, a criação de superestruturas não é feita, em geral, de modo sistemático, dependendo em grande medida das preferências, da experiência e criatividade de quem a propõe. Neste trabalho foi desenvolvido um método de projeto que usa... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
333

Methodology for knowledge-based engineering template update : focus on decision support and instances update / Méthodologie de mise-à-jour de knowledge-based engineering template : focus sur l'aide à la décision et la mise-à-jour des instances

Kuhn, Olivier 22 October 2010 (has links)
Les travaux de recherche présentés adressent des problèmes de mises à jour de knowledge-based engineering templates dans le cadre de la conception de produits. La réutilisation de connaissances de conception est devenue un avantage clé pour la compétitivité des entreprises. Le savoir faire ainsi que les bonnes pratiques peuvent être stockés au sein de templates par le biais de formules, règles, scripts, etc. Ces connaissances de conception peuvent alors être réutilisées en instanciant le template. L’instanciation résulte en la création d’une instance du template dans le contexte spécifié.Dans le cadre de produit complexes et imposants tels que des voitures ou des avions, la maintenance des templates est une tache ambitieuse. Plusieurs ingénieurs de diverses disciplines travaillent ensemble et font évoluer les templates pour augmenter leurs aptitudes ou pour corriger des problèmes. De plus, dans certains cas, les modifications faites aux templates devraient être appliquées à leurs instances afin qu’elles puissent bénéficier de ces modifications. Ces problèmes ralentissent l’adoption à grande envergure des templates au sein des entreprises. L’objectif de ce travail est de proposer une approche afin d’épauler les ingénieurs dans les tâches relatives à la mise à jour des templates.Pour traiter ces problèmes, un processus adressant les tâches relatives à la mise à jour des templates est défini. Ensuite, un framework est proposé dans le but d’aider les ingénieurs de conception au cours du processus de mise à jour, en fournissant un système d’aide à la décision ainsi qu’une stratégie de mise à jour des instances. Le premier est un système conçu pour faciliter la collaboration entre les différent experts dans le but de résoudre les problèmes liés aux templates. Le second a pour but d’élaborer une séquence de mise à jour à fin d’appliquer les modifications du template à ses instances. La séquence est calculée avec les données extraites à partir des modèles CAD et des templates. Ces données sont stockées dans une ontologie conçue spécialement à cet effet. L’ontologie est utilisée pour représenter et inférer des connaissances sur les templates, les produits et leur relations. Cela facilite la construction des séquences de mises à jour en fournissant une vue d’ensemble sur les relations entre documents, même implicites. / The present Ph.D. thesis addresses the problem of knowledge-based engineering template update in product design. The reuse of design knowledge has become a key asset for the company’s competitiveness. Knowledge-based engineering templates allow to store best practices and knowhow via formulas, rules, scripts, etc. This design knowledge can then be reused by instantiating the template. The instantiation results in the creation of an instance of the template in the specified context. In the scope of complex and large products, such as cars or aircrafts, the maintenance of knowledge-based engineering templates is a challenging task. Several engineers from various disciplines work together and make evolve the templates in order to extend their capabilities or to fix bugs. Furthermore, in some cases, the modifications applied to templates should be forwarded to their instances in order that they benefit from the changes. These issues slow down the adoption of template technologies at a large scale within companies. The objective of this work is to propose an approach in order to support engineers in the template update related tasks. In order to address these issues, a process supporting the template update related tasks is defined. Then a framework is proposed that helps design engineers during the template update process by providing a decision support system and a strategy for the update of template instances. The former is a system designed to ease the collaboration between various experts in order to solve template related problems. The latter aims at providing a sequence of updates to follow, in order to forward the templates’ modifications to their instances. This sequence is computed with data extracted from models and templates, which are stored in an ontology designed for this purpose. The ontology is used to represent and to infer knowledge about templates, products and their relations. This facilitates the construction of update sequences as it provides an efficient overview of relationships, even implicit ones.
334

Ingénierie hautement productive et collaborative à base de connaissances métier : vers une méthodologie et un méta-modèle de gestion des connaissances en configurations / Highly productive and collaborative engineering, knowledge-based : toward a methodology and ameta-model of knowledge management in configurations

Badin, Julien 29 November 2011 (has links)
Ces travaux de recherche concernent le domaine de l’ingénierie des connaissances pour laconception de produits et plus particulièrement les phases amont du couple produit-simulation dansle processus de conception.Au cours de ces différentes phases amont, les acteurs d’un même projet utilisent simultanément denombreuses modélisations géométriques et comportementales du produit. Ils peuvent aussi avoirrecours à plusieurs outils logiciels hétérogènes, communiquant très difficilement entre eux.Dans ce contexte, le partage des connaissances entre les différents modèles métiers apparait commeune nécessité. En effet, concevoir un produit implique une gestion des connaissances d’unegranularité fine en tenant compte de leur niveau de maturité et de leur cohérence.Le recours à de nouvelles méthodes et de nouveaux outils est alors nécessaires dans le but desoutenir l’approche globale PLM et continuer à optimiser et rationaliser le processus de conceptionde produits.Dans ce cadre, nous proposons une approche qualifiée de KCM – Knowledge ConfigurationManagement, basée sur la gestion des connaissances de granularité fine, en configurations. Cetteapproche est de nature à favoriser la collaboration entre les acteurs d’un projet, en améliorant lacapitalisation, la traçabilité, la réutilisation et la cohérence des connaissances, utiliséessimultanément dans plusieurs activités en parallèle du processus de conception.Les principaux résultats de notre travail de recherche se structurent autour de trois axes :· Une méthodologie de gestion des connaissances en configurations qualifiée de KCMethod.· Un méta-modèle, baptisé KCModel, de structuration des concepts manipulés parKCMethod.· Une maquette de faisabilité sous forme d’outil logiciel ADES, permettant d’expérimenteret valider notre approche.L’ensemble des résultats obtenus s’articule autour d’une solution logicielle de nouvelle génération,qualifiée de KCManager, permettant de déployer en entreprise l’ensemble de la démarche proposée. / This research work deals with the field of knowledge engineering for product design, especially theupstream phases of the design-simulation couple in the product design process.In these phases, the project participants use many geometric and behavioural models of the productin parallel, while using multiple heterogeneous software tools, with difficulties to communicatebetween each other. However, especially in the upstream phases of the design process, designing aproduct requires sharing fine granularity knowledge between the different expert models, takinginto account their levels of maturity and consistency. Consequently, new methods and tools arethen needed in order to support the overall PLM approach and continue to optimize and streamlinethe product design process.Thus, in this research context, we propose an approach referred to as KCM – KnowledgeConfiguration Management, based on management of fine granularity knowledge in configuration.This approach is likely to improve collaboration between project participants, improvingcapitalization, traceability, reuse and consistency of the knowledge used simultaneously on severalactivities in parallel within the design process.The main results of our research are structured around three axes :· A methodology for knowledge configuration management qualified as KCMethod.· A meta-model, called KCModel, structuring concepts manipulated by KCMethod.· A model of feasibility, namely ADES software tool, allowing testing and validation ourapproach.The overall results are articulated around a next-generation software solution, described asKCManager, in order to deploy the approach proposed.
335

Attitudes of extension agents towards expert systems as decision support tools in Thailand

Chetsumon, Sireerat January 2005 (has links)
It has been suggested 'expert systems' might have a significant role in the future through enabling many more people to access human experts. It is, therefore, important to understand how potential users interact with these computer systems. This study investigates the effect of extension agents' attitudes towards the features and use of an example expert system for rice disease diagnosis and management(POSOP). It also considers the effect of extension agents' personality traits and intelligence on their attitudes towards its use, and the agents' perception of control over using it. Answers to these questions lead to developing better systems and to increasing their adoption. Using structural equation modelling, two models - the extension agents' perceived usefulness of POSOP, and their attitude towards the use of POSOP, were developed (Models ATU and ATP). Two of POSOP's features (its value as a decision support tool, and its user interface), two personality traits (Openness (0) and Extraversion (E)), and the agents' intelligence, proved to be significant, and were evaluated. The agents' attitude towards POSOP's value had a substantial impact on their perceived usefulness and their attitude towards using it, and thus their intention to use POSOP. Their attitude towards POSOP's user interface also had an impact on their attitude towards its perceived usefulness, but had no impact on their attitude towards using it. However, the user interface did contribute to its value. In Model ATU, neither Openness (0) nor Extraversion (E) had an impact on the agents' perceived usefulness indicating POSOP was considered useful regardless of the agents' personality background. However, Extraversion (E) had a negative impact on their intention to use POSOP in Model ATP indicating that 'introverted' agents had a clear intention to use POSOP relative to the 'extroverted' agents. Extension agents' intelligence, in terms of their GPA, had neither an impact on their attitude, nor their subjective norm (expectation of 'others' beliefs), to the use of POSOP. It also had no association with any of the variables in both models. Both models explain and predict that it is likely that the agents will use POSOP. However, the availability of computers, particularly their capacity, are likely to impede its use. Although the agents believed using POSOP would not be difficult, they still believed training would be beneficial. To be a useful decision support tool, the expert system's value and user interface as well as its usefulness and ease of use, are all crucially important to the preliminary acceptance of a system. Most importantly, the users' problems and needs should be assessed and taken into account as a first priority in developing an expert system. Furthermore, the users should be involved in the system development. The results emphasise that the use of an expert system is not only determined by the system's value and its user interface, but also the agents' perceived usefulness, and their attitude towards using it. In addition, the agents' perception of control over using it is also a significant factor. The results suggested improvements to the system's value and its user interface would increase its potential use, and also providing suitable computers, coupled with training, would encourage its use.
336

Graphic Representation and Visualisation as Modelling Support for the Knowledge Acquisition Process

Håkansson, Anne January 2003 (has links)
<p>The thesis describes steps taken towards using graphic representation and visual modelling support for the knowledge acquisition process in knowledge-based systems – a process commonly regarded as difficult. The performance of the systems depends on the quality of the embedded knowledge, which makes the knowledge acquisition phase particularly significant. During the acquisition phase, a main obstacle to proper extraction of information is the absence of effective modelling techniques.</p><p>The contributions of the thesis are: introducing a methodology for user-centred knowledge modelling, enhancing transparency to support the modelling of content and of the reasoning strategy, incorporating conceptualisation to simplify the grasp of the contents and to support assimilation of the domain knowledge, and supplying a visual compositional logic programming language for adding and modifying functionality.</p><p>The user-centred knowledge acquisition model, proposed in this thesis, applies a combination of different approaches to knowledge modelling. The aim is to bridge the gap between the users (i.e., knowledge engineers, domain experts and end users) and the system in transferring knowledge, by supporting the users through graphics and visualisation. Visualisation supports the users by providing several different views of the contents of the system.</p><p>The Unified Modelling Language (UML) is employed as a modelling language. A benefit of utilising UML is that the knowledge base can be modified, and the reasoning strategy and the functionality can be changed directly in the model. To make the knowledge base more comprehensible and expressive, we incorporated visual conceptualisation into UML’s diagrams to describe the contents. Visual conceptualisation of the knowledge can also facilitate assimilation in a hypermedia system through visual libraries.</p><p>Visualisation of functionality is applied to a programming paradigm, namely relational programming, often employed in artificial intelligence systems. This approach employs Venn-Euler diagrams as a graphic interface to a compositional operator based relational programming language. </p><p>The concrete result of the research is the development of a graphic representation and visual modelling approach to support the knowledge acquisition process. This approach has been evaluated for two different knowledge bases, one built for hydropower development and river regulation and the other for diagnosing childhood diseases.</p>
337

Graphic Representation and Visualisation as Modelling Support for the Knowledge Acquisition Process

Håkansson, Anne January 2003 (has links)
The thesis describes steps taken towards using graphic representation and visual modelling support for the knowledge acquisition process in knowledge-based systems – a process commonly regarded as difficult. The performance of the systems depends on the quality of the embedded knowledge, which makes the knowledge acquisition phase particularly significant. During the acquisition phase, a main obstacle to proper extraction of information is the absence of effective modelling techniques. The contributions of the thesis are: introducing a methodology for user-centred knowledge modelling, enhancing transparency to support the modelling of content and of the reasoning strategy, incorporating conceptualisation to simplify the grasp of the contents and to support assimilation of the domain knowledge, and supplying a visual compositional logic programming language for adding and modifying functionality. The user-centred knowledge acquisition model, proposed in this thesis, applies a combination of different approaches to knowledge modelling. The aim is to bridge the gap between the users (i.e., knowledge engineers, domain experts and end users) and the system in transferring knowledge, by supporting the users through graphics and visualisation. Visualisation supports the users by providing several different views of the contents of the system. The Unified Modelling Language (UML) is employed as a modelling language. A benefit of utilising UML is that the knowledge base can be modified, and the reasoning strategy and the functionality can be changed directly in the model. To make the knowledge base more comprehensible and expressive, we incorporated visual conceptualisation into UML’s diagrams to describe the contents. Visual conceptualisation of the knowledge can also facilitate assimilation in a hypermedia system through visual libraries. Visualisation of functionality is applied to a programming paradigm, namely relational programming, often employed in artificial intelligence systems. This approach employs Venn-Euler diagrams as a graphic interface to a compositional operator based relational programming language. The concrete result of the research is the development of a graphic representation and visual modelling approach to support the knowledge acquisition process. This approach has been evaluated for two different knowledge bases, one built for hydropower development and river regulation and the other for diagnosing childhood diseases.
338

Knowledge Representation Framework For A Web-based Intelligent Tutoring System For Engineering Courses

Bhaskerray, Bhatt Chetan 07 1900 (has links)
Tutoring is one of the most effective instruction methods. Computer as an Intelligent Tutor is an area of research since many decades. Technology advancement in Information and Communication Technology (ICT) can be used in developing Web – based Intelligent Tutoring System (WITS), which provides individualized tutoring at the same time to large number of students geographically distributed. Intelligent Tutoring System requires knowledge representation of expert, student and instructional strategy. While web technology promises many attractive features to build web based ITS, it would still be a challenge to represent knowledge objects that are scalable, reusable and platform independent. It is required to derive generalized knowledge representation framework which can be used in developing WITS for many courses. This research work proposes an instruction System Design (ISD) model based framework in development of WITS for Control Systems. ADDIE model is selected in development of WITS. Front end analysis is conducted to identify the learning goals of a course. Proposed research work presents a Bloom - Vincenti framework for preparing learning objectives for engineering courses. Problem Based Learning (PBL) is selected as instruction strategy. Then it presents an ontology based knowledge representation framework for expert module, tutoring module, and student module. Ontology for expert module is proposed on the course structure, instruction system, instruction material ontology, and Bloom – Vincenti Taxonomy. Ontology for student module is also proposed on course structure and Bloom – Vincenti Taxonomy. Tutoring module consists of ontology about the facts of the instruction material and rule base based on the categories of engineering knowledge (Vincenti) and cognitive skill (Bloom’s Taxonomy). Proposed way of knowledge representation supports scalability, and reusability. Prototype Web – based Intelligent Tutoring System for first level course on Control Systems is developed. JAVA technology used in development of Web – based Intelligent Tutoring System (WITS), makes WITS platform independent. Web – based Intelligent Tutoring System for Control Systems is deployed at laboratory level and its efficacy is tested for first two modules of a course.
339

Proceedings of the International Workshop "Innovation Information Technologies: Theory and Practice"

Konrad, Uwe, Iskhakova, Liliya 21 September 2010 (has links) (PDF)
This International Workshop is a high quality seminar providing a forum for the exchange of scientific achievements between research communities of different universities and research institutes in the area of innovation information technologies. It is a continuation of the Russian-German Workshops that have been organized by the universities in Dresden, Karlsruhe and Ufa before. The workshop was arranged in 9 sessions covering the major topics: Modern Trends in Information Technology, Knowledge Based Systems and Semantic Modelling, Software Technology and High Performance Computing, Geo-Information Systems and Virtual Reality, System and Process Engineering, Process Control and Management and Corporate Information Systems.
340

Knowledge-based 3D point clouds processing

Truong, Quoc Hung 15 November 2013 (has links) (PDF)
The modeling of real-world scenes through capturing 3D digital data has proven to be both useful andapplicable in a variety of industrial and surveying applications. Entire scenes are generally capturedby laser scanners and represented by large unorganized point clouds possibly along with additionalphotogrammetric data. A typical challenge in processing such point clouds and data lies in detectingand classifying objects that are present in the scene. In addition to the presence of noise, occlusionsand missing data, such tasks are often hindered by the irregularity of the capturing conditions bothwithin the same dataset and from one data set to another. Given the complexity of the underlyingproblems, recent processing approaches attempt to exploit semantic knowledge for identifying andclassifying objects. In the present thesis, we propose a novel approach that makes use of intelligentknowledge management strategies for processing of 3D point clouds as well as identifying andclassifying objects in digitized scenes. Our approach extends the use of semantic knowledge to allstages of the processing, including the guidance of the individual data-driven processing algorithms.The complete solution consists in a multi-stage iterative concept based on three factors: the modeledknowledge, the package of algorithms, and a classification engine. The goal of the present work isto select and guide algorithms following an adaptive and intelligent strategy for detecting objects inpoint clouds. Experiments with two case studies demonstrate the applicability of our approach. Thestudies were carried out on scans of the waiting area of an airport and along the tracks of a railway.In both cases the goal was to detect and identify objects within a defined area. Results show that ourapproach succeeded in identifying the objects of interest while using various data types

Page generated in 0.0379 seconds