• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 95
  • 95
  • 95
  • 95
  • 48
  • 31
  • 20
  • 19
  • 18
  • 18
  • 14
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

ID4 and FKBP52 Interaction Regulates Androgen Receptor Activity: Mechanistic Insight

Joshi, Jugal Bharat 16 December 2016 (has links)
The inhibitor of DNA binding protein 4 (ID4) is a dominant negative regulator of basic helix loop helix (bHLH) family of transcription factors.1 Recently, Patel et al., demonstrated that inhibitor of differentiation 4 (ID4) acts as a tumor suppressor and its loss, frequently observed in prostate cancer, promotes castration-resistant prostate cancer (CRPC) through constitutive androgen receptor (AR) activation.2 However, the mechanism by which loss of ID4 promotes constitutively active AR signaling in the CRPC conditions is unknown. The rationale of the present study was to unravel the underlying molecular mechanisms through which loss of ID4 potentiates AR signaling in this setting. Initially, chromatin immunoprecipitation (ChIP) assay results demonstrated a significant increase in binding of AR to its respective response elements on PSA, FKBP51, TMPRSS2, and ETV1 promoters in L(-)ID4 cells, further implicating constitutive AR activity. Among the notable findings, proteomic profiling between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(-)ID4) revealed elevated protein levels of Heat shock protein 27 (Hsp27) and the 52-kDa FK506-binding protein (FKBP52), suggesting a role for these AR-associated co-chaperones in promoting constitutively active AR signaling in L(-)ID4 cells. Interestingly, protein interaction studies further confirmed a direct interaction between ID4 and FKBP52 in vitro but not with AR. Recent evidences suggest that FKBP52 is a positive regulator of AR signaling in cellular and whole animal models.3-6 Thus, we hypothesized that ID4 acts as a tumor suppressor by selectively regulating AR activity through interaction with FKBP52. To address the underlying mechanism, we blocked the FKBP52-AR signaling using a specific inhibitory compound known as MJC13.4, 6-7 The results demonstrated that MJC13 effectively inhibited AR-dependent expression and activity in a dose-dependent manner. In addition, xenograft studies further confirmed that inhibiting FKBP52-regulated AR activity via MJC13 significantly attenuated the growth of subcutaneous L(-)ID4 xenografts in vivo. Collectively, our results suggested that ID4 selectively regulates AR activity through direct interaction with FKBP52 in vitro, and, its loss promotes CRPC through FKBP52-mediated AR signaling. Increased AR signaling along with a subsequent decrease in ID4 expression levels in prostate cancer strongly supports this model.
32

Elucidating the Role of Endogenous Electric Fields in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System

Baer, Matthew L 01 January 2015 (has links)
Endogenous bioelectric fields guide morphogenesis during embryonic development and regeneration by directly regulating the cellular functions responsible for these phenomena. Although this role has been extensively explored in many peripheral tissues, the ability of electric fields to regulate wound repair and stimulate regeneration in the mammalian central nervous system (CNS) has not been convincingly established. This dissertation explores the role of electric fields in regulating the injury response and controlling the regenerative potential of the mammalian CNS. We place particular emphasis on their influence on astrocytes, as specific differences in their injury-induced behaviors have been associated with differences in the regenerative potential demonstrated between mammalian and non-mammalian vertebrates. For example, astrocytes in both mammalian and non- mammalian vertebrates begin migrating towards the lesion within hours and begin to proliferate after an initial delay of two days; subsequently, astrocytes in non-mammalian vertebrates support neurogenesis and assume a bipolar radial glia-like morphology that guides regenerating axons, whereas astrocytes in mammals do not demonstrate robust neurogenesis and undergo a hypertrophic response that inhibits axon sprouting. To test whether injury-induced electric fields drive the astrocytic response to injury, we exposed separate populations of purified astrocytes from the rat cortex and cerebellum to electric field intensities associated with intact and injured mammalian tissues, as well as to those electric field intensities measured in regenerating non-mammalian vertebrate tissues. Upon exposure to electric field intensities associated with uninjured tissue, astrocytes showed little change in their cellular behavior. However, cortical astrocytes responded to electric field intensities associated with injured mammalian tissues by demonstrating dramatic increases in migration and proliferation, behaviors that are associated with their formation of a glial scar in vivo; in contrast, cerebellar astrocytes, which do not organize into a demarcated glial scar, did not respond to these electric fields. At electric field intensities associated with regenerating tissues, both cerebellar and cortical astrocytes demonstrated robust and sustained responses that included morphological changes consistent with a regenerative phenotype. These results support the hypothesis that physiologic electric fields drive the astrocytic response to injury, and that elevated electric fields may induce a more regenerative response among mammalian astrocytes.
33

Role of Vav2 in Podocyte Inflammasome Activation and Glomerular Injury During Hyperhomocysteinemia

Conley, Sabena 01 January 2016 (has links)
Hyperhomocysteinemia (hHcys) is a widely known pathogenic factor in the progression of end-stage renal disease (ESRD) and it is also associated with an increased risk for injurious cardiovascular pathologies during ESRD. HHcys is linked to the formation and activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, characterized as a critical early mechanism initiating the inflammatory response. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) mediate the activation of the NLRP3 inflammasome in podocytes in response to elevated levels of homocysteine (Hcys) in vitro and in vivo. However, it remains unknown how NLRP3 inflammasome activation is triggered by NOX. The aim of the present study sought to determine the signaling cascade that triggers glomerular injury and sclerosis during hHcys mediated by Vav2, a guanine nucleotide exchange factor (GNEF). Using both genetic and pharmacological interventions of Vav2, we first tested whether this GNEF is involved in hHcys-induced NLRP3 inflammasome activation in podocytes by its role in activation of the Rac-1-NOX complex. Further, we explored whether pharmacological targeting of Vav2 activation may regulate NLRP3 inflammasome signaling pathway during hHcys-induced glomerular injury. We found that mice with hHcys (on the FF diet) or oncoVav2 (a constitutively active form of Vav2) transfection in the kidney exhibited increased colocalization of NLRP3 with apoptosis-associated speck-like protein (ASC) or caspase-1 and elevated IL-1β levels in glomeruli, indicating the formation and activation of the NLRP3 inflammasome. This glomerular NLRP3 inflammasome activation was accompanied by podocyte dysfunction and glomerular injury, even sclerosis. Local transfection of Vav2 shRNA plasmids significantly attenuated hHcys-induced NLRP3 inflammasome activation, podocyte injury, and glomerular sclerosis. In cultured podocytes, Hcys treatment and oncoVav2 transfection increased NLRP3 inflammasome formation and activation. This NLRP3 activation was inhibited by Vav2 shRNA, associated with reduction of Rac-1 activity and ROS production. Administration of NSC23766, a Rac-1 inhibitor substantially attenuated inflammasome formation, desmin expression and decreased podocin expression in glomeruli of hHcys mice. These results suggest that elevated Hcys levels activate Vav2 and thereby increase NOX activity, leading to ROS production. ROS trigger NLRP3 inflammasome activation, podocyte dysfunction and glomerular injury. Therefore, the present study defines a novel mechanism underlying hHcys-induced NLRP3 inflammasome activation and its progression to ESRD.
34

Novel Insight into the Autophagy-Independent Functions of Beclin 1 in Tumor Growth

Matthew-Onabanjo, Asia N. 27 June 2019 (has links)
BECN1 is a haploinsufficient tumor suppressor gene that is monoallelically deleted or epigenetically silenced in many human cancers. In breast cancer, 40% of tumors exhibit monoallelic deletion of Beclin 1. Additionally, low Beclin 1 mRNA expression is observed in aggressive breast cancer subtypes and reduced expression is an independent predictor of overall patient survival. The role of Beclin 1 in cancer has almost exclusively been attributed to its function in autophagy. However, our lab demonstrated an alternative role for Beclin 1 in the regulation of growth factor receptor signaling that could contribute to cancer. The goal of my thesis project was to investigate the molecular basis by which Beclin 1 regulates breast tumor growth and progression in vivo. Using in vivo models, I discovered that Beclin 1 promotes endosomal recruitment of hepatocyte growth factor tyrosine kinase substrate (HRS), which is necessary for sorting receptors to intraluminal vesicles for signal silencing and degradation. Beclin 1-dependent recruitment of HRS results in the autophagy-independent regulation of endocytic trafficking and degradation of the epidermal growth factor (EGFR) and transferrin (TFR1) receptors. When Beclin 1 expression is low, endosomal HRS recruitment is reduced and receptor function is sustained to drive tumor proliferation. An autophagy-independent role for Beclin 1 in regulating tumor metabolism was also observed. Collectively, my results demonstrate a novel role for Beclin 1 in impeding tumor growth by coordinating the regulation of growth promoting receptors. These data provide an explanation for how low levels of Beclin 1 facilitate tumor proliferation and contribute to poor cancer outcomes, independently of autophagy.
35

Differential Roles of Mammalian Target of Rapamycin Complexes 1 and 2 in Migration of Prostate Cancer Cells

Venugopal, Smrruthi Vaidegi 20 May 2019 (has links)
In this study, we investigated differential activation and the role of two mTOR complexes in cell migration of prostate cancer cells. Specific knock-down of endogenous RAPTOR and RICTOR by siRNA resulted in decreased cell migration in LNCaP, DU145, and PC3 cells indicating that both mTORC1 and mTORC2 are required for cell migration. EGF treatment induced the activation of both mTORC1 and mTORC2 as determined by complex-specific phosphorylation of mTOR protein. Specific knock-down or inhibition of Rac1 activity in PC3 cells blocked EGF-induced activation of mTORC2, but had no effect on mTORC1 activation. Furthermore, the over-expression of constitutively active Rac1 (Rac1Q61L) resulted in significant increase in cell migration and activation of mTORC2 in PC3 cells, but had no effect on mTORC1 activation. Constitutively active Rac1 (Rac1Q61L) in PC3 cells was localized in the plasma membrane and was found to be in a protein complex which contained mTOR and RICTOR proteins, but not RAPTOR. In conclusion, we suggested that EGF-induced activation of Rac1 causes the phosphorylation/activation of mTORC2 via RICTOR, specific regulator of mTORC2 activation in numerous cancer cells. The major role played by mTOR in a wide array of cancers has in the recent decades led to the development of numerous mTOR inhibitors. One of the drawback of these first generation mTOR inhibitors are that m TORC1 activity is inhibited but effect on mTORC2 activity require high dosages and prolonged exposure in different cancer cell types including HeLa, PC3, LNCaP, and A549. High dosage of rapamycin and its associated rapalogs required for mTORC2 inhibition is clinically unsuitable. Studies have shown that the dual mTORC1/C2 inhibitors trigger feedback loops causing metastasis and affect the cell viability of normal tissues in vitro and in vivo. There is a need for specific mTORC1 and mTORC2 inhibitor, which overcome the disadvantages of the previously developed mTOR inhibitors. The Rac1-RICTOR axis suggested in this study could be used as a potential target for the development of mTORC2 inhibitor and lead to a potential therapeutic treatment for aggressive prostate cancer.
36

Establishment of CRISPR/Cas-9 Aided Knockout of the ZIC2 Gene in the African-American Prostate Cancer Cell Line E006AA-PR

Moore, Janelle 20 May 2019 (has links)
The largest U.S. cancer health disparity exists in prostate cancer, with African American men having the highest incidence and mortality rates. The present study evaluated the effects of ZIC2 and the underlying mechanisms in the E006 parental African-American cell line that produces tumors at accelerated growth rates because of the increase of ZIC2 genes in African-American males. We analyzed the experimental research that the overexpression of ZIC2 contributes to progression of prostate cancer. E006AA cells with overexpressed or suppressed ZIC2 were analyzed to determine phenotypic differences, PCR, cell proliferation and immunoblot assays. The expression levels of ZIC2 were analyzed by CRISPR-Cas9, Western blot and proliferation growth curves. We discovered using these experimental techniques to knockout ZIC2, reduced cell proliferation occurred. This research investigated the role of ZIC2 in prostate cancer progression and the effects of the loss or gain of function of ZIC2 by using CRISPR-Cas 9 genome editing technology.
37

An Analysis of the Interaction of Methylphenidate and Nicotine in Adolescent Rats: Effects on BDNF

Freeman, Elizabeth D 01 August 2015 (has links)
This investigation was an analysis of the interaction of adolescent exposure to methylphenidate (MPH; trade name: Ritalin) on nicotine sensitization and conditioned place preference (CPP) in a rodent model and underlying mechanisms of this effect. Animals were treated IP with 1 mg/kg MPH or saline using a ―school day‖ regimen of five days on, two days off, from postnatal day (P) 28-50. During the final two weeks of MPH treatment, animals were either behaviorally sensitized to nicotine (0.5 mg/kg free base) or saline for 10 days, or conditioned to nicotine or saline using the CPP behavioral paradigm. In addition, three days after behavioral sensitization was complete, animals were analyzed for stress behavior using the forced swim stress behavioral test. In addition, 24 hours after post-test conditioning animals were analyzed for the effect of a clinically relevant dose of pre-exposed MPH (1mg/kg) and nicotine treatment on the expression of BDNF in the nucleus accumbens and dorsal hippocampus. Behavioral results revealed that adolescent pre-exposure to MPH blunted nicotine behavioral sensitization in both male and female rats during the first week of testing. However, MPH enhanced nicotine CPP in both adolescent male and female rats. Interesting, animals administered MPH demonstrated a significantly decreased latency to immobility in the forced swim stress behavioral test. In addition, pre-exposure to a 1 mg/kg dose of MPH appears to have sensitized the BDNF response to nicotine in females as compared to all other groups.
38

Denoising Tandem Mass Spectrometry Data

Offei, Felix 01 May 2017 (has links)
Protein identification using tandem mass spectrometry (MS/MS) has proven to be an effective way to identify proteins in a biological sample. An observed spectrum is constructed from the data produced by the tandem mass spectrometer. A protein can be identified if the observed spectrum aligns with the theoretical spectrum. However, data generated by the tandem mass spectrometer are affected by errors thus making protein identification challenging in the field of proteomics. Some of these errors include wrong calibration of the instrument, instrument distortion and noise. In this thesis, we present a pre-processing method, which focuses on the removal of noisy data with the hope of aiding in better identification of proteins. We employ the method of binning to reduce the number of noise peaks in the data without sacrificing the alignment of the observed spectrum with the theoretical spectrum. In some cases, the alignment of the two spectra improved.
39

TESTING VERT™ ACCELEROMETER TO IDENTIFY VALIDITY AND RELIABILITY WHEN COMPARED TO SWITCH MAT

McDonald, Tara 01 December 2017 (has links)
This present study was intended to identify the reliability and validity of the Vert™ device when compared to a Switch mat. Vert is a wireless device intended to measure jump count and jump height through an application on a smartphone or tablet and the Switch mat provides jump height using wireless sensors. Jump height is an important factor in many sports such as volleyball and basketball and it is important to have devices that coaches and trainers can use for testing that they can rely on. If this device is found to be valid and reliable, coaches and trainers could potentially use it in more practical settings such as practice and games due to the portability and small size. This study consisted of 6 subjects who volunteered. The switch mat was connected to the device to display the jump height immediately after the jump. The Vert sensor was clipped onto the subject’s hip near the center of mass and the jump count and height were then displayed on an app. The subjects completed a series of warm-ups followed by 3 sets of 5 repetition countermovement jumps while using both devices to collect the data. The total 15 jump heights from these 3 sets of 5 were then analyzed using Pearson correlation analysis as well as a paired sample T-test. The jump height recorded from the Vert was consistently about 10 cm off from the jump height of the switch mat, which for a volleyball player, could be the difference between blocking and missing the ball. The results of this study showed that the Vert device is reliable but not practically valid. If technical improvements were made to the device to correct the height components the device could potentially be used in place of a force plate or switch mat when conducting athlete testing but the device is not currently valid for practical use.
40

CHRONIC LOW INTENSITY CONTINUOUS AND INTERVAL TRAINING PREVENT HEART FAILURE-RELATED CORONARY ARTERY STIFFNESS

Ouyang, An 01 January 2019 (has links)
Heart failure (HF) induced by aortic pressure over-load is associated with increased coronary artery stiffness. Perivascular adipose tissue (PVAT) and advanced glycation end products (AGE) both promote arterial stiffness. However, the mechanisms by which coronary PVAT promotes arterial stiffness and the efficacy of exercise to prevent coronary stiffness are unknown. The present study hypothesized both chronic continuous and interval exercise training would prevent coronary artery stiffness associated with inhibition of PVAT secreted AGE. Yucatan mininature swine were divided into four groups: control-sedentary (CON), aortic-banded sedentary heart failure (HF), aortic-banded HF continuous exercise trained (HF+CONT), and aortic-banded HF interval exercise trained (HF+IT). Coronary artery stiffness was assessed by ex vivo mechanical testing and coronary artery elastin, collagen and AGE-related proteins were assessed by immunohistochemistry. HF promoted coronary artery stiffness with reduced elastin content and greater AGE accumulation which was prevented by chronic continuous and interval exercise training. HF PVAT secreted higher AGE compared with CON and was prevented in the HF+CONT and HF+IT groups. Young healthy mouse aortas cultured in HF PVAT conditioned media had increased stiffness, lower elastin content and AGE accumulation compared with CON, which was prevented by PVAT from the HF+CONT and HF+IT groups. HF coronary PVAT secreted greater interleukin-6 (IL-6) and IL-8 compared to CON which was prevented by both continuous and interval exercise training regimens. We conclude chronic continuous and interval exercise is a potential therapeutic strategy to prevent coronary artery stiffness via inhibition of PVAT-derived AGE secretion in a pre-clinical mini-swine model of pressure overload-induced HF.

Page generated in 0.1197 seconds