Spelling suggestions: "subject:"lévy processes"" "subject:"révy processes""
61 |
Stochastic Control, Optimal Saving, and Job Search in Continuous TimeSennewald, Ken 13 November 2007 (has links)
Economic uncertainty may affect significantly people’s behavior and hence macroeconomic variables. It is thus important to understand how people behave in presence of different kinds of economic risk. The present dissertation focuses therefore on the impact of the uncertainty in capital and labor income on the individual saving behavior. The underlying uncertain variables are here modeled as stochastic processes that each obey a specific stochastic differential equation, where uncertainty stems either from Poisson or Lévy processes. The results on the optimal behavior are derived by maximizing the individual expected lifetime utility. The first chapter is concerned with the necessary mathematical tools, the change-of-variables formula and the Hamilton-Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of application in order make them appropriate for the analysis of the dynamic stochastic optimization problems occurring in the following chapters and elsewhere. The second chapter considers an optimum-saving problem with labor income, where capital risk stems from asset prices that follow geometric L´evy processes. Chapter 3, finally, studies the optimal saving behavior if agents face not only risk but also uncertain spells of unemployment. To this end, we turn back to Poisson processes, which here are used to model properly the separation and matching process.
|
62 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
63 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
Page generated in 0.0791 seconds