Spelling suggestions: "subject:"large deviations"" "subject:"large eviations""
41 |
Un modèle d'Ising Curie-Weiss de criticalité auto-organisée / A Curie-Weiss model of self-organized criticalityGorny, Matthias 08 June 2015 (has links)
Dans leur célèbre article de 1987, les physiciens Per Bak, Chao Tang et Kurt Wiesenfeld ont montré que certains systèmes complexes, composés d'un nombre important d'éléments en interaction dynamique, évoluent vers un état critique, sans intervention extérieure. Ce phénomène, appelé criticalité auto-organisée, peut être observé empiriquement ou simulé par ordinateur pour de nombreux modèles. Cependant leur analyse mathématique est très ardue. Même des modèles dont la définition est apparemment simple, comme les modèles décrivant la dynamique d'un tas de sable, ne sont pas bien compris mathématiquement. Le but de cette thèse est la construction d'un modèle de criticalité auto-organisée, qui est aussi simple que possible, et qui est accessible à une étude mathématique rigoureuse. Pour cela, nous modifions le modèle d'Ising Curie-Weiss généralisé en introduisant un contrôle automatique du paramètre de température. Pour une classe de distributions symétriques satisfaisant une certaine condition d'intégrabilité, nous montrons que la somme Sn des variables aléatoires du modèle a le comportement typique du modèle d'Ising Curie-Weiss généralisé critique: les fluctuations sont d'ordre n^(3/4) et la loi limite est C exp(- lambda*x^4) dx, où C et lambda sont des constantes strictement positives. Notre étude nous a menés à généraliser ce modèle dans plusieurs directions : cas de la dimension supérieure, fonctions d'interactions plus générales, extension à des auto-interactions menant à des fluctuations d'ordre n^(5/6). Nous étudions aussi des modèles dynamiques dont la distribution invariante est la loi de notre modèle d'Ising Curie-Weiss de criticalité auto-organisée. / In their famous 1987 article, Per Bak, Chao Tang and Kurt Wiesenfeld showed that certain complex systems, composed of a large number of dynamically interacting elements, are naturally attracted by critical points, without any external intervention. This phenomenon, called self-organized criticality, can be observed empirically or simulated on a computer in various models. However the mathematical analysis of these models turns out to be extremely difficult. Even models whose definition seems simple, such as the models describing the dynamics of a sandpile, are not well understood mathematically. The goal of this thesis is to design a model exhibiting self-organized criticality, which is as simple as possible, and which is amenable to a rigorous mathematical analysis. To this end, we modify the generalized Ising Curie-Weiss model by implementing an automatic control of the inverse temperature. For a class of symmetric distributions whose density satisfies some integrability conditions, we prove that the sum Sn of the random variables behaves as in the typical critical generalized Ising Curie-Weiss model: the fluctuations are of order n^(3/4) and the limiting law is C exp(- lambda*x^4) dx where C and lambda are suitable positive constants. Our study led us to generalize this model in several directions: the multidimensional case, more general interacting functions, extension to self-interactions leading to fluctuations with order n^(5/6). We also study dynamic models whose invariant distribution is the law of our Curie-Weiss model of self-organized criticality.
|
42 |
Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.Perez Reyes, Edgardo Enrique 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
|
43 |
Large deviations and exit time asymptotics for diffusions and stochastic resonancePeithmann, Dierk 10 December 2007 (has links)
Diese Arbeit behandelt die Asymptotik von Austritts- und Übergangszeiten für gewisse schwach zeitinhomogene Diffusionsprozesse. Darauf basierend wird ein probabilistischer Begriff der stochastischen Resonanz (SR) studiert. Techniken der großen Abweichungen spielen eine zentrale Rolle. Im ersten Teil der Arbeit (Kapitel 1-3) werden Resultate aus der Theorie der großen Abweichungen für zeithomogene Diffusionen rekapituliert. Es werden die klassischen Resultate von Freidlin und Wentzell und Erweiterungen dieser Theorie präsentiert, und es wird an das Kramers''sche Austrittszeitengesetz erinnert. Teil II befasst sich mit dem Phänomen der SR, d.h. mit Periodizitätseigenschaften von Diffusionen. In Kapitel 4 werden physikalische Maße zur Messung der Periodizität diskutiert. Deren Nachteile legen es nahe, einem alternativen, probabilistischen Ansatz zu folgen, der hier behandelt wird. Das 5. Kapitel dient der Herleitung eines gleichmäßigen Prinzips der großen Abweichungen für Diffusionen mit schwach zeitabhängigem, periodischem Drift. Die Gleichmäßigkeit des Prinzips ermöglicht die exakte Bestimmung exponentieller Übergangsraten in Kapitel 6, das die zentralen Ergebnisse des 2. Teils beinhaltet. Hierdurch wird die Maximierung gewisser Übergangswahrscheinlichkeiten ermöglicht, was zum in Kapitel 7 studierten Resonanzbegriff führt. Teil III der Arbeit setzt sich mit der Asymptotik von Austrittszeiten sogenannter selbststabilisierender Diffusionen auseinander. In Kapitel 8 wird der Zusammenhang zwischen interagierenden Teilchensystemen und selbststabilisierenden Diffusionen erläutert und die Existenz- und Eindeutigkeitsfrage behandelt. Das 9. Kapitel dient dem Studium der großen Abweichungen dieser Klasse von Diffusionen. In Kapitel 10 wird das Kramers''sche Austrittszeitengesetz auf selbststabilisierende Diffusionen übertragen, und in Kapitel 11 wird der Einfluß der selbststabilisierenden Komponente auf das Austrittszeitengesetz illustriert. / In this thesis, we study the asymptotic behavior of exit and transition times of certain weakly time inhomogeneous diffusion processes. Based on these asymptotics, a probabilistic notion of stochastic resonance (SR) is investigated. Large deviations techniques play the key role throughout this work. In the first part (Chapters 1-3) we recall the large deviations theory for time homogeneous diffusions. We present the classical results due to Freidlin and Wentzell and extensions thereof, and we remind of Kramers'' exit time law. Part II deals with the phenomenon of stochastic resonance. That is, we study periodicity properties of diffusion processes. In Chapter 4 we explain the paradigm of stochastic resonance and discuss physical notions of measuring periodicity of diffusions. Their drawbacks suggest to follow an alternative probabilistic approach, which is treated in this work. In Chapter 5 we derive a large deviations principle for diffusions subject to a weakly time dependent periodic drift term. The uniformity of the obtained large deviations bounds w.r.t. the system''s parameters plays a key role for the treatment of transition time asymptotics in Chapter 6, which contains the main result of the second part. The exact exponential transition rates obtained here allow for maximizing transition probabilities, which finally leads to the announced probabilistic notion of resonance studied in Chapter 7. In the third part we investigate the exit time asymptotics of a certain class of so-called self-stabilizing diffusions. In Chapter 8 we explain the connection between interacting particle systems and self-stabilizing diffusions, and we address the question of existence. The following Chapter 9 is devoted to the study of the large deviations behavior of these diffusions. In Chapter 10 Kramers'' exit law is carried over to our class of self-stabilizing diffusions. Finally, the influence of self-stabilization is illustrated in Chapter 11.
|
44 |
Uma estrat?gia aleat?ria chamada de MOSESSantos, Maria Jucimeire dos 24 April 2013 (has links)
Made available in DSpace on 2014-12-17T15:26:39Z (GMT). No. of bitstreams: 1
MariaJS_DISSERT.pdf: 2706687 bytes, checksum: 2f98eddad7bbc278c03ee45e4e226d95 (MD5)
Previous issue date: 2013-04-24 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This paper we study a random strategy called MOSES, which was introduced
in 1996 by Fran?cois. Asymptotic results of this strategy; behavior of the stationary
distributions of the chain associated to strategy, were derived by Fran?cois, in 1998,
of the theory of Freidlin and Wentzell [8]. Detailings of these results are in this work.
Moreover, we noted that an alternative approach the convergence of this strategy
is possible without making use of theory of Freidlin and Wentzell, yielding the visit
almost certain of the strategy to uniform populations which contain the minimum.
Some simulations in Matlab are presented in this work / Neste trabalho estudamos uma estrat?gia aleat?ria chamada de MOSES, que foi introduzida por Fran?ois em 1996. Resultados assint?ticos desta estrat?gia; comportamento das distribui??es estacion?rias da cadeia associada a estrat?gia, foram derivados por Fran?ois, em 1998, da teoria de Freidlin e Wentzell [8]. Detalhamentos destes resultados est?o neste trabalho. Por outro lado, notamos que uma abordagem alternativa da converg?ncia desta estrat?gia ? poss?vel sem fazer uso da teoria de Freidlin e Wentzell, obtendo-se a visita quase certa da estrat?gia as popula??es uniformes que cont?m o m?m?nimo. Algumas simula??es no Matlab s?o apresentadas neste trabalho
|
45 |
Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.Edgardo Enrique Perez Reyes 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
|
46 |
Estimation statistique des paramètres pour les processus de Cox-Ingersoll-Ross et de Heston / Statistical inference for the parameters of the Cox-Ingersoll-Ross process and the Heston processDu Roy de Chaumaray, Marie 02 December 2016 (has links)
Les processus de Cox-Ingersoll-Ross et de Heston jouent un rôle prépondérant dans la modélisation mathématique des cours d’actifs financiers ou des taux d’intérêts. Dans cette thèse, on s’intéresse à l’estimation de leurs paramètres à partir de l’observation en temps continu d’une de leurs trajectoires. Dans un premier temps, on se place dans le cas où le processus CIR est géométriquement ergodique et ne s’annule pas. On établit alors un principe de grandes déviationspour l’estimateur du maximum de vraisemblance du couple des paramètres de dimension et de dérive d’un processus CIR. On établit ensuite un principe de déviations modérées pour l’estimateur du maximum de vraisemblance des quatre paramètres d’un processus de Heston, ainsi que pour l’estimateur du maximum de vraisemblance du couple des paramètres d’un processus CIR. Contrairement à ce qui a été fait jusqu’ici dans la littérature,les paramètres sont estimés simultanément. Dans un second temps, on ne se restreint plus au cas où le processus CIR n’atteint jamais zéro et on propose un nouvel estimateur des moindres carrés pondérés pour le quadruplet des paramètres d’un processus de Heston.On établit sa consistance forte et sa normalité asymptotique, et on illustre numériquement ses bonnes performances. / The Cox-Ingersoll-Ross process and the Heston process are widely used in financial mathematics for pricing and hedging or to model interest rates. In this thesis, we focus on estimating their parameters using continuous-time observations. Firstly, we restrict ourselves to the most tractable situation where the CIR processis geometrically ergodic and does not vanish. We establish a large deviations principle for the maximum likelihood estimator of the couple of dimensionnal and drift parameters of a CIR process. Then we establish a moderate deviations principle for the maximum likelihood estimator of the four parameters of an Heston process, as well as for the maximum likelihood estimator of the couple of parameters of a CIR process. In contrast to the previous literature, parameters are estimated simultaneously. Secondly, we do not restrict ourselves anymore to the case where the CIR process never reaches zero and we introduce a new weighted least squares estimator for the quadruplet of parameters of an Heston process. We establish its strong consitency and asymptotic normality, and we illustrate numerically its good performances.
|
47 |
Comportement microscopique de particules en interaction : gaz de Coulomb, Riesz et log-gases / Microscopic behavior of interacting particles : Coulomb, Riesz and log-gasesLeblé, Thomas 05 February 2016 (has links)
Cette thèse est consacrée à l’étude de systèmes de particules modélisant des particules chargées en interaction, ou les valeurs propres de matrices aléatoires. On s’intéresse aux gaz de particules avec interaction logarithmique en dimension 1 et 2, et aux interactions de Coulomb/Riesz en dimension générale. On étudie leur comportement microscopique à travers un principe de grandes déviations satisfait par la loi des champs empiriques et gouverné par une fonctionnelle d’énergie libre qui met en évidence la dépendance en la température. Parmi les minimiseurs de cette énergie libre, on compte les processus ponctuels Sine-beta définis dans le contexte des matrices aléatoires. On démontre la convergence vers un processus de Poisson à haute température et, en dimension 1, on prouve la cristallisation du système dans la limite de basse température. Dans le cas des interactions logarithmiques en dimension 2, on montre une loi locale qui contrôle les fluctuations à toute échelle mésoscopique. On traite aussi le cas du gaz de Coulomb 2D avec des charges de signes opposés. / This thesis is devoted to the study of statistical physics systems which can represent charged interacting particles or eigenvalues of random matrices. We are interested in particle gases with logarithmic interaction in dimension 1 and 2 and with Coulomb/Riesz interactions in general dimension. We study the microscopic behavior by establishing a large deviation principle for the law of the empirical fields, governed by a free energy functional in which the temperature dependence appears. Minimizers of this free energy include the Sine-beta point processes defined in random matrix theory. We show the convergence to a Poisson point process at high temperature and in dimension 1 we prove crystallization in the zero temperature limit. For two-dimensional log-gases we establish a local law which bounds the fluctuations at any mesoscopic scale. We also treat the case of a 2D Coulomb gas with charges of opposite sign.
|
48 |
Large deviations for the dynamics of heterogeneous neural networks / Grandes déviations pour la dynamique de réseaux de neurones hétérogènesCabana, Tanguy 14 December 2016 (has links)
Cette thèse porte sur l'obtention rigoureuse de limites de champ moyen pour la dynamique continue de grands réseaux de neurones hétérogènes. Nous considérons des neurones à taux de décharge, et sujets à un bruit Brownien additif. Le réseau est entièrement connecté, avec des poids de connections dont la variance décroît comme l'inverse du nombre de neurones conservant un effet non trivial dans la limite thermodynamique. Un second type d'hétérogénéité, interprété comme une position spatiale, est considéré au niveau de chaque cellule. Pour la pertinence biologique, nos modèles incluent ou bien des délais, ainsi que des moyennes et variances de connections, dépendants de la distance entre les cellules, ou bien des synapses dépendantes de l'état des deux neurones post- et présynaptique. Ce dernier cas s'applique au modèle de Kuramoto pour les oscillateurs couplés. Quand les poids synaptiques sont Gaussiens et indépendants, nous prouvons un principe de grandes déviations pour la mesure empirique de l'état des neurones. La bonne fonction de taux associée atteint son minimum en une unique mesure de probabilité, impliquant convergence et propagation du chaos sous la loi "averaged". Dans certains cas, des résultats "quenched" sont obtenus. La limite est solution d'une équation implicite, non Markovienne, dans laquelle le terme d'interactions est remplacé par un processus Gaussien qui dépend de la loi de la solution du réseau entier. Une universalité de cette limite est prouvée, dans le cas de poids synaptiques non-Gaussiens avec queues sous-Gaussiennes. Enfin, quelques résultats numérique sur les réseau aléatoires sont présentés, et des perspectives discutées. / This thesis addresses the rigorous derivation of mean-field results for the continuous time dynamics of heterogeneous large neural networks. In our models, we consider firing-rate neurons subject to additive noise. The network is fully connected, with highly random connectivity weights. Their variance scales as the inverse of the network size, and thus conserves a non-trivial role in the thermodynamic limit. Moreover, another heterogeneity is considered at the level of each neuron. It is interpreted as a spatial location. For biological relevance, a model considered includes delays, mean and variance of connections depending on the distance between cells. A second model considers interactions depending on the states of both neurons at play. This last case notably applies to Kuramoto's model of coupled oscillators. When the weights are independent Gaussian random variables, we show that the empirical measure of the neurons' states satisfies a large deviations principle, with a good rate function achieving its minimum at a unique probability measure, implying averaged convergence of the empirical measure and propagation of chaos. In certain cases, we also obtained quenched results. The limit is characterized through a complex non Markovian implicit equation in which the network interaction term is replaced by a non-local Gaussian process whose statistics depend on the solution over the whole neural field. We further demonstrate the universality of this limit, in the sense that neuronal networks with non-Gaussian interconnections but sub-Gaussian tails converge towards it. Moreover, we present a few numerical applications, and discuss possible perspectives.
|
49 |
Grandes déviations précises pour des statistiques de test / Sharp Large Deviations for some Test StatisticsTruong, Thi Kim Tien 10 December 2018 (has links)
Cette thèse concerne l’étude de grandes déviations précises pour deux statistiques de test:le coefficient de corrélation empirique de Pearson et la statistique de Moran.Les deux premiers chapitres sont consacrés à des rappels sur les grandes déviations précises et sur la méthode de Laplace qui seront utilisés par la suite. Par la suite, nous étudions les grandes déviations précises pour des coefficients de Pearson empiriques qui sont définis par:$r_n=\sum_{i=1}^n(X_i-\bar X_n)(Y_i-\bar Y_n)/\sqrt{\sum_{i=1}(X_i-\bar X_n)^2 \sum_{i=1}(Y_i-\bar Y_n)^2}$ ou, quand les espérances sont connues, $\tilde r_n=\sum_{i=1}^n(X_i-\mathbb E(X))(Y_i-\mathbb E(Y))/\sqrt{\sum_{i=1}(X_i-\mathbb E(X))^2 \sum_{i=1}(Y_i-\mathbb E(Y))^2} \, .$. Notre cadre est celui d’échantillons (Xi, Yi) ayant une distribution sphérique ou une distribution gaussienne. Dans chaque cas, le schéma de preuve suit celui de Bercu et al.Par la suite, nous considérons la statistique de Moran $T_n=\frac{1}{n}\sum_{k=1}^n\log\frac{X_i}{\bar X_n}+\gamma \, ,$o\`u $\gamma$, où γ est la constante d’ Euler. Enfin l’appendice est consacré aux preuves de résultats techniques. / This thesis focuses on the study of Sharp large deviations (SLD) for two test statistics:the Pearson’s empirical correlation coefficient and the Moran statistic.The two first chapters aim to recall general results on SLD principles and Laplace’s methodsused in the sequel. Then we study the SLD of empirical Pearson coefficients, name $r_n=\sum_{i=1}^n(X_i-\bar X_n)(Y_i-\bar Y_n)/\sqrt{\sum_{i=1}(X_i-\bar X_n)^2 \sum_{i=1}(Y_i-\bar Y_n)^2}$ and when the meansare known,$\tilde r_n=\sum_{i=1}^n(X_i-\mathbb E(X))(Y_i-\mathbb E(Y))/\sqrt{\sum_{i=1}(X_i-\mathbb E(X))^2 \sum_{i=1}(Y_i-\mathbb E(Y))^2} \, .$ .Our framework takes place in two cases of random sample (Xi, Yi): spherical distributionand Gaussian distribution. In each case, we follow the scheme of Bercu et al. Next, westate SLD for the Moran statistic $T_n=\frac{1}{n}\sum_{k=1}^n\log\frac{X_i}{\bar X_n}+\gamma \, ,$o\`u $\gamma$ , where γ is the Euler constant.Finally the appendix is devoted to some technical results.
|
50 |
Large Deviations for Brownian Intersection MeasuresMukherjee, Chiranjib 27 July 2011 (has links)
We consider p independent Brownian motions in ℝd. We assume that p ≥ 2 and p(d- 2) < d. Let ℓt denote the intersection measure of the p paths by time t, i.e., the random measure on ℝd that assigns to any measurable set A ⊂ ℝd the amount of intersection local time of the motions spent in A by time t. Earlier results of Chen derived the logarithmic asymptotics of the upper tails of the total mass ℓt(ℝd) as t →∞. In this paper, we derive a large-deviation principle for the normalised intersection measure t-pℓt on the set of positive measures on some open bounded set B ⊂ ℝd as t →∞ before exiting B. The rate function is explicit and gives some rigorous meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-Varadhan principle for the latter applicable to the intersection measure.
A second version of our principle is proved for the motions observed until the individual exit times from B, conditional on a large total mass in some compact set U ⊂ B. This extends earlier studies on the intersection measure by König and Mörters.
|
Page generated in 0.0678 seconds