• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 58
  • 25
  • 10
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 205
  • 205
  • 50
  • 45
  • 31
  • 28
  • 27
  • 26
  • 25
  • 22
  • 19
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Vectorisation du cisplatine via des nanoparticules à base de nucléolipides / Vectorization of cisplatin by nanoparticles based in nucleolipids

Khiati, Salim 28 October 2010 (has links)
Le cisplatine est l’un des trois agents anticancéreux les plus utilisés en chimiothérapie contre les tumeurs solides. Cependant, les doses utilisées sont limitées par des effets secondaires importants et l’existence des résistances innées ou acquises vis-à-vis de cette drogue. Ce travail vise à augmenter l’index thérapeutique du cisplatine (réduire ses effets secondaires et augmenter son activité anti-tumorale). Pour cela des nanoparticules hautement chargées en cisplatine en couche par couche à base de nucléolipides ont été préparées. Les études physico-chimiques (TEM, DLS, XPS, microscopie à fluorescence, ICP-optique) ont révélé que les nanoparticules à double couche étaient plus stables en milieu biologique par rapport aux formulations en mono-couche. Les études biologiques réalisées sur deux lignées tumorales ovariennes (IGROV1 et SKOV3) ont montré que cette formulation améliore l’activité cytotoxique du cisplatine et inhibe le développement des résistances. L’étude du mécanisme d’action (internalisation, apoptose, génotoxicité, réplication de l’ADN) a confirmé que les nanoparticules à double couche augmentent le taux de cisplatine internalisé qui, une fois libéré dans les cellules, arrête la réplication de l’ADN et induit la mort cellulaire par apoptose. Aucune toxicité intrinsèque aux nano-objets n’est observée. Les études in vivo de ces nanoparticules à double couche après injection en intraveineuse de 5, 7 et 9 mg/Kg ont révélé que cette formulation augmente la dose maximale tolérée et présente une activité anti-tumorale vis-à-vis des lignées cellulaires PROb et GV1A1. Cette stratégie d’élaboration des nanoparticules en couche par couche de nucléolipides nous a permis d’insérer des PEG avec ou sans acide folique pour le ciblage et d’introduire une deuxième drogue lipophile, le paclitaxel. Les tests in vitro (cytotoxicité, internalisation) ont montré l’intérêt de ces modifications. / Cisplatin is one of the three most commonly used anticancer drugs in chemotherapy against solid tumors. However, the doses used are limited by significant side effects and the existence of resistance. The aim of this work is to increase the therapeutic index of cisplatin. For this purpose, highly charged nucleolipids nanoparticles “layer-by-layer” of cisplatin were prepared. The physico-chemical studies (TEM, DLS, XPS, ICP, Fluorescence microscopy) revealed that the bilayer nanoparticles were more stable in biological environment compared with mono-layer formulations. Biological studies carried in two ovarian carcinoma cells lines (IGROV1 and SKOV3) showed that this formulation enhances the cytotoxic activity of cisplatin and inhibits the development of resistance. The study of the mechanism of action (internalization, apoptosis, genotoxicity, DNA replication) demonstrated the nanoparticles with double layer increases the rate of cisplatin internalized then released into the cells, stops the replication of DNA and induces cell death by apoptosis. No intrinsic toxicity of nano-objects is observed. In vivo studies of these nanoparticles double layer after intravenous injection of 5, 7 and 9 mg/Kg in the rats showed this formulation increases the maximum tolerated dose and has an antitumor activity against PROb en GV1A1 cells lines. This strategy of developing layer-by-layer nucleolipids nanoparticles allows to insert PEG with or without folic acid for targeting and introducing second drug, a lipophilic paclitaxel. In vitro study (cytotoxicity, internalization) have shown the benefits of both modification.
192

Filmes finos do ácido poli 3-tiofeno acético / Thin films of poly 3-thiophene acetic acid

Bruno Bassi Millan Torres 01 February 2012 (has links)
O ácido politiofeno acético (PTAA) é um derivado do politiofeno bastante versátil. Sua solubilidade em alguns solventes orgânicos e em soluções básicas aquosas lhe confere extensa processabilidade na forma de filmes finos, característica importante para dispositivos e sensores. Neste trabalho, investigou-se a formação de filmes de PTAA com as técnicas de automontagem e Langmuir-Blodgett (LB). Os filmes automontados foram preparados com dois policátions, hidrocloreto de poli-alilamina (PAH) e cloreto de poli-dialildimetilamônio (PDAC). O crescimento dos filmes depende do pH das soluções e do tipo de policátion, sugerindo dependência do mecanismo de crescimento com as interações específicas polímeropolímero. A conformação do PTAA em filme tem correlação com sua conformação em solução, apontando para um efeito de memória. Por outro lado, a energia de superfície destes filmes não sofre influência da arquitetura nem dessas diferenças conformacionais. Ou seja, embora o volume do filme possa ser distinto, as superfícies possuem propriedades semelhantes. A morfologia dos filmes foi caracterizada a partir de imagens de AFM utilizando conceitos de geometria fractal e estatística. A dimensão fractal dos filmes é semelhante, indicando o mesmo processo de crescimento dos filmes, independentemente das condições da deposição. Os filmes obtidos em pH ácido tinham tamanho de grão e comprimentos de correlação maiores, sugerindo a deposição de cadeias mais enoveladas. Foi possível fabricar filmes autossustentados sem degradação aparente do material a partir de filmes automontados de PAH/PTAA, entrecruzando termicamente os grupos ácido carboxílico e amina. Este é o primeiro relato de filmes deste tipo com derivado do politiofeno. Os filmes LB de PTAA foram obtidos sem adjuvantes, mas as condições de deposição precisam ser aprimoradas. Para explorar a elevada afinidade química entre compostos contendo enxofre e metais pesados, filmes foram utilizados para detecção espectroscópica e eletroquímica. Espectros de fotoluminescência e UV-Vis demonstraram que os metais interagem apenas com os estados excitados resultando na supressão da fluorescência; no entanto, sem especificidade e apenas para longos períodos de exposição. Espectros de FTIR mostraram a presença dos sais na matriz dos filmes. Por sua vez, voltametrias cíclicas permitiram detectar Pb+2 e Hg+2, mas a irreversibilidade dos processos eletroquímicos, causando alargamento dos picos de oxirredução, inviabiliza a detecção simultânea. / Polythiophene acetic acid (PTAA) is a versatile polythiophene derivative. Its solubility in some organic solvents and in basic aqueous solutions makes it attractive for processing thin films, an important feature for the fabrication of devices and sensors. In this thesis, we investigate the formation of PTAA films using the layer-by-layer (LbL) and the Langmuir- Blodgett (LB) techniques. The LbL films were prepared with poly(allylamine hydrochloride) (PAH) and poly(diallydimethylammonium chloride) (PDAC), with film growth depending on the pH of the solutions and type of polycation, thus indicating that the growth mechanism depends on polymer-polymer interactions. The conformation of the PTAA molecules in solid state was correlated with that in solution, in a kind of memory effect. The surface energy of the films was not affected by the film architecture or different conformations. The film morphology was characterized with AFM images using concepts of fractal geometry and statistics. The fractal dimension was similar for all films, and therefore the overall growth obeys the same process regardless of the deposition conditions. Nevertheless, films obtained at acidic pH exhibited larger grain size and correlation lengths than those produced at basic pHs, suggesting deposition of more coiled chains. It was also possible to fabricate selfsustained films without apparent PTAA degradation from the PAH/PTAA LbL films, upon thermal crosslinking of carboxylic acid and amine groups. This is the first report of such films with a polythiophene derivative. LB films of PTAA were obtained without co-spreading materials, but the deposition conditions need to be optimized. To explore the high chemical affinity between PTAA and compounds containing sulfur and heavy metals, some films were used for spectroscopic and electrochemical detection. The UV-Vis and photoluminescence spectra indicated that the metals affect only the excited states, leading to fluorescence quenching after long exposure times and without specificity for the metals. The FTIR spectra pointed to salts in the films. Pb+2 and Hg+2 ions could be detected using cyclic voltammetry, but their simultaneous detection was hampered by the irreversibility of the electrochemical processes which caused broadening of the oxi-reduction peaks.
193

Novel H-bond donor polymers for layer-by-layer self-assembly multilayered films / Nouveaux polymères donneurs de liaisons hydrogènes pour l’élaboration de films multicouches

Chen, Jing 11 September 2013 (has links)
Ce travail est consacré à la synthèse de nouveaux polymères donneurs de liaison Hydrogène et à leur utilisation comme partenaire dans la construction de nouveaux films multicouches préparés par le procédé d’élaboration en couche-par-couche (LbL). Plus particulièrement, une nouvelle réaction impliquant des mercaptoalcools non protégés et le poly(2,3,4,5,6-pentafluorostyrène) (PPFS) a été développé et appliquée à la synthèse de nouveaux polymères donneurs de liaisons H. Ce couplage régiosélectif et chimiosélectif de type « click » avec un thiol hétérofonctionnel peut être utilisée pour préparer une bibliothèque de polymères qui diffèrent de par leur degré de substitution (DS) et/ou leur fonctionnalité en groupements associatifs. Le contrôle de ces paramètres structuraux permet de moduler leur force d’interactions avec des partenaires accepteurs de liaison H variés, comme la poly(4-vinyl pyridine) (P4VP), le poly(acrylate de n-butyle) (PBA) et le poly(oxyde d'éthylène) (PEO), de telle façon que tous les types de mélanges binaires (mélange non miscible, partiellement ou totalement miscible, ou complexe interpolymère) peuvent être obtenus. Ensuite, les dérivés de PPFS donneurs de liaisons H ont été utilisés en partenariat avec le P4VP pour élaborer avec succès de nouveaux films multicouche dont la force motrice est l’établissement de liaisons H. L'influence de nombreux paramètres relatifs à la structure des polymères donneurs (DS, structure chimique du groupement associatif), au type de modification chimique subie par le substrat sur lequel est élaboré le film multicouche (monocouche auto-assemblée vs. polymère greffée en conformation de type brosse) ou encore des paramètres expérimentaux liés aux conditions de dépôt (concentration des solutions de dépôt, nature du partenaire adsorbé en premier) a été étudiée. Plus particulièrement, le mécanisme de croissance ainsi que les caractéristiques de surface du film ont été évalués. / This work deals with the design of novel hydrogen-bond donor polymers and their use as partner in new tailor-made multilayered films prepared by the layer-by-layer (LbL) process. In this context, a novel regioselective and chemoselective “click-type” reaction of unprotected mercaptoalcohols onto poly(2,3,4,5,6-pentafluoro-styrene) (PPFS) has been developed, and applied to the synthesis of new hydroxylated H-bond donor polymers. This coupling with heterofunctional thiol is used to prepare a library of polymers differing in the degree of substitution (DS) and/or functionality. The fine control of these parameters makes it possible to tune their interaction ability with various acceptor polymers such as poly(4-vinyl pyridine) (P4VP), poly(n-butyl acrylate) (PBA) and poly(ethylene oxide) (PEO), such that all possible scenarios (immiscible blend, partially or totally miscible blend or interpolymer complex) can be achieved. Subsequently, the resulting H-bond donor polymers (PPFS derivatives) were used to successfully build-up multilayered films with using P4VP as partner via layer-by-layer (LbL) through the dip deposition process. The influence of various parameters related to structure of the partners (DS, nature of the PPFS derivatives), the chemical structure of the surface onto which the film is built-up (self-assembled monolayer vs. polymer brush) and the deposition process (concentration of deposition solutions, nature of the first deposited partner) was in-depth evaluated, on both the growth mechanism and on the surface features of the multilayered films.
194

LAYER BY LAYER NANOASSEMB​LY OF COPPER INDIUM GALLIUM SELENIUM (CIGS) NANOPARTIC​LES FOR SOLAR CELL APPLICATIO​N

Hemati, Azadeh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this research thesis, copper indium gallium selenium (CIGS) nanoparticles were synthesized from metal chlorides, functionalized to disperse in water, and further used in layer by layer (LbL) nanoassembly of CIGS films. CIGS nanoparticles were synthesized through the colloidal precipitation in an organic solvent. The peak and average sizes of the synthesized particles were measured to be 68 nm and 75 nm in chloroform, and 30 nm and 115 nm in water, respectively. Two methods were used to disperse the particle in water. In the first method the stabilizing agent oleylamine (OLA) was removed through multiple cleaning processes, and in the second method ligand exchange was performed with polystyrene sulfonate (PSS). Zeta potential of CIGS nanoparticles dispersed in water was measured to be +61 mV. The surface charge of the nanoparticles was reversed by raising the pH of the solution, which was measured to be −43.3 mV at 10.5 pH. In a separate process, the CIGS nanoparticles dispersed in water were coated with PSS. The resulting dispersion was observed to be stable and the surface charge was measured to be −56.9 mV. The LbL deposition process of CIGS nanoparticles was characterized by depositing thin films on quartz crystal microbalance (QCM). LbL depositions was conducted using (i) oppositely charged CIGS nanoparticles, (ii) positively charged CIGS nanoparticles and PSS, and (iii) PSS-coated CIGS (CIGS-PSS) and polyethyleneimine (PEI). The average thickness of each bi-layer of the above mentioned depositions were measured to be 2.2 nm, 1.37 nm, and 10.12 nm, respectively. The results from the QCM have been observed to be consistent with the film thickness results obtained from atomic force microscopy (AFM). Various immersion times versus thickness of the film were also studied. For electrical characterization, the CIGS films were deposited on indium tindioxide (ITO)-coated glass substrates. Current versus voltage (I/V) measurements were carried out for each of the films using the Keithley semiconductor characterization instruments and micromanipulator probing station. It was observed that the conductivity of the films was increased with the deposition of each additional layer. The I/V characteristics were also measured under the light illumination and after annealing to study the photovoltaic and annealing effects. It was observed that under light illumination, the resistivity of a 12-layer CIGS film decreased by 93% to 0.54 MΩ.m, and that of the same number of layers of PSS-coated CIGS and PEI film decreased by 60% to 0.97 MΩ.m under illumination. The resistivity of an 8-layer CIGS and PSS film decreased by 76.4% to 0.1 MΩ.m, and that of the same layers of PSS-coated CIGS and PEI decreased by 87% to 0.07 MΩ.m after annealing. The functionalized nanoparticles and the LbL CIGS films were implemented in the solar cell devices. Several configurations of CIGS films (p-type), and ZnO and CdS films (n-type) were considered. Poly(3,4-ethylenedioxythiophene) (PEDOT), molybdenum (Mo), and ITO were used as back contacts and ITO was used as front contact for all the devices. The devices were characterized the Keithley semiconductor characterization instruments and micromanipulator probing station. For a CIGS and n-ZnO films device with PEDOT as back contact and ITO as front contact, the current density at 0 V and under light illumination was measured to be 60 nA/cm2 and the power density was measured to be 0.018 nW/cm2. For a CIGS and CdS films device with ITO as both back and front contact, the current density at 0 V and under light illumination was measured to be 50 nA/cm2 and the power density was measured to be 0.01 nW/cm2. For a drop-casted CIGS and CdS films device with Mo as back contact and ITO as front contact, the current density of 50 nA/cm2 at 0 V and power density of 0.5 nW/cm2 under light illumination was measured. For the LbL CIGS and chemical bath deposited CdS films device with ITO as both back and front contact, the current density of 0.04 mA/cm2 at 0 V and power density of 1.6 μW/cm2 under light illumination was measured. Comparing to Device-III, an increase by 99% in the power density was observed by using the CIGS LbL film in the device structure. The novel aspects of this research include, (i) functionalization of the CIGS nanoparticles to disperse in water including coating with PSS, (ii) electrostatic LbL deposition of CIGS films using oppositely charged nanoparticles and polymers, and (iii) the utilization of the fabricated LbL CIGS films to develop solar cells. In addition, the n-type cadmium sulfide film (CdS) and zinc oxide (ZnO) buffer layer were also deposited through LbL process after the respective particles were functionalized with PSS coating in separate experiments.
195

Glycopolymer Polyelectrolyte Multilayers Based on Maltose-Modified Hyperbranched Poly(ethyleneimine) For Future Drug Delivery Coatings and Biomedical Applications

Salem, Samaa 08 July 2015 (has links) (PDF)
Establishing highly sophisticated polymer films for delivery systems in a biological environment and bioanalytical tasks, the formation, thickness, swelling behavior, and (physiological) stability of highly biocompatible polyelectrolyte multilayers (PEMs) are described. These PEMs are composed of the very weak polycation maltose-modified hyperbranched poly(ethyleneimine) (PEI-Mal), strongly polyanion heparin sodium salt (HE − Na +) or weakly charged polyanion hyaluronic acid sodium salt (HA-Na+) deposited on Si wafer substrates. Two different glyco architectures for PEI-Mal are used, characterized by two different degrees of maltose decoration on a PEI scaffold. Using three pH-dependent deposition approaches for optimizing the (physiological) PEM stability and swelling, PEMs are characterized by (in situ) ellipsometry, atomic force microscopy (AFM), and (in situ) attenuated total reflection-Fouriertransform infrared (ATR-FTIR). Thus, PEMs reveal significantly different thicknesses, growth mechanisms (linear versus exponential), and swelling behavior in dependence of both the polycation architectures and the deposition protocol. These PEMs will allow the study of their complexation and release properties as preswollen PEMs against anionic drug molecules, adenosine triphosphate sodium salt (ATP), especially under physiological conditions for future drug delivery coatings.
196

Study on Self-Assembly of Fullerenes and Biopolymers

Mohanta, Vaishakhi January 2015 (has links) (PDF)
The understanding of self-assembly processes is important for fabrication of well-defined structures with new functionalities for applications in the area of biomedical sciences, material sciences and electronics. In this thesis, two types of self-assembly processes are described: (1) self-assembly of fullerene derivatives in water and (2) self-assembly on surfaces using layer-by-layer (LbL) approach. The various interactions and parameters involved in the self-assembly are detailed in the introductory chapter 1. The various internal parameters like molecular geometry, intramolecular and intermolecular forces that guides the self-assembly process of amphiphiles in water are discussed. The experimental procedures used in the present thesis for the fabrication of nanostructures via self-assembly approach are also described. In the later part of the chapter, the LbL technique for fabrication of thin films and microcapsules is reviewed where various interactions involved in the growth of LbL assembly are discussed. The effect of ionic strength and pH on the growth and property of LbL assemblies is elaborated. A brief discussion of the materials used in the thesis ‒ fullerene, bovine serum albumin (BSA) and nanocrystalline cellulose (NCC) is also provided The self-assembly behaviour of amphiphilic fullerene derivatives are described in chapter 2. Fullerene is anisotropically substituted with five polar hydroxyl groups using organo-copper reagent. The derivative can interact in water via the van der Waals and hydrophobic interactions of the fullerene moiety as well as the intermolecular hydrogen bonding among the hydroxyl groups and also with water. The penta-hydroxy fullerene derivative self-assembles in water as vesicular structures. The size of these vesicles can be varied by modifying the kinetics of self-assembly which was done by changing the rate of addition of non-solvent (water) to the solution of the fullerene derivative. In the second derivative, the hydroxyl groups are substituted with less polar methoxy groups. The penta-methoxy fullerene derivative cannot participate in inter-molecular hydrogen bonding formation unlike the penta-hydroxy derivative but there is possibility of hydrogen bond formation with water where oxygens on methoxy group can act as hydrogen bond acceptor. The penta-methoxy fullerene does not show any vesicle formation in water. The computational simulation studies were carried out on the two fullerene derivatives to understand the self-assembly behaviour of these two derivatives. Furthermore, the vesicle structures formed by the penta-hydroxy fullerene derivative are used for entrapment of hydrophobic polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and also hydrophilic dye, Rhodamine B. In both the cases, fluorescence quenching is observed due to electron transfer reaction with fullerene and hence these fullerene vesicles can be used to study the effect of confinement on electron transfer reactions and other chemical dynamics. The layer-by-layer self-assembly approach for the fabrication of biopolymeric thin films and microcapsules is discussed in the chapters 3 to 6. The biocompatible nanoparticles and nanofibers were used as the components of the assembly. In chapter 3, we have described fabrication of thin film of bovine serum albumin (BSA) nanoparticles via LbL approach using biopolymer chitosan as the complementary polymer. The driving force for the assembly growth of the assembly was the electrostatic and complementary hydrogen bond formation between the two components. The idea of incorporating nanoparticles in the thin film was that the nanoparticles can act as reservoirs for functional materials. The films were loaded with anticancer drug doxorubicin and show pH dependent release of the drug. The various interactions involved in the LbL assembly of BSA nanoparticles and polymers were investigated towards understanding the growth mechanism of the assembly in chapter 4. The understanding of the interactions involved in the assembly formation is important in order to modify the conditions of the assembly for enhancing the growth. It is inferred from the study reported in this chapter that not only the interaction of nanoparticles with polymers but also the inter-particle interactions are important factors in determining the growth of LbL assembly of nanoparticles/polymers. The growth of the assembly is enhanced on minimizing the inter-particle repulsions, which was achieved in case of BSA nanoparticles by modifying the pH of the assembly. We also utilized the LbL self-assembly approach for the delivery of lipophilic drugs. The lipophilic drugs are difficult to administer in the body due to their poor water solubility and hence show poor pharmacokinetic profile. The methods for incorporating hydrophobic drugs in LbL assembled thin films and microcapsules are described in chapters 5 and 6. In chapter 5, hydrophobic molecules binding property of albumin has been exploited for solubilisation of a water-insoluble molecule, pyrene (model drug) and hydrophobic drug, curcumin, by preparation of non-covalent conjugates with BSA. The interaction with BSA provided negative zeta potential to the previously uncharged molecules and hence they can be incorporated in the LbL assembled thin films and microcapsules using electrostatic as well as hydrogen bonding interaction with biopolymer, chitosan. The fabrication of protein encapsulated stable microcapsules with hydrophobic molecules incorporated in the shell of the microcapsules has also been demonstrated. The microcapsules were further capable of loading hydrophilic molecules like Rhodamine B. Thus, this approach can be employed for fabrication of multi-agent carrier for hydrophobic and hydrophilic drugs as well as therapeutic macromolecules. In chapter 6, we have incorporated nanocrystalline cellulose (NCC) LbL assembled thin films and microcapsules. The assembly formed was porous in nature due to the nano-fibrous morphology of NCC. The nanoassemblies can act as potential drug delivery carrier, which has been demonstrated by loading anticancer drug doxorubicin, and a lipophilic drug, curcumin. Doxorubicin hydrochloride, the salt form of the drug, doxorubicin, has good water solubility and hence can be postloaded in the assembly by diffusion from its aqueous solution. In the case of curcumin, which has limited solubility in water, a stable aqueous dispersion of the drug was prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analysed computationally.
197

Síntese e caracterização de filmes de óxidos metálicos nanoparticulados para aplicação em células solares sensibilizadas por corante (DSCs)

Paula, Leonardo Ferreira de 29 April 2014 (has links)
In this work, thin and compact films of TiO2, Nb2O5 and WO3 nanoparticles were prepared to be used as contact/blocking layer in dye sensitized solar cells (DSCs). The films were produced by deposition of 30 bilayers of TiO2(ac)/TiO2(bas), TiO2(ac)/Nb2O5(bas) and TiO2(ac)/WO3(bas) using the layer-by-layer technique (LbL) from nanoparticle sols of TiO2 (pH = 2 and 10), Nb2O5 (pH = 10) and WO3 (pH 10) prepared by sol-gel method. The TiO2/TiO2 and TiO2/Nb2O5 underlayers resulted in an increase of 25% and 87% respectively, in the efficiency of DSCs when compared to those without the contact/blocking layers. The application of TiO2/WO3 films did not result in any improvement of DSC efficiency. Factors such as thickness, nanoparticles homogeneity, oxides concentration on the films and roughness directly influence on the efficiency of such films as contact/blocking layer. Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) images, confirmed that all films are constituted by spherical nanoparticles with homogeneous diameters smaller than 20 nm, resulting on compact and low porous surfaces. This morphology ensures a physical barrier between the electrolyte and the conductive glass used as electrode in DSCs. The TiO2/TiO2 and TiO2/Nb2O5 films also exhibited higher roughness than the surface of the conductive glass without the bilayers, which increases the interaction with the mesoporous TiO2 film. The molar ratios of the species present on the films are controlled by the pH employed during deposition, and were determined by X- ray photoelectron spectroscopy (XPS). The Ti4+/Nb5+ and Ti4+/W6+ ratios were 1.6 and 19 respectively, which evidences a higher concentration of TiO2 nanoparticles on the films. For a better understanding of the role of the bilayers on the charge transfer processes, the substrates were analyzed by Electrochemical Impedance Spectroscopy (EIS). The electronic properties of the oxides also influence the efficiency of the LbL films as contact/blocking layers. Due to its higher band gap, Nb2O5 nanoparticles impose an electronic barrier to the electrons transfer from the conductive substrate to the electrolyte, additionally to the physical barrier. / Neste trabalho foram preparados filmes finos e compactos de óxidos nanoparticulados de TiO2, Nb2O5 e WO3 para a aplicação como camada de contato/bloqueio em células solares sensibilizadas por corante (DSCs). Os filmes foram produzidos pela deposição de 30 bicamadas de TiO2(ác)/TiO2(bás), TiO2(ác/Nb2O5(bás) e TiO2(ác)/WO3(bás) utilizando a técnica de automontagem (Layer-by-Layer ou LbL), a partir dos sóis nanoparticulados de TiO2 (pH = 2 e 10), Nb2O5 (pH = 10) e WO3 (pH = 10) sintetizados pelo método sol-gel. A presença das bicamadas de TiO2/TiO2, TiO2/Nb2O5 gerou aumentos relativos na eficiência das DSCs de 25% e 87% respectivamente, quando comparadas às DSCs sem as bicamadas. Já o filme de TiO2/WO3 não gerou nenhuma melhoria na eficiência das DSCs. Fatores como a espessura, homogeneidade das nanopartículas, concentração dos óxidos nos filmes e a rugosidade influenciam diretamente na eficiência dos filmes como camada de contato/bloqueio. Imagens de Microscopia Eletrônica de Varredura com Emissão de Campo (MEV-FEG) e Microscopia de Força Atômica (MFA) confirmaram que todos os filmes apresentaram nanopartículas esféricas com diâmetros homogêneos e menores que 20 nm, o que acarreta na formação de superfícies compactas e pouco porosas. Esta morfologia garante uma barreira física entre o eletrólito e a superfície do vidro condutor utilizado como eletrodo nas DSCs. Os filmes de TiO2/TiO2 e TiO2/Nb2O5 apresentaram também rugosidades maiores que a da superfície do vidro condutor sem as bicamadas, o que aumenta a interação entre com o filme de TiO2 mesoporoso. As razões molares das espécies presentes nos filmes são controladas pelo pH empregado durante as deposições, e foram determinadas por Espectroscopia de Fotoelétrons Excitados por raios-X (XPS). As razões Ti4+/Nb5+ e Ti4+/W6+ foram de 1,6 e 19 respectivamente, o que evidencia uma maior quantidade de nanopartículas de TiO2 nos filmes. Para melhor entender o papel das bicamadas nos processos de transferência de cargas, os substratos foram analisados por Espectroscopia de Impedância Eletroquímica (EIE). As propriedades eletrônicas dos óxidos também influenciam na eficiência dos filmes automontados como camada de contato/bloqueio. Devido ao seu maior valor de band gap, as nanopartículas de Nb2O5 impõem, além de uma barreira física, uma barreira eletrônica para a transferência dos elétrons do substrato condutor para o eletrólito. / Mestre em Química
198

Complexes ADN/polycation en solution et aux interfaces en tant que vecteurs de transfection non viraux de pointe / DNA/polycation complexes in bulk and at interfaces as advanced non-viral transfection vectors

Sergeeva, Yulia 25 June 2013 (has links)
Ma thèse a porté sur des complexes de polyélectrolytes en solution et en films LbL pour la transfection de cellules et le contrôle des interactions cellule-surface. Il est possible de doser un agent de transfection et de l'ADN plasmidique dans des films LbL en ajustant le nombre de couches. Les efficacités de transfection avec différentes lignées cellulaires ont été au moins aussi bonnes que celles rapportées dans la littérature, mais sont restées globalement faibles. Différents nanobags ont également été systématiquement testés menant à un protocole de transfection très efficace avec une faible cytotoxicité pour des fibroblastes humains qui sont difficiles à transfecter. Nous avons pu identifier les architectures LbL qui permettent de contrôler l'adhésion cellulaire même en présence de sérum. Cela nous a permis d'introduire une nouvelle technique pour le suivi in situ de la transfection par QCM-D en suivant la mobilité du cytosquelette qui sera poursuivie dans un futur projet. / My PhD work was focused on polyelectrolyte complexes in bulk and in LbL-films for cell transfection and for controlling cell-surface interactions. It is possible to dose transfection agent and plasmid DNA in LbL-films by adjusting the number of layers. Transfection efficiencies with different cell lines were at least as good as reported in the literature, but remained overall weak. Different nanobags were also tested systematically leading to a highly efficient transfection protocol with low cytotoxicity for human fibroblasts which are difficult to transfect. We were able to identify multilayer architectures that allow to control cell adhesion even in the presence of serum. This allowed us also to introduce a new technique for the in-situ monitoring of transfection by QCM-D through monitoring cytoskeleton mobility which will be further pursued in a future research project.
199

Investigation of Graphene Oxide Based Multilayered Capsules/Films for Drugs Delivery And Antimicrobial Applications

Kurapati, Rajendra January 2013 (has links) (PDF)
Polyelectrolyte multilayer capsules fabricated by layer-by-layer (LbL) self-assembly technique consistsing of core-shell structure have emerged as potential drug delivery systems along with their applications in micro-reactors, cosmetics, vaccines and antimicrobial coatings. Various ligands and stimuli responsive entities can be incorporated into the core and shell of the capsules for targeted delivery and/or controlled release applications. Though multilayer capsules have been studied extensively as delivery systems, their utility for encapsulation of hydrophobic drugs and multiple drugs have not been explored in detail so far. Application of traditional polyelectrolyte capsules has several limitations, which renders them inapplicable for encapsulation of multiple drugs, hydrophobic drugs and also for releasing drugs on demand without addition of the external photothermal agents such as metal nanoparticles into the shells of the capsules. Thus, in this thesis, an attempt has been made to develop novel multifunctional multilayered capsules to overcome the above mentioned limitations. We have formulated two novel methods to functionalize the core with cyclodextrin molecules and the shell of the capsules with two-dimensional material, graphene oxide (GO). The properties such as high surface area along with π bonds, broad NIR-absorption, superior photothermal conversion and antimicrobial activity of graphene oxide has been explored and it has been demonstrated that 2-D graphene oxide is unique compared to the regular polyelectrolytes. By functionalizing the shell of capsules with GO as one of the layer material, a simple and efficient way for encapsulating multiple drugs into core and shell of the capsules is achieved by utilizing the large surface area and amphiphilic nature of GO. Based on the unique optical absorption and photothermal conversion properties of GO, we have demonstrated a facile route for near-infrared (NIR)-laser triggered release with low laser power. In the second part, functionalization of the hollow core of the capsules has been functionalized using cylodextrin (CD)-incorporated CaCO3 porous sacrificial templates, where both CD-CaCO3 and CD-modified capsules are used as high efficient carriers for hydrophobic drugs. In the third part, synergistic antimicrobial therapy was achieved using composite graphene oxide/polymer LbL films by combining the intrinsic antimicrobial activity and photothermal conversion ability of graphene oxide and the results depicted superior antimicrobial activity towards E. coli. These composite films also can be used as efficient antimicrobial coatings on biomedical devices or implants. The thesis has been divided into five chapters based on the individual works. In Chapter 1, a brief review on the history of LbL self-assembly, mechanism of self-assembly along with factors affecting the process have been discussed. Followed by a brief discussion about the fabrication of multilayered hollow capsules (core-shell structure), their applications in drug delivery and fabrication of multifunctional multilayered capsules through core and shell have been discussed. Finally, recent developments in LbL self-assembly and multilayered hollow capsules using carbon based materials (fullerenes, carbon nanotubes and graphene oxide) and their biomedical applications have been presented. Chapter 2 deals with the study on fabricating multifunctional multilayered capsules for facile encapsulation of multiple drugs into the capsules, which is achieved by functionalizing the capsules with graphene oxide (GO) as one of the layer materials. The GO composite capsules exhibited unique permeability properties compared to traditional multilayered capsules made of two polyelectrolytes. Multiple drugs could be simultaneously encapsulated in the capsules in a simple and effective manner. These capsules were found to exhibit a “core-shell” loading property for encapsulation of dual drugs into the core and shell of the capsules respectively. In addition, the graphene oxide composite capsules showed excellent biocompatibility towards MCF-7 cells. This study is the first one that demonstrates the potential of hybrid polyelectrolyte capsules without the use of micelles or polymer-drug conjugates for multi-drug encapsulation. Chapter 3 deals with the development of a facile route for near-infrared (NIR)-light triggered release of encapsulated drugs from the multilayered capsules via incorporation of graphene oxide (GO) into layer-by-layer (LbL) assembled capsules without addition of any external additives such as metal nanoparticles (NPs) or carbon nanotubes (CNTs) into the shells of the capsules. Till now, there is no report on light-responsive drug delivery system by utilizing the NIR-optical absorption properties of GO. Here, graphene oxide (GO) plays a dual role, serving as a structural component of LbL capsules as well as strong NIR-light absorbing agent, which efficiently converts absorbed light into heat. Upon NIR-laser irradiation, the microcapsules were opened in “point-wise fashion” due to local heating caused by laser irradiation. The rupturing mechanism of the capsules has been clearly demonstrated using confocal fluorescence microscopy and high resolution transmission electron microscopy. The light-triggering ability of these capsules has been applied successfully to release the encapsulated anticancer drug, doxorubicin. Chapter 4 deals with simple and versatile simple routes for encapsulation of model hydrophobic drug. Encapsulation of hydrophobic drugs in pharmaceutical industries is always a big challenge due to limited number of available drug carrier systems and poor aqueous solubility of hydrophobic drugs. Here, by combining the special properties of cyclodextrins (CDs) with biodegradable inorganic calcium carbonate microparticles, the hybrid CD-CaCO3 mesoporous microparticles have been prepared for the first time. These CD-CaCO3 microparticles were utilized as sacrificial templates to prepare CDs-modified LbL capsules. We have demonstrated that both the hybrid CD-CaCO3 microparticles and CDs-modified capsules are potential carriers for encapsulation of model hydrophobic drugs (self-fluorescent coumarine and nile red dyes) with high loading efficiency using supramolecular host-guest interaction between entrapped CDs and hydrophobic dye molecules. Compared with other inorganic drug carrier systems (mesoporous silica), CaCO3 porous particles have better biocompatibility, biodegradability and cost-effective and without use of any organic solvents. Both these hybrid CD-CaCO3 microparticles and CDs-modified capsules can be good candidates for encapsulation of hydrophobic drugs without involving extreme chemical conditions for fabrication. Chapter 5 deals with development of facile synergistic method for killing pathogenic bacteria by combining the intrinsic antimicrobial activity of graphene oxide (GO) and unique photothermal conversion property of GO into a single material. We fabricated composite LbL films of graphene oxide (GO) and poly(allylamine hydrochloride) (PAH) films. Antimicrobial activity of these GO composite films has been studied using Escherichia coli (E. coli) cells by varying number of deposited layers on glass slides (20 to 80 layers) and results suggest that by increasing the number of deposited layers, antimicrobial activity is also increased gradually. Based on the unique optical properties of GO, photothermal therapy have been carried out for killing of E. coli using GO composite films by varying number of deposited layers (20 to 80 layers) by irradiation of NIR-pulse laser at 1064 nm wavelength (Nd:YAG, 10 ns pulse, 10 Hz). The photothermal results revealed the enhanced antimicrobial activity compared to GO composite films alone without NIR-laser irradiation. The synergistic photothermal killing ability along with intrinsic antimicrobial activity of GO films results in much faster killing compared to films alone.
200

Therapeutic Applications of Biodegradable Chitosan Based Polyelectrolyte Nanocapsules

Thomas, Midhun Ben January 2014 (has links) (PDF)
The past few years have witnessed significant work being directed towards drug delivery systems with layer-by layer (LbL) technique prominently featured as one of the most sought after approach. However, majority of the studies were focused on the fabrication of microcapsules which produced numerous drawbacks resulting in reduced applicability. This has spurred research into nanocapsules which has proved to overcome most of the drawbacks that plagued microcapsules by being able to evade the reticulo-endothelial system, exhibit enhanced permeability and retention in tumours etc. The capsules fabricated by the LbL technique requires a suitable combination of cationic and anionic polyelectrolytes which ensures that it is able to effectively protect the cargo it encapsulates as well as enhance its bio-applications. With numerous advantages such as biocompatibility and biodegradability to name a few, chitosan has proved to be an ideal cationic polyelectrolyte. Thus, this thesis focuses on the various therapeutic applications of LbL fabricated chitosan based nanocapsules. The first work focuses on the targeted delivery of the somatostatin analogue, Octreotide conjugated nanocapsules to over expressed somatostatin receptors. These LbL fabricated nanocapsules composed of chitosan and dextran sulfate (CD) encapsulate the anti cancer drug, doxorubicin and are found to attain site specificity as well as enhanced anti-proliferative activity. The results indicated that the nanocapsules were biocompatible and when conjugated with octreotide was found to have an enhanced internalization into SSTR expressing cells, thereby making it a viable strategy for the treatment of tumors that has an over expression of somatostatin receptors such as pancreatic carcinoma, breast carcinoma etc. The objective of the second work was to develop an efficient drug delivery system such as CD nanocapsules for encapsulation of Ciprofloxacin in order to combat infection by Salmonella, an intracellular and intra-phagosomal pathogen. In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection. The increased retention of ciprofloxacin in tissues delivered by CD nanocapsules as compared to the conventional delivery proved that the same therapeutic effect was obtained with reduced dosage and frequency of Ciprofloxacin administration. The third work deals with the probiotic, Saccharomyces boulardii which is found to be effective against several gastrointestinal diseases but had limited clinical application due to its sensitivity to acidic environment. However, encapsulation of S. boulardii with chitosan and dextran sulfate ensured enhanced viability and selective permeability on exposure to acidic and alkaline conditions experienced during gastro intestinal transit. The final work involves the fabrication of novel pH responsive nanocapsules composed of chitosan-heparin which facilitate the intracellular delivery of a model anti-cancer drug, doxorubicin.

Page generated in 0.0465 seconds