• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure of Coset models

Köster, Sören. January 2003 (has links) (PDF)
Göttingen, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
2

Lie algebraic structures in integrable models, affine Toda field theory

Korff, Christian. January 2000 (has links)
Berlin, Freie University, Diss., 2000. / Dateiformat: zip, Dateien im PDF-Format.
3

Structure of Coset models

Köster, Sören. January 2003 (has links) (PDF)
Göttingen, University, Diss., 2003.
4

Quantum information and the emergence of spacetime in the AdS/CFT correspondence / Quanteninformation und die Entstehung der Raumzeit in der SdS/CFT- Korrespondenz

Gerbershagen, Marius January 2022 (has links) (PDF)
This thesis studies connections between quantum information measures and geometric features of spacetimes within the AdS/CFT correspondence. These studies are motivated by the idea that spacetime can be thought of as an effect emerging from an underlying entanglement structure in the AdS/CFT correspondence. In particular, I study generalized entanglement measures in two-dimensional conformal field theories and their holographic duals. Unlike the ordinary entanglement entropy of a spatial subregion typically used in the AdS/CFT context, the generalization considered here measures correlations between different fields as well as between spatial degrees of freedom. I present a new gauge invariant definition of the generalized entanglement entropy applicable to both mixed and pure states as well as explicit results for thermal states of the S_N-orbifold theory of the D1/D5 system. Along the way, I develop computation techniques for conformal blocks on the torus and apply them to the calculation of the ordinary entanglement entropy for large central charge CFTs at finite size and finite temperature. The generalized Ryu-Takayanagi formula arising from these studies provides further support for the idea that entanglement and geometry are intrinsically linked in AdS/CFT. The results show that the holographic dual to the generalized entanglement entropy given by the length of a geodesic winding around black hole horizons or naked singularities probes subregions of spacetime that are inaccessible to Ryu-Takayanagi surfaces, thereby solving the puzzle of how these features of the spacetime are encoded in the boundary theory. Furthermore, I investigate quantum circuits embedded in two-dimensional conformal field theories as well as computational complexity measures therein. These investigations are motivated by conjectures relating computational complexity in conformal field theories to geometric features of black hole geometries. In this thesis, I study quantum circuits built up from conformal transformations. I investigate examples of computational complexity measures in these circuits related to geometric actions on coadjoint orbits of the Virasoro group and to the Fubini-Study metric. I then work out relations between these computational complexity measures and the dual gravitational theory. Moreover, I construct a bulk dual to the circuits in consideration and use this construction to study geometric realizations of computational complexity measures from first principles. The results of this part on the one hand rule out some possibilities for dual realizations of computational complexity in two-dimensional CFTs put forward in previous work while on the other hand providing a new robust dual realization of a computational complexity measure based on the Fubini-Study distance. / Diese Dissertation befasst sich mit Zusammenhängen zwischen Quanteninformationsmaßen und geometrischen Eigenschaften von Raumzeiten im Rahmen der AdS/CFT-Korrespondenz. Diese Untersuchungen sind motiviert durch die Idee, dass die Raumzeit in der AdS/CFT-Korrespondenz als ein Effekt verstanden werden kann, der aus einer zugrundeliegenden Verschränkungsstruktur entsteht. Insbesondere untersuche ich in dieser Arbeit verallgemeinerte Verschränkungsmaße in zweidimensionalen konformen Feldtheorien und deren holographisch duale Realisierungen. Anders als die normale Verschränkungsentropie einer räumlichen Teilregion, die üblicherweise im AdS/CFT-Kontext betrachtet wird, misst die verallgemeinerte Verschränkungsentropie Korrelationen sowohl zwischen verschiedenen Feldern als auch zwischen räumlichen Freiheitsgraden. Ich stelle eine neue eichinvariante Definition der verallgemeinerten Verschränkungsentropie, die sowohl für reine als auch für gemischte Zustände anwendbar ist, sowie explizite Berechnungen dieser Verschränkungsentropie in der S_N-Orbifaltigkeitstheorie des D1/D5-Systems vor. Nebenbei entwickle ich Berechnungsmethoden für konforme Blöcke auf dem Torus und wende diese auf die Berechnung der normalen Verschränkungsentropie für konforme Feldtheorien mit großer zentraler Ladung bei endlicher Systemgröße und endlicher Temperatur an. Die verallgemeinerte Ryu-Takayanagi-Formel, die sich aus diesen Betrachtungen ergibt, unterstützt die Idee, dass Verschränkung und Geometrie in der AdS/CFT-Korrespondenz untrennbar miteinander verbunden sind. Die Ergebnisse zeigen, dass das holographische Dual zur verallgemeinerten Verschränkungsentropie, gegeben durch die Länge einer Geodäte die sich um einen Ereignishorizont eines Schwarzen Lochs oder eine nackte Singularität windet, in Teilregionen der Raumzeit eindringt die für Ryu-Takayanagi-Flächen unerreichbar sind. Damit klären sie auf wie diese Eigenschaften der Raumzeit in der Randtheorie kodiert sind. Des weiteren untersuche ich Quantenschaltkreise eingebettet in zweidimensionale konforme Feldtheorie und deren Komplexität. Diese Untersuchungen sind motiviert durch Hypothesen, die Komplexitätstheorie mit Eigenschaften von Raumzeiten schwarzer Löcher in Verbindung bringen. In dieser Dissertation analysiere ich Quantenschaltkreise, die aus konformen Transformationen aufgebaut sind. Ich betrachte Komplexitätsmaße in diesen Schaltkreisen zusammenhängend mit geometrischen Wirkungen auf koadjungierten Orbits der Virasoro-Gruppe oder mit der Fubini-Study-Metrik und arbeite Zusammenhänge zwischen diesen Komplexitätsmaßen und Aspekten der dualen Gravitationstheorie heraus. Außerdem konstruiere ich das Dual der betrachteten Schaltkreise in der Gravitationstheorie und untersuche damit geometrische Realisierungen von Komplexitätsmaßen. Die Ergebnisse dieses Teils schließen einerseits einige Möglichkeiten für duale Realisierungen von Komplexitätsmaßen aus, die in vorigen Arbeiten vorgeschlagen wurden, ergeben aber andererseits eine robuste neue duale Realisierung eines Komplexitätsmaßes basierend auf der Fubini-Study-Metrik.
5

Spacetime Geometry from Quantum Circuits and Berry Phases in AdS/CFT / Geometrie der Raumzeit aus Quantenschaltkreisen und Berry-Phasen in AdS/CFT

Weigel, Anna-Lena January 2023 (has links) (PDF)
In this thesis, I establish new relations between quantum information measures in a two-dimensional CFT and geometric objects in a three-dimensional AdS space employing the AdS/CFT correspondence. I focus on two quantum information measures: the computational cost of quantum circuits in a CFT and Berry phases in two entangled CFTs. In particular, I show that these quantities are associated with geometric objects in the dual AdS space. / In dieser Arbeit stelle ich neue Beziehungen zwischen Quanteninformationsmaßen in einer zweidimensionalen CFT und geometrischen Objekten in einem dreidimensionalen AdS-Raum unter Verwendung der AdS/CFT-Korrespondenz her. Ich betrachte zwei Quanteninformationsmaße: die Rechenkosten eines Quantenschaltkreises in der CFT und Berry-Phasen in zwei verschränkten CFTs. Insbesondere zeige ich, dass diese Größen mit geometrischen Objekten im AdS-Raum assoziiert sind.
6

Asymmetrically gauged coset theories and symmetry breaking D-branes

Quella, Thomas 26 May 2003 (has links)
Auf sehr kleinen Längenskalen erlaubt die Weltflächenbeschreibung über zweidimensionale konforme Feldtheorien eine störungstheoretische Definition der String-Theorie. Viele strukturelle Eigenschaften und phänomenologische Implikationen der letzteren können mit Hilfe von D(irichlet)-Branen untersucht werden, die in der zugrunde liegenden Weltflächentheorie durch konforme Randbedingungen beschrieben werden. Etliche interessante Hintergründe für die String-Theorie erhält man über Gruppenmannigfaltigkeiten und Coset-Modelle. Neben wichtigen Beispielen wie SL(2,R), SU(2) und Gepner-Modellen, die für AdS- und Calabi-Yau-Kompaktifizierungen eine Rolle spielen, beinhalten sie außerdem weitere Beispiele wie den Nappi-Witten-Hintergrund oder den Raum T^11, die über eine asymmetrische Wirkung der Eichgruppe definiert sind und eine kosmologische Raumzeit mit Urknall- und Weltsturz-Singularitäten bzw. die Basis des Conifolds beschreiben. Die vorliegende Arbeit bietet eine umfassende, auf den exakten Methoden der konformen Feldtheorie beruhende Analyse von asymmetrischen Coset-Modellen. Wegen der heterotischen Natur der zugrundeliegenden Symmetriealgebra erlauben diese Modelle nur Randbedingungen, die einen Teil der Symmetrie brechen. Nach einer allgemeinen Erläuterung der Grundidee für die Konstruktion von symmetriebrechenden Randbedingungen richtet sich das Hauptaugenmerk auf WZNW- und asymmetrische Coset-Modelle, die das Fundament nahezu aller bekannten konformen Feldtheorien bilden. Mit Hilfe der erzielten Ergebnisse werden die Struktur sowie die Geometrie von D-Branen in den Gruppen SL(2,R) und SU(2), im Hintergrund AdS_3 x S^3, in der kosmologischen Nappi-Witten-Raumzeit und in T^pq-Räumen untersucht. Die Techniken, die in dieser Arbeit entwickelt werden, erlauben jedoch ebenso die Behandlung von Rändern und Kontaktstellen in (1+1)- oder 2-dimensionalen kritischen Systemen, die in der Festkörpertheorie oder der statistischen Physik auftreten. Insbesondere können Defektlinien beschrieben werden, die weder totale Reflexion noch völlige Transmission aufweisen. / At very small length scales, the world sheet approach in terms of two-dimensional conformal field theories provides a perturbative definition of string theory. Many structural properties and phenomenological implications of the latter can be explored using D(irichlet)-branes which may be identified with conformal boundary conditions in the underlying world sheet theory. Several interesting backgrounds in string theory arise from group manifolds and coset theories. Apart from prominent examples such as SL(2,R), SU(2) and Gepner models which play a role in AdS and Calabi-Yau compactifications, they also include further instances like the Nappi-Witten background or the space T^11 which are constructed using an asymmetric action of the gauge group and which describe a cosmological space-time with big-bang and big-crunch singularities and the base of the conifold, respectively. The present thesis provides a comprehensive analysis of asymmetric cosets based on the exact methods of boundary conformal field theory. Due to the heterotic nature of the underlying symmetry algebra, the models only allow for conformal boundary conditions which break parts of the bulk symmetry. The universal ideas for the construction of symmetry breaking boundary conditions are indicated and applied in detail to WZNW and asymmetric coset theories which provide the basic building blocks of almost all known conformal field theories. The general results are used to investigate the structure and shape of D-branes in the group manifolds SL(2,R) and SU(2), the background AdS_3 x S^3, the cosmological Nappi-Witten space-time and T^pq-spaces. The techniques developed in this thesis also allow for a treatment of boundaries and junctions in (1+1)- or 2-dimensional critical systems in condensed matter theory and statistical physics. In particular, they enable us to describe defect lines which go beyond full reflection or transmission.
7

On the One-Loop Dilatation Operator of Strongly-Twisted N=4 Super Yang-Mills Theory

Zippelius, Friedrich Leonard 24 April 2020 (has links)
In den letzten beiden Jahrzehnten hat sich N=4 Super Yang-Mills Theorie (SYM) als vergleichsweise einfache wechselwirkende Quantenfeldtheorie etabliert. Es konnte gezeigt werden, dass N=4 SYM im sogenannten planaren Limes eine integrable konforme Feldtheorie ist. Diese Erkenntnis wurde im Rahmen der Lösung des Spektralproblems gewonnen, das als die Diagonalisierung des Dilatationsoperators definiert ist. Dieser Operator ist der Teil der konformen Algebra, der Skalentransformationen erzeugt. In jüngerer Zeit wurde vorgeschlagen, dass verwandte Theorien, die man kollektiv als stark getwistete N=4 SYM bezeichnet, tatsächlich einfacher wären. Wir untersuchen das Spektralproblem dieser Theorien und bestimmen die Eigenwerte des Dilatationsoperators. Dabei ist unsere Analyse auf Einschleifenordnung beschränkt. Wir leiten zunächst den Einschleifendilatationsoperator der stark getwisteten Modelle her. Bemerkenswerterweise ist der Dilatationsoperator nicht diagonalisierbar, da die stark getwisteten Theorien nicht unitär sind. Wir definieren den Begriff des eklektischen Feldinhalts von lokalen zusammengesetzten Operatoren. Eine endliche Potenz des Dilatationsoperators bildet die entsprechenden Operatoren mit eklektischem Feldinhalt auf null ab. Die Herleitung unterschiedlicher Bethe Ansätze wird präsentiert um die Eigenzustände des Dilatationsoperators zu finden. Wir stellen die Lösungen der Bethe Gleichungen vor, wobei wir Sektor für Sektor vorgehen. Wir konstruieren auch einige der auftretenden Jordan Blöcke. Des Weiteren diskutieren wir den Einfluss, den die Jordan Blöcke auf die Zweipunktfunktionen der Theorie haben. In einer nicht unitären Theorie ist die Klassifikation der lokal zusammengesetzten Operatoren in Primäroperatoren und Abkömmlinge nicht vollständig und eine dritte Art Operator, nämlich der logarithmische Operator, tritt auf. Die entsprechenden Zweipunktfunktionen enthalten Logarithmen. / Over the last two decades, N=4 Super Yang-Mills theory (SYM) has established a reputation of being the simplest interacting quantum field theory in four dimensions. In the so-called planar limit, N=4 SYM turned out to be an integrable conformal field theory. Integrability was first found when solving the spectral problem, which is defined as diagonalising the dilatation operator. The latter is the part of the conformal algebra generating scaling transformations. Its eigenvalues are the anomalous dimensions. More recently, it was proposed that a certain non-unitary deformation of N=4 SYM, the so-called strongly-twisted theories, are actually simpler. We investigate the spectral problem of these theories at one-loop order. We derive the one-loop dilatation operator of the strongly-twisted models and express it in terms of the one of the untwisted theory. Notably, since the strongly-twisted theories are non-unitary, the dilatation operator turns out to be non-diagonalisable. We define the notion of eclectic field content of local composite operators. A finite number of applications of the dilatation operator annihilates these local composite operators with eclectic field content. A derivation of several different Bethe ansätze to find eigenstates of the dilatation operator is presented. Furthermore, we also propose a short-cut to derive the Bethe equations from those of the unscaled models. We present solutions to the Bethe equations sector by sector, derive the Jordan blocks of the dilatation operator and show their impact on the two-point correlation functions of the theory. The classification of local composite operators into primaries and descendants is no longer complete in a non-unitary theory and a third type of operator, named a logarithmic operator, appears. The corresponding two-point functions contain logarithms.
8

Integrability and higher-Point Functions in AdS/CFT

le Plat, Dennis Max Dieter 27 November 2023 (has links)
Integrabilität hat sich als ein mächtiges Werkzeug zur Berechnung von Observablen in der AdS/CFT-Korrespondenz erwiesen. Zunächst für das planare Spektralproblem entdeckt, wurden auch Methoden zur Berechnung von Mehrpunktfunktionen entwickelt. In dieser Arbeit wird diese Korrespondenz für AdS5/CFT4 und AdS3/CFT2 betrachtet mit dem Ziel, den integrablen Formalismus zu erweitern. Teil I behandelt Integrabilität in der N=4 SYM-Theorie, wo der Hexagon-Formalismus die Berechnung von Dreipunktfunktionen ermöglicht. Dazu wird der Korrelator in zwei hexagonale Stücke zerlegt. Die lokalen Operatoren müssen im Spinkettenbild als Bethe-Zustand zerschnitten und ein verschränkter Zustand konstruiert werden. Der Hexagon-Formalismus wird hier auf Sektoren mit höherem Rang erweitert, wobei die operatorartige Struktur erhalten und nur minimale Informationen aus dem geschachtelten Bethe-Ansatz genutzt werden. Weiterhin erlaubt die Betrachtung von Doppelanregungen im Spinkettenbild die Realisierung aller Felder der N=4 SYM-Theorie. Der chirale Yang-Mills-Feldstärketensor wird aus vier Fermionen in führender Ordnung der Kopplung konstruiert, eine Methode zur Einsetzung des Lagrangeoperators im Hexagon-Formalismus wird vorgeschlagen und ein erster Test durchgeführt. Teil II behandelt den Hexagon-Formalismus für Superstrings auf AdS3xS3xT4 Hintergründen mit einer Mischung von Ramond-Ramond und Neveu-Schwarz-Neveu-Schwarz Flüssen. Der Formfaktor wird für Ein- und Zwei-Teilchen-Zustände konstruiert und lässt sich für viele Teilchen unter Nutzung der S Matrix verallgemeinern. Schließlich werden die thermodynamischen Bethe-Ansatz (TBA)-Gleichungen betrachtet, die von Frolov und Sfondrini für das Spektrum von Strings auf reinem Ramond-Ramond AdS3xS3xT4 Hintergrund konstruiert wurden. Bei schwacher Kopplung lassen sich die TBA-Gleichungen erheblich vereinfachen. Der Beitrag zu den anomalen Dimensionen in führender Ordnung ist auf masselose Anregungen zurückzuführen. / Integrability proved to be a powerful tool to calculate observables in the AdS/CFT correspondence. At first discovered in the planar spectral problem, methods have since been devised for calculating higher-point functions as well. In this thesis we will consider two instances of the correspondence, that is AdS5/CFT4 as well as AdS3/CFT2, aiming at extending the integrability framework. In Part I we focus on integrability in N=4 SYM theory, where the hexagon form factor provides a formalism to calculate three-point functions. For this, the correlator is cut into two hexagonal patches. Considering the local operators in the spin chain picture, the Bethe states also need to be cut, resulting in an entangled state. In this thesis, we extend the hexagon formalism to higher-rank sectors, while preserving its operator-like structure and importing a minimum of information from the nested Bethe ansatz. Moreover, considering double excitations in the spin chain picture allows us to accommodate for the full set of fields in N=4 SYM theory. We build the chiral Yang-Mills field strength tensor from four fermions at leading order in the coupling, put forward a Lagrangian insertion method in the hexagon formalism and perform a first test. In Part II we propose a hexagon formalism for superstrings in AdS3×S3×T4 backgrounds with an arbitrary mixture or Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz fluxes. We bootstrap the hexagon form factor for one- and two-particle states from symmetry and give a proposal for the evaluation of many particle states in terms of the theorie's S matrix. Finally, we consider the thermodynamic Bethe ansatz (TBA) equations constructed by Frolov and Sfondrini for the spectrum of strings on the pure-Ramond-Ramond AdS3×S3×T4 background. Here we study the small tension limit of the mirror TBA equations and find that the equations simplify considerably. We observe that the leading-order contribution to the anomalous dimensions is due to massless excitations.
9

Correlators on the Wilson Line Defect CFT

Peveri, Giulia 14 November 2023 (has links)
Konforme Feldtheorien (CFT) spielen eine Schlüsselrolle in der modernen theoretischen Physik. Mit CFT beschreibt man reale physikalische Systeme bei Kritikalität. Dank der AdS/CFT-Korrespondenz spielt sie auch bei der Untersuchung der Quantengravitation eine zentrale Rolle. Auf der Seite der CFT steht die N=4 supersymmetrische Yang-Mills (SYM) Theorie. Diese Arbeit dreht sich hauptsächlich um die supersymmetrische Wilson-Linie und ihre Interpretation als konformer Defekt in N=4 SYM. Insbesondere konzentrieren wir uns auf Anregungen, die auf dem Defekt lokalisiert sind, sogenannte Einfügungen, deren Korrelatoren durch eine eindimensionale CFT beschrieben werden. Das erste Hauptergebnis dieser Arbeit ist ein effizienter Algorithmus zur Berechnung von Mehrpunkt Korrelationsfunktionen von Skalareinfügungen auf der Wilson-Linie bis zur nächsten Ordnung bei schwacher Kopplung kodieren. Es werden verschiedene Berechnungen solcher Vier-, Fünf- und Sechspunkt-Korrelatoren gezeigt und ihre Eigenschaften diskutiert. Darüber hinaus wird am Beispiel der Vierpunkt-Funktion die Leistungsfähigkeit der Ward-Identitäten veranschaulicht, die für die Ableitung eines Ergebnisses nächster, vorletzter und führender Ordnung entscheidend sind. Dank dieser perturbativen Ergebnisse vermuten wir eine Mehrpunkt-Erweiterung der Ward-Identitäten, die von den Vier-Punkt-Funktionen erfüllt werden. Diese nichtperturbativen Beschränkungen erweisen sich als fundamentale Bestandteile des Bootstraps einer Fünfpunkt-Funktion bei starker Kopplung. Zum Abschluss dieser Arbeit definieren wir eine inhärent eindimensionale Mellin-Amplitude auf der nichtperturbativen Ebene mit geeigneten Subtraktionen und analytischen Fortsetzungen. Die Effizienz des 1d-Mellin-Formalismus zeigt sich auf der perturbativen Ebene. Man findet einen Ausdruck in geschlossener Form für die Mellin-Transformation von Kontaktwechselwirkungen führender Ordnung, den man verwendet, um CFT-Daten zu extrahieren. / Conformal field theory (CFT) plays a key role in modern theoretical physics. Through CFT we describe real physical systems at criticality and fixed points of the renormalization group flow. It is also central in the study of quantum gravity, thanks to the AdS/CFT correspondence. This thesis originates in the context of the N=4 supersymmetric Yang-Mills (SYM) theory, which represents the CFT side of this correspondence. This work mainly revolves around the supersymmetric Wilson line and its interpretation as a conformal defect in N=4 SYM. Particularly, we focus on excitations localized on the defect called insertions, whose correlators are described by a one-dimensional CFT. The first main result of this work is an efficient algorithm for computing multipoint correlation functions of scalar insertions on the Wilson line, consisting of recursion relations encoding the possible interactions up to next-to-leading order at weak coupling. We show various computations of such four-, five- and six-point correlators, and discuss their properties. Moreover, we use the four-point function case to illustrate the power of the Ward identities, which are crucial in deriving a next-to-next-to-leading order result. Thanks to these perturbative results, we find a family of differential operators annihilating our correlation functions, which we conjecture to be a multipoint extension of the Ward identities satisfied by the four-point functions. These non-perturbative constraints are shown to be fundamental ingredients in the bootstrap of a five-point function at strong coupling. To conclude this thesis, we define an inherently one-dimensional Mellin amplitude at the non-perturbative level with appropriate subtractions and analytical continuations. The efficiency of the 1d Mellin formalism is manifest at the perturbative level. We find a closed-form expression for the Mellin transform of leading order contact interactions and use it to extract CFT data.
10

Conformal Feynman Integrals and Correlation Functions in Fishnet Theory

Corcoran, Luke 12 January 2023 (has links)
In dieser Dissertation untersuchen wir unterschiedliche Aspekte im Zusammenhang mit Korrelationsfunktionen in der Fischnetz-Theorie. Zunächst betrachten wir einen der einfachsten Korrelatoren der Fischnetz Theorie, das konforme Box-Integral, in Minkowski Signatur. Während dieses Integral in Euklidischer Signatur eine konforme Symmetrie aufweist, wird diese Symmetrie in Minkowski-Raumzeit subtil gebrochen. Wir beschreiben die Brechung der konformen Symmetrie quantitativ, indem wir die funktionale Form des Box-Integrals in allen kinematischen Regionen untersuchen. Ausserdem untersuchen wir das Ausmass zu dem das Box integral durch seine Yangian-Symmetrie festgelegt ist. Als nächstes widmen wir uns den Basso-Dixon-Graphen, die ebenfalls konforme Vier-Punkt-Integrale sind und Verallgemeinerungen des Box-Integrals zu höheren Schleifenordnungen darstellen. Wir leiten die Yangian-Ward-Identitäten ab, die diese Klasse von Integralen erfüllen. Die Ward-Identitäten sind einhomogene Erweiterungen der partiellen Differentialgleichungen, die im homogenen Fall durch Appell-Hypergeometrische Funktionen gelöst werden. Die Ward-Identitäten können natürlicherweise auf eine Ein-Parameter-Familie von D-dimensionalen Integralen erweitert werden, die Korrelatoren in der verallgemeinerten Fischnetz-Theorie von Kazakov und Olivucci darstellen. Schliesslich untersuchen wir den Dilatationsoperator in einem Drei-Skalar-Sektor der Fischnetztheorie, der auch als Eklektisches Modell bezeichnet wird. In diesem Sektor der Dilatationsoperator nimmt nicht--diagonalisierbare Form an. Das führt dazu, dass die Zwei-Punkt-Korrelationsfunktionen eine logarithmische Abhängigkeit von der Raumzeitseparierung der Operatoren annimmt. Unter Zuhilfenahme von kombinatorischen Argumenten führen wir eine generierende Funktion ein, die das Jordan-Block-Spektrum eines verwandten Modells, der hypereklektischen Spinkette, vollständig charakterisiert. / We study various aspects of correlation functions in fishnet theory. We begin with the study of the simplest correlator in theory theory, represented by the conformal box integral, in Minkowski space. While this integral is conformally invariant in Euclidean space, this symmetry is subtly broken in Minkowski space. We quantify the extent to which conformal symmetry is broken by analysing the functional form of the box in each kinematic region. We propose a new method to calculate the box integral directly in Minkowski space, by introducing a family of configurations with two points at infinity. Furthermore, we investigate the extent to which the box integral is constrained by Yangian symmetry. We constrain the functional form of the box integral in all kinematic regions up to twelve undetermined constants, which we fix by three separate analytic continuations from the Euclidean region. Next, we study the Basso-Dixon graphs, which represent higher-loop versions of the box integral. We derive and study Yangian Ward identities for this class of integrals. These take the form of inhomogeneous extensions of the partial differential equations defining the Appell hypergeometric functions. The Ward identities naturally generalise to a one-parameter family of D dimensional integrals representing correlators in a generalised fishnet theory. Finally, we study the dilatation operator in a particular three scalar sector of the fishnet theory, which has been dubbed the eclectic model. This dilatation operator is non-diagonalisable in this sector. This leads to logarithmic spacetime dependence in the corresponding two-point functions. Using combinatorial arguments, we introduce a generating function which fully characterises the Jordan block spectrum of a related model: the hypereclectic spin chain. This function is found by purely combinatorial means and can be expressed in terms of the q-binomial coefficient.

Page generated in 0.2282 seconds