Spelling suggestions: "subject:"constrain"" "subject:"3dstrain""
1491 |
Solution-Processed Graphene for Flexible Printed Biosensors and ElectromyographyTesky, Allyson R. 05 1900 (has links)
Inkjet-printing of graphene is a desirable additive-manufacturing process for rapid-prototyping and centers around the readily scalable process of liquid-phase exfoliation of graphene. Unfortunately, most common solvents for this process such as N-methyl-2-pyrrolidone (NMP) or cyclohexanone/terpineol (C/T) are toxic. Dihydrolevoglucosenone, commonly known as Cyrene, is a renewable and fully biodegradable non-toxic solvent that represents an ideal alternative. Here, we demonstrate the potential of Cyrene-based graphene inks through few-layer inkjet printing on flexible substrates to produce non-toxic conductors a strain-mediated mechanism for biosensing. These strain-sensors were used to detect bodily motion for wearable electronics, where gel-based, wet-electrodes are a common feature within the broader class of sensors used in electromyography (EMG). The environmentally friendly and non-toxic nature of this solvent has promise not only for wearables, but also in agricultural and food industries where sensors need to be safe for potential contacts made to food supplies. Moreover, it has demonstrated superior suspension of graphene flakes compared to traditional solvents.
|
1492 |
Condition assessment of railway bridge structure : based on proof load test and finite element analysisAl Zouabi, Mohammad Ghiath January 2024 (has links)
The process for assessing the condition of a composite bridge via strain measurements is detailed in this thesis. Field measurements were utilized to conduct the assessment of a bridge located in the northern region of Sweden. The bridge is constructed with a trough and two beams, and its structure is supported by two retaining walls that enclose a 21.8-meter-long compartment. A one hundred and sixty kilo Newton vehicle cargo of trains passes the bridge. The objective is to measure and assess the bridge in the event that the axial load increases to 300 kN. Testing commenced in February of 2023. The measurement of strain was conducted using test cases. To determine the bridge's behaviour, modelling was conducted in accordance with the measurements. For this thesis, a set of models with finite elements was established and analysed. Models are made using data taken in the field and the properties of the materials. With these models as guides, he was able to make a model that is 97% accurate of how the bridge really is. The retaining walls were left out of the models because measurements showed that they were very rigid. The influence line was also created to find the positions of the axial loads, resulting in the largest value of bending moment. After that, those positions were used for a new model with 350 KN of axial loads. Next, the stresses resulting from the actual axial loads are computed and validated using Eurocode criteria. The last step was to compare the results of the calculation with the results of the finite element analysis. The modelling results showed values that were similar to the test results, so these were used to compare the results. The modelling results serve by measuring strain interactions d as an evaluation of the bridge's condition. The assessment shows that the bridge is stronger than when standard methods are used. / Detta examenarbete beskriver i detalj hur töjningsmätningar används för att bedöma en kompositbros tillstånd. En bro i den norra regionen av Sverige bedömdes med hjälp av fältmätningar. Bron är konstruerad med ett tråg och två balkar. Två stödmurar omsluter utrymmet på 21,8 meter. En godsvagn som väger 160 kN går över bron. Målet är att mäta och utvärdera bron i händelse av att den axiella belastningen stiger till 300 kN. Testningen började i februari 2023. Det användes testfall för att mäta töjning. Modellering utfördes i enlighet med mätningarna för att avgöra brons beteende. En uppsättning modeller med ändliga element konstruerades och analyserades för denna avhandling. Data från fältet och materialegenskaper användes för att skapa modellerna. En modell som är 97 % korrekt av brons verkliga form kan skapas med hjälp av dessa modeller som vägledning. Modellerna inkluderade inte stödmurarna eftersom mätningar visade att de var extremt styva. Det största böjningsmomentet uppnåddes genom att använda inflytelselinjen för att hitta axiella belastningspositioner. En ny studie använde dessa positioner för 350 kN axiella belastningar. Nästa steg var att beräkna och verifiera spänningarna från de verkliga axiella belastningarna med hjälp av Eurocode-standarderna. Det sista steget var att göra en jämförelse mellan resultaten från den ändliga elementanalysen och beräkningen. Värden som visades i modellresultaten var liknande de värden som visades i testet, så dessa användes för att jämföra resultaten. Modelleringsresultaten använder töjningsinteraktioner för att bedöma brotillståndet. Undersökningen visar att bron är starkare än med standardmetoder.
|
1493 |
Investigation of a thermomechanical process in a high temperature deformation simulator using an FE software : Using LS-DYNA to create a digital twin of the hot deformation simulator Gleeble-3800 GTC Hydrawedge module.Tregulov, Farhad January 2024 (has links)
Thermomechanical processes such as hot rolling have been used in the industry for a long time to process and shape metals to a desired form with specific properties. However it can be difficult to make changes to the different process parameters. That's where it is beneficial to use a hot deformation simulator such as the Gleeble 3800-GTC. It can be used to test metals in a controlled environment where the deformation, temperature and other parameters are easily changed. When the machine uses a Hydrawedge module, it is able to simulate hot rolling using uniaxial compression at high temperatures. Swerim AB has one such machine and has requested to investigate what occurs inside a specimen during testing in the Gleeble, specifically inside two low-alloyed steels with a hardness between 400 and 500 HV. Such tests were replicated using LS-DYNA, an FE software. The goal was to acquire true stress-strain graphs that showed similar behaviour to the data from the Gleeble and plots of the effective plastic strain which could be correlated to the grain structure pattern inside the deformed cylinders. An FE-model was created which replicates the procedure. The model was verified through numerous steps. An initial mesh verification was done where the simulation time took at least 5 hours and at most 86 hours. Using a technique called mass scaling, the elements inside the model were manipulated using additional mass to increase their time step and reduce the computational time. A verification of the mass scaling was done where the computational time was weighed off against accuracy. Afterwards the friction had to be verified where it was found that the Gleeble test specimens were deformed more than necessary which was taken into account and the models were adjusted for friction verification. After all was said and done, the model had a reasonable friction coefficient with an optimal mesh and mass scaling configuration. The resulting model simulated a test of 0.5 seconds in 15 minutes and only costing at most 10 MPa in accuracy when experimental results have maximum values between 110 to 220 MPa depending on the scenario. This equals an approximate error of around 5-10%. When investigating the grain structure after 100 seconds of relaxation, the computational time amounted to 52 hours but could be reduced to 12 hours when simulating 30 seconds as there was no change in the effective plastic strain after that time. The final model has a high enough accuracy which, when combined with the Gleeble, is able to confirm material models and describe what occurs in the material during conditions akin to hot rolling.
|
1494 |
The small-deformation limit in elasticity and elastoplasticity in the presence of cracksGussmann, Pascal 25 June 2018 (has links)
Der Grenzwert kleiner Deformationen in Anwesenheit eines gegebenen Risses wird in drei verschiedenen kontinuumsmechanischen Modellen betrachtet. Erstens wird für rein statische Elastizität mit finiter Spannung im Grenzwert kleiner Belastung bewiesen, dass die Nebenbedingung globaler Injektivität im Sinne der Gamma-Konvergenz eine lokale Nichtdurchdringungsbedingung auf dem Riss ergibt. Zweitens wird Deformationsplastizität mit finiten Spannungen und multiplikativer Zerlegung des Spannungstensors behandelt und die Gamma-Konvergenz zu linearisierter Deformationsplastizität mit Rissbedingungen gezeigt. Drittens wird die ratenunabhängige Evolution der Elastoplastizität betrachtet mit einer allgemeineren Klasse globaler Injektivitätsbedingungen für den finiten Fall. Hierbei wird einerseits die evolutionäre Gamma-Konvergenz unter Vernachlässigung der Nebenbedinung gezeigt, andererseits eine Vermutung aufgestellt, unter deren Voraussetzung die evolutionäre Gamma-Konvergenz auch mit Rissbedingungen gilt. / The small-deformation limit in presence of a given crack is considered in three distinct continuummechanical models. First, a purely static finite-strain elasticity model is considered in the limit of small loading, where the constraint of global injectivity is shown to converge in the sense of Gamma-convergence to a local constraint of non-interpenetration along the crack. Second, finitestrain deformation plasticity based on the multiplicative decomposition of the strain tensor is shown to Gamma-converge to linearized deformation elastoplasticity with crack conditions. Third, the rate-independent evolution of elastoplasticity is considered with a generalized class of global injectivity constraints for the finite-strain model. On the one hand, neglecting the constraints the evolutionary Gamma-converge to linearized elastoplasticity is proven. On the other hand, a conjecture is made, subject to which the evolutionary Gamma-convergence with constraints still holds.
|
1495 |
Adressing Integration Obstacles for Carbon Nanotube-based Miniaturized Electro-mechanical TransducersBöttger, Simon 18 February 2025 (has links)
Emerging electronic system architectures follow increasingly 3D integration concepts driven by further miniaturization, increase of performance, decrease of energy consumption, and implementation of further functionality. Following this More than Moore path, trendsetting on-top-of-complementary metal-oxide semiconductor (CMOS) technologies for nanodevices find increasing attention in semiconductor development roadmaps. Nanodevices implemented through nanomaterials such as semiconducting single-walled carbon nanotubes (CNTs) with their proceeded technology readiness level, give additional degree of freedom to upgrade such systems as substrate-independent and post-CMOS compatible technologies are already available. Although, they inherently feature extraordinary properties several technological obstacles are not yet addressed.
Pronounced obstacles like inadequate CNT assembly structure, interfering parasitic effects related to CNT/substrate interfaces, as well as insufficient pre-stress state of the CNTs are tackled within this thesis aiming on CNT-based piezoresistive sensors. Following a holistic approach, the activities range from the implementation of chromatography-based length separation of CNTs over wafer-level micro- and nanotechnological process-, module-, and equipment developments towards comprehensive and statistical data analysis. It could be shown, that short CNTs adversely affect integrability and reproducibility, underlined by a 25% decline of the fabrication yield of CNT based field-effect transistors (CNT-FETs) with respect to long CNTs. It furthermore turns out, that performance of CNT-FETs built from long CNTs show significant benefits in terms of subthreshold swing (up to 163%) and hole mobility (up to 300%), which could be explained by suppressed CNT chain formation within the transistor channel.
Furthermore, short-channel piezoresistive CNT sensors in FET configuration show a significant drain-induced barrier thinning characterized by a degradation of the subthreshold swing and a threshold voltage roll-off of (−1370± 130) mV · V−1 upon applied drain-source voltage. This device-specific effect enhances the intrinsic strain-sensitivity of the sensor of up to 150% with a maximum measured gauge factor of 800. In this regard, supporting transport simulations underline the importance of the Schottky barrier at the source/CNT junction as the dominating junction for tunneling currents responsible for the gained enhancement.
Finally, a technology module was developed, which further reduce parasitic effects such as stick-slip and slack behavior of device-integrated CNTs upon mechanical load by incorporation of layout-determined pre-strain. Utilizing a post-CMOS compatible sacrificial layer approach combined with residual stressed membranes, the integrated CNTs were strained by almost 1% in axial direction. This consequences in an reduced sensor offset determined by a reduction of the detection limit to 30 MPa. In addition this modul was successfully implemented by heterogeneous on-top-of application-specific integrated circuit technologies where CNT-FETs were characterized over an embedded
complementary metal-oxide semiconductor multiplexer circuit.
Hence, this work displays novelty and provides significant contributions on heterointegrated system-on-chip applications of upcoming nanomaterial-based devices for environmental sensing, condition monitoring, photonic integrated circuits, up to promising architectures for neuromorphic computing and the quantum technology science and application.
|
1496 |
The effect of subsurface mass loss on the response of shallow foundationsChong, Song Hun 07 January 2016 (has links)
Subsurface volume loss takes place in many geotechnical situations, and it is inherently accompanied by complex stress and displacement fields that may influence the performance of engineered geosystems. This research is a deformation-centered analysis, it depends on soil compressibility and it is implemented using finite elements.
Soil stiffness plays a central role in predicting ground deformation. First, an enhanced Terzaghi’s soil compressibility model is proposed to satisfy asymptotic conditions at low and high stress levels with a small number of physically meaningful parameters. Then, the difference between small and large strain stiffness is explored using published small and large-strain stress-strain data. Typically, emphasis is placed on the laboratory-measured stiffness or compressibility; however, there are pronounced differences between laboratory measurements and field values, in part due to seating effects that prevail in small-thickness oedometer specimens. Many geosystems are subjected to repetitive loads; volumetric strains induced by drained repetitive ko-loads are experimentally investigated to identify shakedown and associated terminal density.
The finite element numerical simulation environment is used to explore the effect of localized subsurface mass loss on free-surface deformation and shallow foundations settlement and bearing capacity. A stress relaxation module is developed to reproduce the change in stress associated to dissolution features and soft zone formation. The comprehensive parametric study is summarized in terms of dimensionless ratios that can be readily used for engineering applications.
Field settlement data gathered at the Savannah River Site SRS are back-analyzed to compare measured values with predictions based on in situ shear wave velocity and strain-dependent stiffness reduction. The calibrated model is used to estimate additional settlements due to the pre-existing cavities, new cavities, and potential seismic events during the design life of the facility.
|
1497 |
Hardiness and tenure in shiftwork as predictive variables for coping with shiftworkPotgieter, Tracy Elizabeth 01 1900 (has links)
The aim of this study was to establish whether hardiness and tenure are predictive
variables for coping with shiftwork.
The extent of shiftwork and shiftwork research has expanded internationally in the
past decade. It has been established that shiftwork has a negative effect on
shiftworkers who are predisposed to certain strain symptoms such as inefficiency,
impaired health and domestic problems. However, certain inter individual
differences do moderate coping with shiftwork through a process of cognitive and
behavioural protective acts which modify the stressful situation and neutralise the
experience of problems.
Using questionnaires (Biographical, Hardiness Index and Coping with Shiftwork
Questionnaire), a sample group of 75 cases was analysed. A 95 percent
confidence level was used throughout with a multiple stepwise regression analysis
computed. The significant r2 value = 0.18. Focus group discussions were
conducted to· add qualitative information to the areas of social, domestic, work
and sleep problems as well as coping strategies.
The predictive variables were regressed onto a number of criterion variables,
namely coping with shiftwork, work, sleep, domestic and social problems, as well
as engagement and diseng.agement strategies including both strategies in all four
domains (work, sleep, social and domestic).
It was found that hardiness and tenure are not predictive variables for coping with
shiftwork. However, hardiness, commitment and challenge are predictors for
disengagement strategies so that hardy, challenged and committed individua1s will
use less disengagement coping strategies and more specifically, use less domestic
disengagement coping strategies.
The research established hardiness as an additional personality variable linked to
a primary scale of coping with shiftwork, namely disengagement. The longer term
adjustment of shiftworkers (through tenure) was not established.
Recommendations were made for targeted shiftwork coping programmes and more
extensive classical shiftwork research in South Africa / Economics and Management Sciences / M.A. (Industrial Psychology)
|
1498 |
Fragmentation and reaction of structural energetic materialsAydelotte, Brady Barrus 13 January 2014 (has links)
Structural energetic materials (SEM) are a class of multicomponent materials which may react under various conditions to release energy. Fragmentation and impact induced reaction are not well characterized phenomena in SEMs. The structural energetic systems under consideration here combine aluminum with one or more of the following: nickel, tantalum, tungsten, and/or zirconium. These metal+Al systems were formulated with powders and consolidated using explosive compaction or the gas dynamic cold spray process.
Fragment size distributions of the indicated metal+Al systems were explored; mean fragment sizes were found to be smaller than those from homogeneous ductile metals at comparable strain rates, posing a reduced risk to innocent bystanders if used in munitions. Extensive interface failure was observed which suggested that the interface density of these systems was an important parameter in their fragmentation. Existing fragmentation models for ductile materials did not adequately capture the fragmentation behavior of the structural energetic materials in question. A correction was suggested to modify an existing fragmentation model to expand its applicability to structural energetic materials. Fragment data demonstrated that the structural energetic materials in question provided a significant mass of combustible fragments. The potential combustion enthalpy of these fragments was shown to be significant.
Impact experiments were utilized to study impact induced reaction in the indicated metal+Al SEM systems. Mesoscale parametric simulations of these experiments indicated that the topology of the microstructure constituents, particularly the stronger phase(s), played a significant role in regulating impact induced reactions. Materials in which the hard phase was topologically connected were more likely to react at a lower impact velocity due to plastic deformation induced temperature increases. When a compliant matrix surrounded stronger, simply connected particles, the compliant matrix accommodated nearly all of the deformation, which limited plastic deformation induced temperature increases in the stronger particles and reduced reactivity. Decreased difference between the strength of the constituents in the material also increased reactivity. The results presented here demonstrate that the fragmentation and reaction of metal+Al structural energetic materials are influenced by composition, microstructure topology, interface density, and constituent mechanical properties.
|
1499 |
The sedimentary and geomorphic signature of subglacial processes in the Tarfala Valley, northern Sweden, and the links between subglacial soft-bed deformation, glacier flow dynamics, and landform generationPomeroy, Joseph Anthony January 2013 (has links)
The aim of this study is to understand the extent, depth, magnitude and significance of subglacial sediment deformation. It will examine the role of this deformation in controlling glacier dynamics and landform generation in glaciers in general, and polythermal glaciers in particular. A detailed multi-dimensional approach is used to study recently exposed glacigenic sediments on the forefields of three polyglaciers in the Tarfala Valley, northern Sweden. Overridden fluted moraines and diamicton plains occur in each forefield. These palimpsest landforms consist of multiple subglacial traction tills. Flutes have quasi-regular geometry and about half of those studied have no initiating boulder. It is suggested here that flute formation by forced-mechanisms was superimposed on flute formation related to a topographically-induced flow instability. In each forefield the depth of the deforming-bed averaged between 0.2m and 0.6m thickness. Detailed clast fabric data suggest the diamicton plain is composed of thin layers of traction tills that accreted over time as the zone of deformation moved upwards. Laboratory shear box tests show that subglacial deformation required elevated pore-water pressures, which suggests deforming-bed conditions and flute formation were restricted to the temperate zones of polythermal glaciers. Magnetic fabrics suggest strain magnitudes were moderate (≤10), rather than the very high strain magnitudes (>10²) required by the deforming-bed model. The application of the micro-structural mapping technique demonstrates that subglacial deformation was multi-phase, heterogeneous, and partitioned into the softer and more easily deformed parts of the matrix. Consequently, deformation is controlled by variations in sediment granulometry and pore-water pressure, and is likely to have been spatially and temporally variable, a finding that supports the ice-bed mosaic model. The strain magnitudes and deforming-bed thickness suggest that soft-bed deformation did not exert a major control on glacier dynamics during the Little Ice Age advance.
|
1500 |
Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampersGur, S., Mishra, S. K., Frantziskonis, G. N. 31 May 2015 (has links)
A study on shape memory alloy materials as vibration dampers is reported. An important component is the strain rate-dependent and temperature-dependent constitutive behavior of shape memory alloy, which can significantly change its energy dissipation capacity under cyclic loading. The constitutive model used accounts for the thermo-mechanical strain rate-dependent behavior and phase transformation. With increasing structural flexibility, the hysteretic loop size of shape memory alloy dampers increases due to increasing strain rates, thus further decreasing the response of the structure to cyclic excitation. The structure examined is a beam, and its behavior with shape memory alloy dampers is compared to the same beam with conventional dampers. Parametric studies reveal the superior performance of the shape memory alloy over the conventional dampers even at the resonance frequency of the beam-damper system. An important behavior of the shape memory alloy dampers is discovered, in that they absorb energy from the fundamental and higher vibration modes. In contrast, the conventional dampers transfer energy to higher modes. For the same beam control, the stiffness requirement for the shape memory alloy dampers is significantly less than that of the conventional dampers. Response quantities of interest show improved performance of the shape memory alloy over the conventional dampers under varying excitation intensity, frequency, temperature, and strain rate.
|
Page generated in 0.0815 seconds