Spelling suggestions: "subject:"large deviations"" "subject:"large eviations""
31 |
Potentiels chimiques dans des systèmes stationnaires hors d'équilibre en contact : une approche par les grandes déviations / Chemical potentials in driven steady-state systems in contact : a large deviation approachGuioth, Jules 04 October 2018 (has links)
Cette thèse porte sur la physique statistique des systèmes hors d’équilibre maintenus dans un état stationnaire. Plus spécifiquement, ce travail s’intéresse à des quantités macroscopiques conservées (le volume, la masse, etc.) qui peuvent être échangées entre plusieurs systèmes hors d’équilibre en contact. Cette mise en contact d’un ou plusieurs systèmes est une situation fondamentale en thermodynamique classique des systèmes à l’équilibre, en ce qu’elle permet de définir la notion de paramètre thermodynamique conjugué comme la température, la pression, le potentiel chimique, etc., qui dérivent d’un même potentiel thermodynamique. Dans les systèmes hors d’équilibre stationnaires, l’existence de tels paramètres conjugués dérivant d’un potentiel thermodynamique (énergie libre) demeure une question ouverte. En se focalisant sur la situation du contact entre deux systèmes stochastiques hors d’équilibre quelconques de particules sur réseau dans des états homogènes, nous montrons l’existence d’une fonction de grande déviation attachée aux densités globales des deux systèmes, lorsque la fréquence d’échange de particules entre ces derniers est faible. Cette fonction de grandes déviations hors d'équilibre, analogue de l’énergie libre, vérifie une équation dite de Hamilton-Jacobi. Nous identifions les conditions naturelles pour lesquelles la fonction de grandes déviations est additive, menant ainsi à la définition de potentiels chimiques hors-équilibre. Néanmoins, nous montrons que ceux-ci dépendent de façon générique de la dynamique au contact et ne vérifient donc pas d’équation d’état. En l’absence de bilan détaillé macroscopique, l’équation de Hamilton-Jacobi est beaucoup plus difficile à résoudre. Une analyse perturbative par rapport aux forçages hors-équilibres permet de se convaincre que l’additivité est génériquement brisée dès les premiers ordres de perturbation en l’absence de bilan détaillé. Au-delà de la propriété d’additivité, cette fonction de grandes déviations peut être liée dans un certain nombre de cas au travail exercé par un potentiel extérieur à travers une relation de type second principe de la thermodynamique. Nous discutons également différentes façons d’y avoir accès expérimentalement.Fort de cette analyse théorique générale, nous illustrons celle-ci sur des systèmes stochastiques sur réseau classiques (Zero Range Process et Driven Lattice Gases) ainsi que sur un modèle de transport de masse original, exactement soluble. Nous appliquons également notre analyse sur des systèmes de particules auto-propulsées indépendantes. Dans chaque cas, l’importance du contact est alors pleinement révélée, en accord avec la littérature récente, que ce soit au niveau de la dynamique elle-même ou de la position de ce dernier vis-à-vis des systèmes. / This thesis deals with the statistical physics of out-of-equilibrium systems maintained in a steady state. More specifically, this work focuses on macroscopic conserved quantities (volume, mass, etc.) that can be exchanged between several out-of-equilibrium systems brought into contact. The contact between two systems is a fundamental situation in classical thermodynamics of equilibrium systems, since it allows one to define the notion of intensive thermodynamic parameter such as temperature, pressure, chemical potential, etc., derived from the same thermodynamic potential. For non-equilibrium steady state systems, the general existence of such intensive parameters remains an open issue. By focusing on the contact situation between two out-of-equilibrium stochastic systems on lattice in homogeneous states, we show the existence of a large deviation function attached to the overall densities of both systems, when the frequency of particle exchange between them is low. This large deviations function, analogous to a free energy, satisfies a so-called Hamilton-Jacobi equation. We identify the natural conditions for which the large deviation function is additive, leading to the definition of non-equilibrium chemical potentials. Nevertheless, we show that the latter generically depends on the contact dynamics and therefore do not obey any equation of state. In the absence of a macroscopic detailed balance, the Hamilton-Jacobi equation is much more difficult to solve. A perturbative analysis with respect to the driving forces allows one to show that additivity is generically broken. Beyond this additivity property, this large deviations function can – under certain assumptions – be related to the work applied by an external potential through a generalisation of the second law. We also discuss different ways to get access experimentally to this out-of-equilibrium free energy.Based on this general theoretical analysis, we eventually provide several illustrations on standard stochastic lattice models (Zero Range Process and Driven Lattice gases in particular) as well as a detailed analysis of an original, exactly solvable, mass transport model. Standard models of independent self-propelled particles are also discussed. The importance of the contact is eventually fully revealed, in agreement with recent literature, either in terms of the dynamics at contact itself or because of its position with respect to both systems.
|
32 |
Guessing And Compression : A Large Deviations ApproachHanawal, Manjesh Kumar 02 1900 (has links)
The problem of guessing a random string is studied. It arises in the analysis of the strength of secret-key cryptosystems against guessing attacks. Expected number of guesses, or more generally moments of the number of guesses needed to break the cryptosystem grow exponentially with the length of the string. This thesis studies the rate of exponential growth of these moments using the theory of large deviations.
A closer elation between guessing and compression is first established. For systems with large key rates, it is shown that if the source’s sequence of so-called information spectrum random variables satisfies the large deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel dual of the rate function. This is then used to rederive several prior results. The large deviations approach brings to light the relevance of information spectrum in determining guessing exponents.
For systems with key-rate constraints, bounds are derived on the limiting guessing exponents for general sources. The obtained bounds are shown to be tight for stationary memoryless, Markov, and unifilar sources, thus recovering some known results. The bounds are obtained by establishing a close relationship between error exponents and correct decoding exponents for fixed rate source compression on the one hand and exponents for guessing moments on the other.
|
33 |
Theorems of large deviations for the sums of a random number of independent random variables / Atsitiktinio skaičiaus nepriklausomų dėmenų sumos didžiųjų nuokrypių teoremosKasparavičiūtė, Aurelija 21 January 2014 (has links)
The research object of this thesis is the sum of a random number of summands of independent identically distributed random variables with positive weights. Such sums appear as models, for example, in insurance, finance mathematics. Throughout the thesis, it is assumed that the random number of summands is independent of the summands, the summands satisfy S. N. Bernstein's condition, and the random number of summands together with weights satisfy some compatibility conditions. The aim of this dissertation is a normal approximation to a distribution of the sum of a random number of summands of independent identically distributed random variables with positive weights that takes into consideration large deviations in both the Cramer and the power Linnik zones. / Disertacinio darbo tyrimo objektas yra atsitiktinio dėmenų skaičiaus nepriklausomų vienodai pasiskirsčiusių atsitiktinių dydžių su teigiamais svoriniais koeficientais sumos, kurios kaip modelis sutinkamos, pavyzdžiui, finansų, draudos matematikose. Daromos prielaidos, kad atsitiktinis dėmenų skaičius yra nepriklausomas nuo sumos dėmenų, atsitiktiniai dėmenys tenkina apibendrintą S. N. Bernšteino sąlygą, o atsitiktinis dėmenų skaičius kartu su svoriais tenkina tam tikras suderinamumo sąlygas. Disertacijos tikslas yra standartizuotos (centruotos ir normuotos) minėtos atsitiktinės sumos skirstinio aproksimacija standartiniu normaliuoju dėsniu didžiųjų nuokrypių tiek Kramero, tiek ir laipsninėse Liniko zonose.
|
34 |
Atsitiktinio skaičiaus nepriklausomų dėmenų didžiųjų nuokrypių teoremos / Theorems of large deviations for the sums of a random number of independent random variablesKasparavičiūtė, Aurelija 21 January 2014 (has links)
Disertacinio darbo tyrimo objektas yra atsitiktinio dėmenų skaičiaus nepriklausomų vienodai pasiskirsčiusių atsitiktinių dydžių su teigiamais svoriniais koeficientais sumos, kurios kaip modelis sutinkamos, pavyzdžiui, finansų, draudos matematikose. Daromos prielaidos, kad atsitiktinis dėmenų skaičius yra nepriklausomas nuo sumos dėmenų, atsitiktiniai dėmenys tenkina apibendrintą S. N. Bernšteino sąlygą, o atsitiktinis dėmenų skaičius kartu su svoriais tenkina tam tikras suderinamumo sąlygas. Disertacijos tikslas yra standartizuotos (centruotos ir normuotos) minėtos atsitiktinės sumos skirstinio aproksimacija standartiniu normaliuoju dėsniu didžiųjų nuokrypių tiek Kramero, tiek ir laipsninėse Liniko zonose. / The research object of this thesis is the sum of a random number of summands of independent identically distributed random variables with positive weights. Such sums appear as models, for example, in insurance, finance mathematics. Throughout the thesis, it is assumed that the random number of summands is independent of the summands, the summands satisfy S. N. Bernstein's condition, and the random number of summands together with weights satisfy some compatibility conditions. The aim of this dissertation is a normal approximation to a distribution of the sum of a random number of summands of independent identically distributed random variables with positive weights that takes into consideration large deviations in both the Cramer and the power Linnik zones.
|
35 |
Thermodynamique et fluctuations des petites machines / Thermodynamics and fluctuations of small machinesVroylandt, Hadrien 04 September 2018 (has links)
Les petites machines, comme les moteurs moléculaires ou les particules actives, fonctionnent dans un environnement fortement fluctuant qui affecte leur efficacité ou leur puissance. L'objectif de cette thèse est de décrire les petites machines à l'aide de la thermodynamique stochastique et de la théorie des grandes déviations. En reliant localement puis globalement les courants aux forces thermodynamiques, on introduit une matrice de conductance hors d'équilibre, qui généralise la matrice d'Onsager pour un système stationnaire hors d'équilibre. Cela permet de majorer l'efficacité des machines par une fonction universelle qui ne dépend que du degré de couplage entre les courants d'entrée et de sortie. On obtient aussi de nouvelles relations générales entre puissance et efficacité. Du point de vue des fluctuations, la matrice de conductance hors d'équilibre est reliée à une borne quadratique pour les fonctions de grande déviation des courants. Cette borne permet d'obtenir des bornes pour les fonctions de grande déviation de l'efficacité, mais aussi de revisiter le théorème de fluctuation-dissipation comme une inégalité dans le cas des systèmes loin de l'équilibre. Pour terminer, on étudie l'effet d'une brisure d'ergodicité sur les fluctuations d'observables comme l'activité, les courants ou l'efficacité. En particulier, on calcule la fonction de grande déviation de l'efficacité pour un ensemble de nanomachines en interaction pour lesquelles un couplage fort et une brisure d'ergodicité apparaissent à la limite thermodynamique. / Small machines -- like molecular motors or active particles -- operate in highly fluctuating environments that affect their efficiency and power. This thesis aims at describing small machines using stochastic thermodynamics and large deviation theory. By relating mean currents to thermodynamic forces, locally first and then at the global level, we introduce the non-equilibrium conductance matrix that generalizes the Onsager matrix for stationary non-equilibrium systems. We use it to bound machine efficiency by a universal function depending only on the degree of coupling between input and output currents and to find new general power-efficiency trade-offs. On the fluctuations side, the non-equilibrium conductance matrix can be used to find a quadratic bound on the large deviation function of currents. This enables to revisit the fluctuation-dissipation theorem as an inequality when dealing with far-from-equilibrium systems, but also to derive bounds on the efficiency large deviation function. Finally, we study the effects of ergodicity breaking on the fluctuations of observables like activity, currents or efficiency. In particular, we derive the efficiency large deviation function for a model of interacting nanomachines, for which tight coupling and ergodicity breaking emerge in the thermodynamic limit.
|
36 |
Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires / Random Polynomials, Coulomb Gas and Random MatricesButez, Raphaël 04 December 2017 (has links)
L'objet principal de cette thèse est l'étude de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires dont le degré tend vers l'infini. Nous explorerons la connexion existant entre les racines de polynômes aléatoires et les gaz de Coulomb afin d'obtenir des principes de grandes déviations pour la mesure empiriques des racines. Nous revisitons l'article de Zeitouni et Zelditch qui établit un principe de grandes déviations pour un modèle général de polynômes aléatoires à coefficients gaussiens complexes. Nous étendons ce résultat au cas des coefficients gaussiens réels. Ensuite, nous démontrons que ces résultats restent valides pour une large classe de lois sur les coefficients, faisant des grandes déviations un phénomène universel pour ces modèles. De plus, nous démontrons tous les résultats précédents pour le modèle des polynômes de Weyl renormalisés. Nous nous intéressons aussi au comportement de la racine de plus grand module des polynômes de Kac. Celle-ci a un comportement non-universel et est en général une variable aléatoire à queues lourdes. Enfin, nous démontrons un principe de grandes déviations pour la mesure empirique des ensembles biorthogonaux. / The main topic of this thesis is the study of the roots of random polynomials from several models. We seek to understand the behavior of the roots as the degree of the polynomial tends to infinity. We explore the connexion between the roots of random polynomials and Coulomb gases to obtain large deviations principles for the empirical measures of the roots of random polynomials. We revisit the article of Zeitouni and Zelditch which establishes the large deviations for a rather general model of random polynomials with independent complex Gaussian coefficients. We extend this result to the case of real Gaussian coefficients. Then, we prove that those results are also valid for a wide class of distributions on the coefficients, which means that those large deviations principles are a universal property. We also prove all of those results for renormalized Weyl polynomials. study the largest root in modulus of Kac polynomials. We show that this random variable has a non-universal behavior and has heavy tails. Finally, we establish a large deviations principle for the empirical measures of biorthogonal ensembles.
|
37 |
Random Matrix Theory in Statistical Physics : Quantum Scattering and Disordered Systems / Théorie des matrices aléatoires en physique statistique : théorie quantique de la diffusion et systèmes désordonnésGrabsch, Aurélien 02 July 2018 (has links)
La théorie des matrices aléatoires a des applications dans des domaines variés : mathématiques, physique, finance, ... En physique, le concept de matrices aléatoires a été utilisé pour l'étude du transport électronique dans des structures mésoscopiques, de systèmes désordonnés, de l'intrication quantique, de modèles d'interfaces 1D fluctuantes en physique statistique, des atomes froids, ... Dans cette thèse, on s'intéresse au transport AC cohérent dans un point quantique, à des propriétés d'interfaces fluctuantes 1D sur un substrat et aux propriétés topologiques de fils quantiques multicanaux. La première partie commence par une introduction générale a la théorie des matrices aléatoires ainsi qu'a la principale méthode utilisée dans cette thèse : le gaz de Coulomb. Cette technique permet entre autres d'étudier la distribution d'observables qui prennent la forme de statistiques linéaires des valeurs propres, qui représentent beaucoup de quantités physiques pertinentes. Cette méthode est ensuite appliquée à des exemples concrets pour étudier le transport cohérent et les problèmes d'interfaces fluctuantes en physique statistique. La seconde partie se concentre sur un modèle de fil désordonné : l'équation de Dirac multicanale avec masse aléatoire. Nous étendons le puissant formalisme utilisé pour l'étude de systèmes unidimensionnels au cas quasi-1D, et établissons une connexion avec un modèle de matrices aléatoires. Nous utilisons ce résultat pour obtenir la densité d'états et les propriétés de localisation. Nous montrons également que ce système présente une série de transitions de phases topologiques (changement d'un nombre quantique de nature topologique, sans changement de symétrie), contrôlées par le désordre. / Random matrix theory has applications in various fields: mathematics, physics, finance, ... In physics, the concept of random matrices has been used to study the electronic transport in mesoscopic structures, disordered systems, quantum entanglement, interface models in statistical physics, cold atoms, ... In this thesis, we study coherent AC transport in a quantum dot, properties of fluctuating 1D interfaces on a substrate and topological properties of multichannel quantum wires. The first part gives a general introduction to random matrices and to the main method used in this thesis: the Coulomb gas. This technique allows to study the distribution of observables which take the form of linear statistics of the eigenvalues. These linear statistics represent many relevant physical observables, in different contexts. This method is then applied to study concrete examples in coherent transport and fluctuating interfaces in statistical physics. The second part focuses on a model of disordered wires: the multichannel Dirac equation with a random mass. We present an extension of the powerful methods used for one dimensional system to this quasi-1D situation, and establish a link with a random matrix model. From this result, we extract the density of states and the localization properties of the system. Finally, we show that this system exhibits a series of topological phase transitions (change of a quantum number of topological nature, without changing the symmetries), driven by the disorder.
|
38 |
Transport Models with Constrained Dynamics : Heterogeneous Flow and Intermittency / Modèes de transport avec dynamiques contraintes : écoulement hétérogène et intermittenceTurci, Francesco 25 June 2012 (has links)
Quand le mouvement de particules sous l'action d'un forçage extérieur est restreint par des mécanismes d'exclusion ou de blocage, des corrélations spatio-temporelles non triviales peuvent être observées, dans une dynamique caractérisé par des hétérogénéités spatiales et grandes fluctuations dans le temps.Dans cette thèse, nous étudions deux exemples d'un tel type de mouvement, en prenant en considération deux processus d'exclusion sur des réseaux discrètes en 2d et en 1d.Le premier modèle est inspiré par les mécanismes de relaxation lents observés dans le cisaillement ou le forçage de systèmes colloïdaux ou granulaires: pour des densités élevées, en augmentant le forçage la viscosité peut croitre énormément. Nous expliquons le mécanisme de blocage à grandes densités comme conséquence de l'existence simultanée de régions bloquées et mobiles dans le système, et nous déterminons la signature d'une telle dynamique par le moyen de la thermodynamique des histoires. Nous mesurons aussi l'extension spatiale des structures hétérogènes et fournissons un modèle phénoménologique reliant les propriétés microscopiques de la dynamique au comportement macroscopique de l'écoulement.Le deuxième modèle consiste en un processus d'exclusion en une dimension, incluant les effets dus à la présence structurelle d'un défaut dynamique localisé. Inspirés par la complexité et la richesse du processus de translation du ARN messager, nous proposons un nouveau modèle pour la dynamique de particules dont le mouvement est affecté par des modification stochastiques et structurelles de leur conditions de transport. Nous fournissons une description complète du modèle, avec la caractérisation de tous les régimes dynamiques possibles et une explication quantitative des profils macroscopiques du courant. / When the motion of particles driven by external forces is restricted by exclusion mechanisms or bottlenecks, non-trivial space-time correlations in their motion may be observed, giving rise to a dynamics which involves spatial heterogeneities and large fluctuations in time.Here we study two examples of such kind of motion, considering two exclusion processes on discrete lattices in 2d and 1d.The first model is inspired by the slow relaxation occurring when stirring or shearing colloidal or granular materials: at high densities (or packing fractions) increasing the external forcing may lead to a strong increase in the viscosity. We explain the blockage dynamics at high density as the coexistence of blocked and mobile regions and we determine the signature of such dynamics with the use of the thermodynamics of histories. We also quantify the spatial extension of such structures and provide a phenomenological model relating the microscopic properties of the dynamics to the macroscopic flow behavior.The second model consists in a one-dimensional exclusion process incorporating a structural, localized, dynamical defect. Inspired by the complexity and richness of mRNA translation, we propose a new model for the dynamics arising when the particles flow is regulated by structural or conformational changes in the transport medium. We provide a complete description of the model, characterizing all the possible dynamical regimes and addressing a quantitative explanation of the macroscopic current profiles.
|
39 |
Velké odchylky a jejich aplikace v pojistné matematice / Large deviations and their applications in insurance mathematicsFuchsová, Lucia January 2011 (has links)
Title: Large deviations and their applications in insurance mathematics Author: Lucia Fuchsová Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Zbyněk Pawlas, Ph.D. Supervisor's e-mail address: Zbynek.Pawlas@mff.cuni.cz Abstract: In the present work we study large deviations theory. We discuss heavy-tailed distributions, which describe the probability of large claim oc- curence. We are interested in the use of large deviations theory in insurance. We simulate claim sizes and their arrival times for Cramér-Lundberg model and first we analyze the probability that ruin happens in dependence on the parameters of our model for Pareto distributed claim size, next we compare ruin probability for other claim size distributions. For real life data we model the probability of large claim size occurence by generalized Pareto distribu- tion. 1
|
40 |
Processus auto-interagissants et grandes déviations / Self-interacting processes and large deviationsDumaz, Laure 07 December 2012 (has links)
Cette thèse porte sur divers aspects de lois et de processus non-gaussiens qui partagent des propriétés de changement d'échelle où intervient l'exposant 2/3. Les deux principaux objets probabilistes que nous allons présenter sont : 1) La loi de Tracy-Widom : C'est la loi limite de la plus grande valeur propre de matrices aléatoires appartenant aux beta-ensembles lorsque leur dimension tend vers l'infini. Dans un travail en commun avec Balint Virag, nous avons établi le comportement asymptotique de la queue droite de cette loi pour tout beta strictement positif, en utilisant des outils d'analyse de diffusions du type Girsanov. 2) Le ''vrai'' processus auto-répulsif (''true self repelling motion'') TSRM : C'est un processus auto-interagissant qui a été introduit par Balint Toth et Wendelin Werner. Nous nous sommes intéressés à des propriétés de cet objet liées à ses trajectoires (grandes déviations, lois du logarithme itéré) et à des calculs explicites de lois marginales (travail en collaboration avec Balint Toth). Cette étude nous a aussi amenés à aborder des questions liées à la théorie des jeux. / This thesis focuses on various aspects of non-Gaussian distributions and processes sharing scaling properties where the exponent 2/3 appears. The two probabilistic objects that we will introduce are: 1) Tracy-Widom distribution: This is the large dimensional limit of the top eigenvalue of random matrices in beta-ensembles. In a joint work with Balint Virag, we studied the asymptotic behavior of its right tail for all positive beta, using tools coming from diffusion analysis, such as the Girsanov formula. 2) The “true self repelling motion” (TSRM): This is a self-interacting process which was introduced by Balint Toth and Wendelin Werner. We have been interested in properties related to trajectories of this motion (large deviations, law of the iterated logarithm) and explicit distribution computations (joint work with Balint Toth). During this study, we have also dealt with questions related to game theory.
|
Page generated in 0.07 seconds