Spelling suggestions: "subject:"lévy processes"" "subject:"révy processes""
21 |
Pricing of discretely sampled Asian options under Lévy processesXie, Jiayao January 2012 (has links)
We develop a new method for pricing options on discretely sampled arithmetic average in exponential Lévy models. The main idea is the reduction to a backward induction procedure for the difference Wn between the Asian option with averaging over n sampling periods and the price of the European option with maturity one period. This allows for an efficient truncation of the state space. At each step of backward induction, Wn is calculated accurately and fast using a piece-wise interpolation or splines, fast convolution and either flat iFT and (refined) iFFT or the parabolic iFT. Numerical results demonstrate the advantages of the method.
|
22 |
Applications des processus de Lévy et processus de branchement à des études motivées par l'informatique et la biologieBansaye, Vincent 14 November 2008 (has links) (PDF)
Dans une première partie, j'étudie un processus de stockage de données en temps continu où le disque dur est identifié à la droite réelle. Ce modèle est une version continu du problème original de Parking de Knuth. Ici l'arrivée des fichiers est Poissonienne et le fichier se stocke dans les premiers espaces libres à droite de son point d'arrivée, quitte à se fragmenter. Dans un premier temps, je construis le modèle et donne une caractérisation géométrique et analytique de la partie du disque recouverte au temps t. Ensuite j'étudie les régimes asymptotiques au moment de saturation du disque. Enfin, je décris l'évolution en temps d'un block de données typique. La deuxième partie est constituée de l'étude de processus de branchement, motivée par des questions d'infection cellulaire. Dans un premier temps, je considère un processus de branchement en environnement aléatoire sous-critique, et détermine les théorèmes limites en fonction de la population initiale, ainsi que des propriétes sur les environnements, les limites de Yaglom et le Q-processus. Ensuite, j'utilise ce processus pour établir des résultats sur un modèle décrivant la prolifération d'un parasite dans une cellule en division. Je détermine la probabilité de guérison, le nombre asymptotique de cellules inféctées ainsi que les proportions asymptotiques de cellules infectées par un nombre donné de parasites. Ces différents résulats dépendent du régime du processus de branchement en environnement aléatoire. Enfin, j'ajoute une contamination aléatoire par des parasites extérieures.
|
23 |
Small-time asymptotics and expansions of option prices under Levy-based modelsGong, Ruoting 12 June 2012 (has links)
This thesis is concerned with the small-time asymptotics and expansions of call option prices, when the log-return processes of the underlying stock prices follow several Levy-based models. To be specific, we derive the time-to-maturity asymptotic behavior for both at-the-money (ATM), out-of-the-money (OTM) and in-the-money (ITM) call-option prices under several jump-diffusion models and stochastic volatility models with Levy jumps. In the OTM and ITM cases, we consider a general stochastic volatility model with independent Levy jumps, while in the ATM case, we consider the pure-jump CGMY model with or without an independent Brownian component.
An accurate modeling of the option market and asset prices requires a mixture of a continuous diffusive component and a jump component. In this thesis, we first model the log-return process of a risk asset with a jump diffusion model by combining a stochastic volatility model with an independent pure-jump Levy process. By assuming
smoothness conditions on the Levy density away from the origin and a small-time large deviation principle on the stochastic volatility model, we derive the small-time expansions, of arbitrary polynomial order, in time-t, for the tail distribution of the log-return process, and for the call-option price which is not at-the-money. Moreover, our approach allows for a unified treatment of more general payoff functions. As a
consequence of our tail expansions, the polynomial expansion in t of the transition
density is also obtained under mild conditions.
The asymptotic behavior of the ATM call-option prices is more complicated to obtain, and, in general, is given by fractional powers of t, which depends on different choices of the underlying log-return models. Here, we focus on the CGMY model, one of the most popular tempered stable models used in financial modeling. A novel
second-order approximation for ATM option prices under the pure-jump CGMY Levy model is derived, and then extended to a model with an additional independent Brownian component. The third-order asymptotic behavior of the ATM option prices as
well as the asymptotic behavior of the corresponding Black-Scholes implied volatilities
are also addressed.
|
24 |
Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel modelsPetkovic, Alexandre 16 March 2009 (has links)
This thesis is composed of three chapters that form two parts. The first part is composed of two chapters and studies problems related to the exotic option market. In the first chapter we are interested in a numerical problem. More precisely we derive closed-form approximations for the price of some exotic options in the Black and Scholes framework. The second chapter discusses the construction of multivariate Lévy processes with and without stochastic volatility. The second part is composed of one chapter. It deals with a completely different issue. There we will study the problem of individual and temporal aggregation in panel data models. / Doctorat en sciences économiques, Orientation économie / info:eu-repo/semantics/nonPublished
|
25 |
Pathwise decompositions of Lévy processes : applications to epidemiological modeling / Décompositions trajectorielles de processus de Lévy : application à la modélisation de dynamiques épidémiologiquesDávila-Felipe, Miraine 14 December 2016 (has links)
Cette thèse est consacrée à l'étude de décompositions trajectorielles de processus de Lévy spectralement positifs et des relations de dualité pour des processus de ramification, motivée par l'utilisation de ces derniers comme modèles probabilistes d'une dynamique épidémiologique. Nous modélisons l'arbre de transmission d'une maladie comme un arbre de ramification, où les individus évoluent indépendamment les uns des autres, ont des durées de vie i.i.d. (périodes d'infectiosité) et donnent naissance (infections secondaires) à un taux constant durant leur vie. Le processus d'incidence dans ce modèle est un processus de Crump-Mode-Jagers (CMJ) et le but principal des deux premiers chapitres est d'en caractériser la loi conjointement avec l'arbre de transmission partiellement observé, inferé à partir des données de séquences. Dans le Chapitre I, nous obtenons une description en termes de fonctions génératrices de la loi du nombre d'individus infectieux, conditionnellement à l'arbre de transmission reliant les individus actuellement infectés. Une version plus élégante de cette caractérisation est donnée dans le Chapitre II, en passant par un résultat général d'invariance par retournement du temps pour une classe de processus de ramification. Finallement, dans le Chapitre III nous nous intéressons à la loi d'un processus de ramification (sous)critique vu depuis son temps d'extinction. Nous obtenons un résultat de dualité qui implique en particulier l'invariance par retournement du temps depuis leur temps d'extinction des processus CMJ (sous)critiques et de l'excursion hors de 0 de la diffusion de Feller critique (le processus de largeur de l'arbre aléatoire de continuum). / This dissertation is devoted to the study of some pathwise decompositions of spectrally positive Lévy processes, and duality relationships for certain (possibly non-Markovian) branching processes, driven by the use of the latter as probabilistic models of epidemiological dynamics. More precisely, we model the transmission tree of a disease as a splitting tree, i.e. individuals evolve independently from one another, have i.i.d. lifetimes (periods of infectiousness) that are not necessarily exponential, and give birth (secondary infections) at a constant rate during their lifetime. The incidence of the disease under this model is a Crump-Mode-Jagers process (CMJ); the overarching goal of the two first chapters is to characterize the law of this incidence process through time, jointly with the partially observed (inferred from sequence data) transmission tree. In Chapter I we obtain a description, in terms of probability generating functions, of the conditional likelihood of the number of infectious individuals at multiple times, given the transmission network linking individuals that are currently infected. In the second chapter, a more elegant version of this characterization is given, passing by a general result of invariance under time reversal for a class of branching processes. Finally, in Chapter III we are interested in the law of the (sub)critical branching process seen from its extinction time. We obtain a duality result that implies in particular the invariance under time reversal from their extinction time of the (sub)critical CMJ processes and the excursion away from 0 of the critical Feller diffusion (the width process of the continuum random tree).
|
26 |
Etude de deux problèmes de contrôle stochastique : put americain avec dividendes discrets et principe de programmation dynamique avec contraintes en probabilités / Study of two stochastic control problems : american put with discrete dividends and dynamic programming principle with expectation constraintsJeunesse, Maxence 29 January 2013 (has links)
Dans cette thèse, nous traitons deux problèmes de contrôle optimal stochastique. Chaque problème correspond à une Partie de ce document. Le premier problème traité est très précis, il s'agit de la valorisation des contrats optionnels de vente de type Américain (dit Put Américain) en présence de dividendes discrets (Partie I). Le deuxième est plus général, puisqu'il s'agit dans un cadre discret en temps de prouver l'existence d'un principe de programmation dynamique sous des contraintes en probabilités (Partie II). Bien que les deux problèmes soient assez distincts, le principe de programmation dynamique est au coeur de ces deux problèmes. La relation entre la valorisation d'un Put Américain et un problème de frontière libre a été prouvée par McKean. La frontière de ce problème a une signification économique claire puisqu'elle correspond à tout instant à la borne supérieure de l'ensemble des prix d'actifs pour lesquels il est préférable d'exercer tout de suite son droit de vente. La forme de cette frontière en présence de dividendes discrets n'avait pas été résolue à notre connaissance. Sous l'hypothèse que le dividende est une fonction déterministe du prix de l'actif à l'instant précédant son versement, nous étudions donc comment la frontière est modifiée. Au voisinage des dates de dividende, et dans le modèle du Chapitre 3, nous savons qualifier la monotonie de la frontière, et dans certains cas quantifier son comportement local. Dans le Chapitre 3, nous montrons que la propriété du smooth-fit est satisfaite à toute date sauf celles de versement des dividendes. Dans les deux Chapitres 3 et 4, nous donnons des conditions pour garantir la continuité de cette frontière en dehors des dates de dividende. La Partie II est originellement motivée par la gestion optimale de la production d'une centrale hydro-electrique avec une contrainte en probabilité sur le niveau d'eau du barrage à certaines dates. En utilisant les travaux de Balder sur la relaxation de Young des problèmes de commande optimale, nous nous intéressons plus spécifiquement à leur résolution par programmation dynamique. Dans le Chapitre 5, nous étendons au cadre des mesures de Young des résultats dûs à Evstigneev. Nous établissons alors qu'il est possible de résoudre par programmation dynamique certains problèmes avec des contraintes en espérances conditionnelles. Grâce aux travaux de Bouchard, Elie, Soner et Touzi sur les problèmes de cible stochastique avec perte contrôlée, nous montrons dans le Chapitre 6 qu'un problème avec contrainte en espérance peut se ramener à un problème avec des contraintes en espérances conditionnelles. Comme cas particulier, nous prouvons ainsi que le problème initial de la gestion du barrage peut se résoudre par programmation dynamique / In this thesis, we address two problems of stochastic optimal control. Each problem constitutes a different Part in this document. The first problem addressed is very precise, it is the valuation of American contingent claims and more specifically the American Put in the presence of discrete dividends (Part I). The second one is more general, since it is the proof of the existence of a dynamic programming principle under expectation constraints in a discrete time framework (Part II). Although the two problems are quite distinct, the dynamic programming principle is at the heart of these two problems. The relationship between the value of an American Put and a free boundary problem has been proved by McKean. The boundary of this problem has a clear economic meaning since it corresponds at all times to the upper limit of the asset price above which the holder of such an option would exercise immediately his right to sell. The shape of the boundary in the presence of discrete dividends has not been solved to the best of our knowledge. Under the assumption that the dividend is a deterministic function of asset prices at the date just before the dividend payment, we investigate how the boundary is modified. In the neighborhood of dividend dates and in the model of Chapter 3, we know what the monotonicity of the border is, and we quantify its local behavior. In Chapter 3, we show that the smooth-fit property is satisfied at any date except for those of the payment of dividends. In both Chapters 3 and 4, we are able to give conditions to guarantee the continuity of the border outside dates of dividend. Part II was originally motivated by the optimal management of the production of an hydro-electric power plant with a probability constraint on the reservoir level on certain dates. Using Balder'sworks on Young's relaxation of optimal control problems, we focus more specifically on their resolution by dynamic programming. In Chapter 5, we extend results of Evstigneev to the framework of Young measures. We show that dynamic programming can be used to solve some problems with conditional expectations constraints. Through the ideas of Bouchard, Elie, Soner and Touzi on stochastic target problems with controlled loss, we show in Chapter 6 that a problem with expectation constraints can be reduced to a problem with conditional expectation constraints. Finally, as a special case, we show that the initial problem of dam management can be solved by dynamic programming
|
27 |
Essays on Fine Structure of Asset Returns, Jumps, and Stochastic VolatilityYu, Jung-Suk 22 May 2006 (has links)
There has been an on-going debate about choices of the most suitable model amongst a variety of model specifications and parameterizations. The first dissertation essay investigates whether asymmetric leptokurtic return distributions such as Hansen's (1994) skewed tdistribution combined with GARCH specifications can outperform mixed GARCH-jump models such as Maheu and McCurdy's (2004) GARJI model incorporating the autoregressive conditional jump intensity parameterization in the discrete-time framework. I find that the more parsimonious GJR-HT model is superior to mixed GARCH-jump models. Likelihood-ratio (LR) tests, information criteria such as AIC, SC, and HQ and Value-at-Risk (VaR) analysis confirm that GJR-HT is one of the most suitable model specifications which gives us both better fit to the data and parsimony of parameterization. The benefits of estimating GARCH models using asymmetric leptokurtic distributions are more substantial for highly volatile series such as emerging stock markets, which have a higher degree of non-normality. Furthermore, Hansen's skewed t-distribution also provides us with an excellent risk management tool evidenced by VaR analysis. The second dissertation essay provides a variety of empirical evidences to support redundancy of stochastic volatility for SP500 index returns when stochastic volatility is taken into account with infinite activity pure Lévy jumps models and the importance of stochastic volatility to reduce pricing errors for SP500 index options without regard to jumps specifications. This finding is important because recent studies have shown that stochastic volatility in a continuous-time framework provides an excellent fit for financial asset returns when combined with finite-activity Merton's type compound Poisson jump-diffusion models. The second essay also shows that stochastic volatility with jumps (SVJ) and extended variance-gamma with stochastic volatility (EVGSV) models perform almost equally well for option pricing, which strongly imply that the type of Lévy jumps specifications is not important factors to enhance model performances once stochastic volatility is incorporated. In the second essay, I compute option prices via improved Fast Fourier Transform (FFT) algorithm using characteristic functions to match arbitrary log-strike grids with equal intervals with each moneyness and maturity of actual market option prices.
|
28 |
Deux études en gestion de risque: assurance de portefeuille avec contrainte en risque et couverture quadratique dans les modèles a sautsDe Franco, Carmine 29 June 2012 (has links) (PDF)
Dans cette thèse, je me suis interessé a deux aspects de la gestion de portefeuille : la maximisation de l'utilité e d'un portefeuille financier lorsque on impose une contrainte sur l'exposition au risque, et la couverture quadratique en marché incomplet. Part I. Dans la première partie, j' étudie un problème d'assurance de portefeuille du point de vue du manager d'un fond d'investissement, qui veut structurer un produit financier pour les investisseurs du fond avec une garantie sur la valeur du portefeuille a la maturité . Si, a la maturité, la valeur du portefeuille est au dessous d'un seuil x e, l'investisseur sera remboursé a la hauteur de ce seuil par une troisième partie, qui joue le rôle d'assureur du fond (on peut imaginer que le fond appartient à une banque et que donc c'est la banque elle même qui joue le rôle d'assureur). En échange de cette assurance, la troisième partie impose une contrainte sur l'exposition au risque que le manager du fond peut tolérer, mesurée avec une mesure de risque monétaire convexe. Je donne la solution complet e de ce problème de maximisation non convexe en marché complet et je prouve que le choix de la mesure de risque est un point crucial pour avoir existence d'un portefeuille optimal. J'applique donc mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence. Mots-cl es : Assurance de portefeuille ; maximisation d'utilité ; mesure de risque convexe ; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence. Part II. Dans la deuxième partie, je m'intéresse au problème de couverture quadratique en marché incomplet. J'assume que le marché est d écrit par un processus Markovien tridimensionnel avec sauts. La premi ère variable d' état décrit l'actif - financier, échangeable sur le marché, qui sert comme instrument de couverture ; la deuxième variable d' état modélise un actif financier que intervient dans la dynamique de l'instrument de couverture mais qui n'est pas échangeable sur le march é : il peut donc être vu comme un facteur de volatilité de l'instrument de couverture, ou comme un actif financier que l'on ne peut pas acheter (pour de raisons légales par exemple) ; la troisième et dernière variable d' état représente une source externe de risque qui affecte l'option Européenne qu'on veut couvrir, et qui, elle aussi, n'est pas échangeable sur le marché. Pour résoudre le problème j'utilise l'approche de la programmation dynamique, qui me permet d' écrire l' équation de Hamilton-Jacobi- Bellman associé e au problème de couverture quadratique, qui est non locale en non linéaire. Je prouve que la fonction valeur associée au problème de couverture quadratique peut être caractérisée par un système de trois équations integro- différentielles aux dérivées partielles, dont l'une est semilinéaire et ne dépends pas du choix de l'option a couvrir, et les deux autres sont simplement linéaires , et que ce système a une unique solution r régulière dans un espace de Hölder approprié, qui me permet donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré lorsque le processus est non dégénéré (c'est a dire que la composante Brownienne est strictement elliptique) et lorsque le processus est a sauts purs. Je conclus avec une application de mes résultats dans le cadre du marché de l' électricité. Mots-cl es : Couverture quadratique ; modèle a sauts ; programmation dynamique ; équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-différentielles.
|
29 |
Quelques résultats d'équivalence asymptotique pour des expériences statistiques dans un cadre non paramétrique / Some results of asymptotic equivalence for nonparametric statistical experimentsMariucci, Ester 16 September 2015 (has links)
Nous nous intéressons à l'équivalence asymptotique, au sens de Le Cam, entre différents modèles statistiques. Plus précisément, nous avons exploré le cas de modèles statistiques associés à l'observation discrète de processus à sauts ou de diffusions unidimensionnelles, ainsi que des modèles à densité plus classiques.Ci-dessous, nous présentons brièvement les différents chapitres de la thèse.Nous commençons par présenter tous nos résultats dans un premier chapitre introductif. Ensuite, dans le Chapitre 2 nous rappelons les points clés de la théorie de Le Cam sur les expériences statistiques en se plaçant dans un contexte non paramétrique.Les Chapitres 3 et 4 traitent de l'équivalence asymptotique pour des modèles statistiques associés à l'observation discrète (haute fréquence) de processus à sauts. Dans un premier temps nous nous focalisons sur un problème d'équivalence en ce qui concerne l'estimation de la dérive, supposée appartenir à une certaine classe fonctionnelle. Il s'avère (Chapitre 3) qu'il y a une équivalence asymptotique, en ce qui concerne l'estimation de la dérive, entre le modèle statistique associé à l'observation discrète d'un processus additif $X$ et le modèle statistique gaussien associé à l'observation discrète de la partie continue de $X$.Dans un deuxième temps, nous nous sommes intéressés au problème de l'estimation non paramétrique de la densité de Lévy $f$ relative à un processus de Lévy à sauts purs, $Y$. Le Chapitre 4 illustre l'équivalence asymptotique, en ce qui concerne l'estimation de $f$, entre le modèle statistique associé à l'observation discrète de $Y$ et un certain modèle de bruit blanc gaussien ayant $sqrt f$ comme dérive.Le Chapitre 5 présente une extension d'un résultat bien connu sur l'équivalence asymptotique entre un modèle à densité et un modèle de bruit blanc gaussien.Le Chapitre 6 étudie l'équivalence asymptotique entre un modèle de diffusion scalaire avec une dérive inconnue et un coefficient de diffusion qui tend vers zéro et le schéma d'Euler correspondant.Dans le Chapitre 7 nous présentons une majoration en distance $L_1$ entre les lois de processus additifs.Le Chapitre 8 est consacré aux conclusions et discute des extensions possibles des travaux de thèse. / The subject of this Ph.D. thesis is the asymptotic equivalence, in the Le Cam sense, between different statistical models. Specifically, we explore the case of statistical models associated with the discrete observation of jump processes or diffusion processes as well as more classical density models.Below, we briefly introduce the different chapters of this dissertation.We begin by presenting our results in a first introductory chapter. Then, in Chapter 2, we recall the key points of the Le Cam theory on statistical experiences focusing on a nonparametric context.Chapters 3 and 4 deal with asymptotic equivalences for statistical models associated with discrete observation (high frequency) of jump processes. First, we focus on an equivalence problem regarding the estimation of the drift, assumed to belong to a certain functional class. It turns out (Chapter 3) that there is an asymptotic equivalence, for what concerns the estimation of the drift, between the statistical model associated with the discrete observation of an additive process $X$ and the Gaussian statistical model associated with the discrete observation of the continuous part of $X$. Then we study the problem of nonparametric density estimation for the Lévy density $f$ of a pure jump Lévy process $Y$. Chapter 4 illustrates the asymptotic equivalence, for what concerns the estimation of $f$, between the statistical model associated with the discrete observation of $Y$ and a certain Gaussian white noise model having $sqrt f$ as drift.In Chapter 5 we present an extension of the well-known asymptotic equivalence between density estimation experiments and a Gaussian white noise model.Chapter 6 describes the asymptotic equivalence between a scalar diffusion model with unknown drift and with diffusion coefficient tending to zero and the corresponding Euler scheme. In Chapter 7 we present a bound for the $L_1$ distance between the laws of additive processes.Chapter 8 is devoted to conclusions and discusses possible extensions of the results of this thesis.
|
30 |
Contributions à l'étude de l'instant de défaut d'un processus de Lévy en observation complète et incomplète / Contributions to the study of default time of a Lévy process in complete observation and in incomplete ObservationNgom, Waly 06 July 2016 (has links)
Dans nos travaux, nous avons considéré un processus de Lévy X avec une composante brownienne non nulle et dont la partie à sauts est un processus de Poisson composé. Nous avons supposé que la valeur d'une entreprise est modélisée par un processus stochastique de la forme V = Vo exp X et que cette entreprise est mise à défaut dès lors que sa valeur passe sous un certain seuil b déterminé de façon exogène et qui donc, est une donnée du problème. L'instant de défaut T est alors de la forme Tx pour x= ln(Vo) ln((b) où x> 0, Tx = inf{t 2:0: X, 2:x}. Dans un premier temps, nous supposons que des agents observant la valeur V des actifs de la firme souhaitent connaître le comportement de l'instant de défaut. Dans ce modèle, au chapitre 2, nous avons étudié d'une part la régularité de la densité de la loi de l'instant de défaut. D'autre part, nous avons étudié la loi conjointe de l'instant de défaut, de l'overshoot et de l'undershoot. Au chapitre 3, nous avons obtenu une équation à valeurs mesures dont le quadriplet formé par la variable aléatoire X,, le su premum du processus X à l'instant t, le supremum du processus X au dernier instant de saut avant l'instant t et le dernier instant de saut à l'instant t est solution au seris faible, puis une équation dont ce quadriplet est une solution forte. Dans un second temps, au chapitre 4, nous avons supposé que des investisseurs souhaitant détenir une part de cette entreprise ne disposent pas de l'information complète. Ils n'observent pas la valeur des actifs de la firme V, mais sa valeur bruitée. Leur information est modélisée par la filtration Ç = (Ç,, t 2: 0) engendrée par cette observation. Dans ce modèle, nous avons montré que la loi conditionnelle de l'instant de défaut sachant la tribu Ç, admet une densité par rapport à la mesure de Lebesgue et obtenu une équation de Volttera dont cette densité est solution. Cette connaissance permet aux investisseurs de prévoir au vu de leur information, quand est-ce que l'instant de défaut va intervenir après l'instant t. Nous avons complété ce travail par des simulations numériques. / In this Ph.D thesis, we consider a jump-diffusion process which the diffusion part is a drifted Brownian motion and the jump part is a compound Poisson process. We assume that a firm value is modelling by a stochastic process V = V0 exp-X. This firm goes to default whenever its value is below a specified tlrreshold b which is exo genously determined. For x = ln(Vo) - ln(b) > 0, the default time is of the form Tx = inf{t 2:0: X, 2: x}. First, we suppose that agents observe perfectly the firm value. In this mode, we sho wed in chapter 2 that the density of the default time is continuons, then study the joint law of the default time, overshoot an undershoot. We obtained in chapter 3 a valued measure differentia equation which the solution is the quadruplet formed by the random variable X,, the running supremum x; of X at time t, the supremum of X at the last jump time before t and the last jump time before t. Secondly, we assume that investors wishing detain a part of the firm can not observe the firm value. They observe a noisy value of the firm and their information is madel ling by the filtration g = (9,,t 2: 0) generated by their observation. In this mode, we have shown that the conditional density of Tx with respect to Ç has a density which is solution of one stochastic integral-differentia equation The knowledge of this density allows investors to predict the default time after time t. This second part is the chapter 4.
|
Page generated in 0.088 seconds