• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 12
  • 9
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 23
  • 18
  • 17
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes

De Oliveira Gomes, André 13 April 2018 (has links)
Die vorliegende Dissertation beschäftigt sich mit der Anwendung der Theorie der großen Abweichungen auf verschiedene Fragestellungen der stochastischen Analysis und stochastischen Dynamik von Sprungprozessen. Die erste Fragestellung behandelt die erste Austrittszeit aus einem beschränkten Gebiet für eine bestimmte Klasse von Sprungdiffusionen mit exponentiell leichten Sprüngen. In Abhängigkeit von der Leichtheit des Sprungmaßes wird das asymptotische Verhalten der Verteilung und insbesondere der Erwartung der ersten Austrittszeit bestimmt wenn das Rauschen verschwindet. Dabei folgt die Verteilung der ersten Austrittszeit einem Prinzip der großen Abweichungen im Falle eines superexponentiellen Sprungmaßes. Wohingegen im subexponentiellen Fall die Verteilung einem Prinzip moderater Abweichungen genügt. In beiden Fällen wird die Asymptotik bestimmt durch eine deterministische Größe, die den minimalen Energieaufwand beschreibt, um die Sprungdiffusion einen optimalen Kontrollpfad, der zum Austritt führt, folgen zu lassen. Die zweite Fragestellung widmet sich dem Grenzverhalten gekoppelter Vorwärts-Rückwärtssysteme stochastischer Differentialgleichungen bei kleinem Rauschen. Dazu assoziiert ist eine spezielle Klasse nicht-lokaler partieller Differentialgleichungen, die auch in nicht-lokalen Modellen der Fluiddynamik eine Rolle spielen. Mithilfe eines probabilistischen Ansatzes und der Markovschen Struktur dieser Systeme wird die Konvergenz auf Ebene von Viskositätslösungen untersucht. Dabei wird ein Prinzip der großen Abweichungen für die involvierten Stochastischen Prozesse hergeleitet. / This thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes. The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit. The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
42

Adaptive and efficient quantile estimation

Trabs, Mathias 07 July 2014 (has links)
Die Schätzung von Quantilen und verwandten Funktionalen wird in zwei inversen Problemen behandelt: dem klassischen Dekonvolutionsmodell sowie dem Lévy-Modell in dem ein Lévy-Prozess beobachtet wird und Funktionale des Sprungmaßes geschätzt werden. Im einem abstrakteren Rahmen wird semiparametrische Effizienz im Sinne von Hájek-Le Cam für Funktionalschätzung in regulären, inversen Modellen untersucht. Ein allgemeiner Faltungssatz wird bewiesen, der auf eine große Klasse von statistischen inversen Problem anwendbar ist. Im Dekonvolutionsmodell beweisen wir, dass die Plugin-Schätzer der Verteilungsfunktion und der Quantile effizient sind. Auf der Grundlage von niederfrequenten diskreten Beobachtungen des Lévy-Prozesses wird im nichtlinearen Lévy-Modell eine Informationsschranke für die Schätzung von Funktionalen des Sprungmaßes hergeleitet. Die enge Verbindung zwischen dem Dekonvolutionsmodell und dem Lévy-Modell wird präzise beschrieben. Quantilschätzung für Dekonvolutionsprobleme wird umfassend untersucht. Insbesondere wird der realistischere Fall von unbekannten Fehlerverteilungen behandelt. Wir zeigen unter minimalen und natürlichen Bedingungen, dass die Plugin-Methode minimax optimal ist. Eine datengetriebene Bandweitenwahl erlaubt eine optimale adaptive Schätzung. Quantile werden auf den Fall von Lévy-Maßen, die nicht notwendiger Weise endlich sind, verallgemeinert. Mittels äquidistanten, diskreten Beobachtungen des Prozesses werden nichtparametrische Schätzer der verallgemeinerten Quantile konstruiert und minimax optimale Konvergenzraten hergeleitet. Als motivierendes Beispiel von inversen Problemen untersuchen wir ein Finanzmodell empirisch, in dem ein Anlagengegenstand durch einen exponentiellen Lévy-Prozess dargestellt wird. Die Quantilschätzer werden auf dieses Modell übertragen und eine optimale adaptive Bandweitenwahl wird konstruiert. Die Schätzmethode wird schließlich auf reale Daten von DAX-Optionen angewendet. / The estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.
43

Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolution

Söhl, Jakob 03 May 2013 (has links)
Zentrale Grenzwertsätze und Konfidenzmengen werden in zwei verschiedenen, nichtparametrischen, inversen Problemen ähnlicher Struktur untersucht, und zwar in der Kalibrierung eines exponentiellen Lévy-Modells und im Dekonvolutionsmodell. Im ersten Modell wird eine Geldanlage durch einen exponentiellen Lévy-Prozess dargestellt, Optionspreise werden beobachtet und das charakteristische Tripel des Lévy-Prozesses wird geschätzt. Wir zeigen, dass die Schätzer fast sicher wohldefiniert sind. Zu diesem Zweck beweisen wir eine obere Schranke für Trefferwahrscheinlichkeiten von gaußschen Zufallsfeldern und wenden diese auf einen Gauß-Prozess aus der Schätzmethode für Lévy-Modelle an. Wir beweisen gemeinsame asymptotische Normalität für die Schätzer von Volatilität, Drift und Intensität und für die punktweisen Schätzer der Sprungdichte. Basierend auf diesen Ergebnissen konstruieren wir Konfidenzintervalle und -mengen für die Schätzer. Wir zeigen, dass sich die Konfidenzintervalle in Simulationen gut verhalten, und wenden sie auf Optionsdaten des DAX an. Im Dekonvolutionsmodell beobachten wir unabhängige, identisch verteilte Zufallsvariablen mit additiven Fehlern und schätzen lineare Funktionale der Dichte der Zufallsvariablen. Wir betrachten Dekonvolutionsmodelle mit gewöhnlich glatten Fehlern. Bei diesen ist die Schlechtgestelltheit des Problems durch die polynomielle Abfallrate der charakteristischen Funktion der Fehler gegeben. Wir beweisen einen gleichmäßigen zentralen Grenzwertsatz für Schätzer von Translationsklassen linearer Funktionale, der die Schätzung der Verteilungsfunktion als Spezialfall enthält. Unsere Ergebnisse gelten in Situationen, in denen eine Wurzel-n-Rate erreicht werden kann, genauer gesagt gelten sie, wenn die Sobolev-Glattheit der Funktionale größer als die Schlechtgestelltheit des Problems ist. / Central limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
44

Ensaios em finanças quantitativas: apreçamento de derivativos multidimensionais via processos de Lévy, e topologia e propagação do risco sistêmico / Essays in quantitative finance: multidimensional derivative pricing via Lévy processes, and systemic risk topology na risk propagation

Santos, Edson Bastos e 24 March 2010 (has links)
Este estudo contempla dois ensaios em finanças quantitativas, relacionados, respectivamente, a modelos de apreçamento e risco sistêmico. No Capitulo 1, e apresentado uma alternativa para modelar opções multidimensionais, cujas estruturas de ganhos e perdas dependam das trajetórias dos processos dos preços dos ativos objetos. A modelagem sugerida considera os processos de Levy, uma classe de processos estocásticos bastante ampla, que permite a existência de saltos (descontinuidades) no processo dos preços dos ativos financeiros, e tem como caso particular o movimento Browniano. Para escrever a dependência entre os processos, os conceitos estáticos de copulas ordinárias são estendidos para o contexto dos processos de Levy, levando em consideração a medida de Levy, que caracteriza o comportamento dos saltos. São realizados estudos comparativos entre as copulas dinâmicas de Clayton e de Frank, no apreçamento dos contratos derivativos do tipo asiático, utilizando-se processos gama e técnicas de simulação de Monte Carlo. No Capitulo 2, a estrutura e dinâmica interbancária das exposições mutuas entre as instituições financeiras no Brasil e explorada bem como o capital destas reservas, utilizando um conjunto de dados únicos que considera vários períodos entre 2007 e 2008. Para isto e mostrado que a rede de exposições pode ser modelada adequadamente como um gráfico estocástico dirigido de escala - livre (ponderada) seguindo distribuições que apresentam caudas grossas. A relação entre as conexões das instituições financeiras e seu colchão-de-capital também são investigados neste estudo. Finalmente, a estrutura da rede e usada para explorar a extensão de risco sistêmico gerada no sistema individualmente pelas instituições financeiras. / This study comprises two essays in quantitative finance, related, respectively, to models in asset pricing and systemic risk. In Chapter 1, it is presented an alternative to modeling multidimensional options, where the pay-offs depend on the paths of the trajectories of the underlying-asset prices. The proposed technique considers Levy processes, a very ample class of stochastic processes that allows the existence of jumps (discontinuities) in the price process of financial assets, and as a particular case, comprises the Brownian motion. To describe the dependence among Levy processes, extending the static concepts of the ordinary copulas to the Levy processes context, considering the Levy measure, which characterizes the jumps behavior of these processes. A comparison between the Clayton and the Frank dynamic copulas and their impact in asset pricing of Asian type derivatives contracts is studied, considering gamma processes and Monte Carlo simulation procedures. In Chapter 2, the structure and dynamics of interbank exposures in Brazil using a unique data set of all mutual exposures of financial institutions in Brazil is explored, as well as their capital reserves, at various periods in 2007 and 2008. It is shown that the network of exposures can be adequately modeled as a directed scale-free (weighted) graph with heavy-tailed degree and weight distributions. The relation between connectivity of a financial institution and its capital buffer are also investigated in this study. Finally, the network structure is used to explore the extent of systemic risk generated in the system by the individual institutions.
45

Les classes réciproques des processus de Markov : une approche avec des formules de dualité / Reciprocal classes of Markov processes : an approach with duality formulae

Murr, Rüdiger 12 October 2012 (has links)
Ce travail est centré sur la charactérisation de certaines classes de processus aléatoires par des formules de dualité. En particulier on considérera des processus réciproques à sauts, un cas jusqu'à présent négligé dans la littérature.Dans la première partie nous formulons de façon innovante une charactérisation des processus à accroissements indépendants. Celle-ci est basée sur une formule de dualité pour des processus infiniment divisibles, déjà connue dans le cadre du calcul de Malliavin. On va présenter deux nouvelles méthodes pour prouver cette formule, qui n'utilisent pas la décomposition en chaos de l'espace des fonctionnelles de carré intégrable. Une méthode s'appuie sur une formule d'intégration par parties satisfaite par des vecteurs aléatoires infiniment divisibles. Sous cet angle, notre charactérisation est une généralization du lemme de Stein dans le cas Gaussien et du lemme de Chen dans le cas Poissonien. La généralité de notre approche nous permet de plus, de présenter une charactérisation des mesures aléatoires infiniment divisibles.Dans la deuxième partie de notre travail nous nous concentrons sur l'étude des classes réciproques de processus de Markov avec ou sans sauts, et sur leur charactérisation. On commence avec un résumé des résultats déjà existants concernant les classes réciproques de diffusions browniennes comme solutions d'une formule de dualité. Nous obtenons notamment une nouvelle interprétation des classes réciproques comme les solutions d'une équation de Newton. Cela nous permet de relier nos résultats à la mécanique stochastique d'une part et à la théorie du contrôle optimale, d'autre part. La formule de dualité nous permet aussi de prouver une propriété d'invariance par retournement du temps de la classe réciproque d'une diffusion brownienne.En outre nous obtenons une série de nouveaux résultats concernant les processus de sauts purs. Nous décrivons d'abord la classe réciproque associée à un processus markovien de comptage, c'est-à-dire un processus de sauts de taille un, puis en présentons une charactérisation par une formule de dualité. Cette formule contient une dérivée stochastique, une intégrale stochastique compensée, et une fonctionnelle qui est une grandeur invariante de la classe réciproque. De plus nous livrons une interprétation de la classe réciproque comme ensemble des solutions d'un problème de contrôle optimal. Enfin, par une utilisation appropriée de la formule de dualité, nous montrons que la classe réciproque d'un processus markovien de comptage est invariante par retournement du temps.Quelques-uns de ces résultats restent valables pour des processus de sauts purs dont les sauts sont de taille variée. En particulier nous montrons que certaines fonctionnelles dites invariants réciproques permettent de distinguer différentes classes réciproques. Notre dernier résultat est la charactérisation de la classe réciproque d'un processus de Poisson composé dès lors que les (tailles des) différents sauts sont incommensurables. / This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable functionals. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein's lemma for Gaussian random variables and Chen's lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures.The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal.In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable.
46

Quelques contributions à l'étude de modèles bivariés de dégradation et de choc en fiabilité / Some contributions to study of bivariate models for deterioration and shocks in reliability

Pham, Hai Ha 15 October 2013 (has links)
La thèse est consacrée à l'étude de modèles bivariés en Fabilité, qui tiennent compte de différents types de dépendance entre composants. Dans un premier temps, nous nous intéressons au cas d'un système formé de deux composants, dont la dégradation est modélisée par un processus de Lévy croissant bivarié (subordinateur bivarié). Sous cette hypothèse, eux études sont faites : l'une sous l'hypothèse de surveillance continue et de réparation parfaite du système, l'autre sous une hypothèse d'inspections périodiques et de réparation imparfaite. Dans un deuxième temps, la thèse est consacrée à un autre modèle de survie bivarié, sous influence d'un environnement stochastique stressant ponctuel. La dépendance entre composants est ici induite par un environnement stressant commun, qui induit des détériorations différentes sur chacun des composants (augmentation du taux de panne pour l'un, du niveau de détérioration pour l'autre). Pour chacun des modèles étudiés, nos résultats montrent l'importance de la prise en compte de la dépendance entre les composants d'un système. / The thesis is devoted to the study of bivariate models in reliability, which take into account several types of dependence between components. As a first step, we are interested in a two-component system with accumulating deterioration modeled by a bivariate increasing Lévy process (bivariate subordinator). Under this hypothesis, two different studies are made : one under the assumption of continuous monitoring and perfect repair, the other one under the assumption of periodic inspections and imperfect repair. In a second step, the thesis is devoted to the study of another bivariate survivalmodel, under the influence of a stochastic and stressful environment. The dependence between components is here induced by the common stressful environment, with different incidence on the two components (increment of failure rate for one, of deterioration level for the other). For each of the studied models, our results show the importance of taking into account the dependence between the components of a system.
47

Brown-Resnick Processes: Analysis, Inference and Generalizations

Engelke, Sebastian 14 December 2012 (has links)
No description available.
48

Étude empirique de distributions associées à la Fonction de Pénalité Escomptée

Ibrahim, Rabï 03 1900 (has links)
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature. / We discuss a simulation approach for the joint density function of the surplus prior to ruin and deficit at ruin for risk models driven by Lévy subordinators. This approach is inspired by the Ladder Height decomposition for the probability of ruin of such models. The Classical Risk Model driven by a Compound Poisson process is a particular case of this more generalized one. The Expected Discounted Penalty Function, also referred to as the Gerber-Shiu Function (GS Function), was introduced as a unifying approach to deal with different quantities related to the event of ruin. The probability of ruin and the joint density function of surplus prior to ruin and deficit at ruin are particular cases of this function. Expressions for those two quantities have been derived from the GS Function, but those are not easily evaluated nor handled as they are infinite series of convolutions with no analytical closed form. However they share a similar structure, thus allowing to use the Ladder Height decomposition of the Probability of Ruin as a guiding method to generate simulated values for this joint density function. We present an introduction to risk models driven by subordinators, and describe those models for which it is possible to process the simulation. To motivate this work, we also present an application for this distribution, in order to calculate different risk measures for those risk models. An brief introduction to the vast field of Risk Measures is conducted where we present selected measures calculated in this empirical study. This work contributes to better understanding the behavior of subordinators driven risk models, as it offers a numerical point of view, which is absent in the literature.
49

Ensaios em finanças quantitativas: apreçamento de derivativos multidimensionais via processos de Lévy, e topologia e propagação do risco sistêmico / Essays in quantitative finance: multidimensional derivative pricing via Lévy processes, and systemic risk topology na risk propagation

Edson Bastos e Santos 24 March 2010 (has links)
Este estudo contempla dois ensaios em finanças quantitativas, relacionados, respectivamente, a modelos de apreçamento e risco sistêmico. No Capitulo 1, e apresentado uma alternativa para modelar opções multidimensionais, cujas estruturas de ganhos e perdas dependam das trajetórias dos processos dos preços dos ativos objetos. A modelagem sugerida considera os processos de Levy, uma classe de processos estocásticos bastante ampla, que permite a existência de saltos (descontinuidades) no processo dos preços dos ativos financeiros, e tem como caso particular o movimento Browniano. Para escrever a dependência entre os processos, os conceitos estáticos de copulas ordinárias são estendidos para o contexto dos processos de Levy, levando em consideração a medida de Levy, que caracteriza o comportamento dos saltos. São realizados estudos comparativos entre as copulas dinâmicas de Clayton e de Frank, no apreçamento dos contratos derivativos do tipo asiático, utilizando-se processos gama e técnicas de simulação de Monte Carlo. No Capitulo 2, a estrutura e dinâmica interbancária das exposições mutuas entre as instituições financeiras no Brasil e explorada bem como o capital destas reservas, utilizando um conjunto de dados únicos que considera vários períodos entre 2007 e 2008. Para isto e mostrado que a rede de exposições pode ser modelada adequadamente como um gráfico estocástico dirigido de escala - livre (ponderada) seguindo distribuições que apresentam caudas grossas. A relação entre as conexões das instituições financeiras e seu colchão-de-capital também são investigados neste estudo. Finalmente, a estrutura da rede e usada para explorar a extensão de risco sistêmico gerada no sistema individualmente pelas instituições financeiras. / This study comprises two essays in quantitative finance, related, respectively, to models in asset pricing and systemic risk. In Chapter 1, it is presented an alternative to modeling multidimensional options, where the pay-offs depend on the paths of the trajectories of the underlying-asset prices. The proposed technique considers Levy processes, a very ample class of stochastic processes that allows the existence of jumps (discontinuities) in the price process of financial assets, and as a particular case, comprises the Brownian motion. To describe the dependence among Levy processes, extending the static concepts of the ordinary copulas to the Levy processes context, considering the Levy measure, which characterizes the jumps behavior of these processes. A comparison between the Clayton and the Frank dynamic copulas and their impact in asset pricing of Asian type derivatives contracts is studied, considering gamma processes and Monte Carlo simulation procedures. In Chapter 2, the structure and dynamics of interbank exposures in Brazil using a unique data set of all mutual exposures of financial institutions in Brazil is explored, as well as their capital reserves, at various periods in 2007 and 2008. It is shown that the network of exposures can be adequately modeled as a directed scale-free (weighted) graph with heavy-tailed degree and weight distributions. The relation between connectivity of a financial institution and its capital buffer are also investigated in this study. Finally, the network structure is used to explore the extent of systemic risk generated in the system by the individual institutions.
50

Covariation estimation for multi-dimensional Lévy processes based on high-frequency observations

Papagiannouli, Aikaterini 07 March 2023 (has links)
Gegenstand dieser Dissertation ist die non-parametrische Schätzung der Kovarianz in multi-dimensionalen Lévy-Prozessen auf der Basis von Hochfrequenzbeobachtungen. Im ersten Teil der Arbeit wird eine modifizierte Version der von Jacod und Reiß vorgeschlagenen Methode der Hochfrequenzbeobachtung für die Ermittlung der Kovarianz multi-dimensionaler Lévy-Prozesse gegeben. Es wird gezeigt, dass der Kovarianzschätzer optimal im Minimaxsinn ist. Darüber hinaus demonstrieren wir, dass die Indexaktivität der co-jumps durch das harmonische Mittel der Sprungaktivitätsinzidenzen der Komponenten von unten beschränkt wird. Der zweite Teil behandelt das Problem der adaptiven Schätzung. Ausgehend von einer Familie asymptotischer Minimax-Schätzer der Kovarianz, erhalten wir einen datenbasierten Schätzer. Wir wenden Lepskii’s Methode an, um die Kovarianz an die unbekannte Aktivität des co-jumps Indexes des Sprungteils anzupassen. Da wir es mit einem Adaptierungsproblem zu tun haben, müssen wir eine Schätzung der charakteristischen Funktion des multi-dimensionalen Lévy-Prozesses konstruieren, damit die charakteristische Funktion weder von einer semiparametrischen Annahme abhängt noch schnell abfällt. Aus diesem Grund wird auf Basis von Neumanns Methode ein trunkierter Schätzer für die empirische charakteristische Funktion konstruiert. Die Anwesenheit der trunkierten, empirischen charakteristischen Funktion im Zähler führt jedoch zu einer Situation, die auch bei der Deconvolution auftritt, d.h. einem irregulären Verhalten des stochastischen Fehlers. Dieser U-förmige stochastische Fehler verhindert die Anwendung von Lepskii’s Grundsatz. Um diesem Problem, entgegenzuwirken, entwickeln wir eine Strategie, welche zu einem Orakelstart von Lepskii's Methode führt, mit deren Hilfe ein monoton steigender stochastischer Fehler konstruiert wird. Dies erlaubt uns, ein Balancing Principle einzuführen und einen adaptiven Schätzer für die Kovarianz zu erhalten, der fast-optimale Raten erzeugt. / In this thesis, we consider the problem of nonparametric estimation for the continuous part of the covariation of a multi-dimensional Lévy process from high-frequency observations. This continuous part of covariation is also called covariance. The first part modifies the high-frequency estimation method, proposed by Jacod and Reiss, to cover estimation of the covariance of multi-dimensional Lévy processes. The covariance estimator is shown to be optimal in the minimax-sense. Moreover, the co-jump index activity is proved to be bounded from below by the harmonic mean of the jump activity indices of the components. In the second part, we address the problem of the adaptive estimation. Starting from an asymptotically minimax family of estimators for the covariance, we derive a data-driven estimator. Lepskii's method is applied to adapt the covariance to the unknown co-jump index activity of the jump part. Faced with an adaptation problem, we need to secure an estimation for the characteristic function of the multi-dimensional Lévy process so that it does not depend on a semiparametric assumption and, at the same time, does not decay fast. For this reason, a truncated estimator for the empirical characteristic function is constructed based on Neumann's method. The presence of the truncated empirical characteristic function in the denominator leads to a situation similar to the deconvolution problem, i.e., an irregular behavior of the stochastic error. This U-shaped stochastic error does not permit us to apply Lepskii's principle. To counteract this problem, we establish a strategy to obtain an oracle start of Lepskii's method, according to which a monotonically increasing stochastic error is constructed. This enables us to apply a balancing principle and build an adaptive estimator for the covariance which obtains near-optimal rates.

Page generated in 0.0878 seconds